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Abstract. Patch prioritization is a crucial aspect of information systems secu-
rity, and knowledge of which vulnerabilities were exploited in the wild is a pow-
erful tool to help systems administrators accomplish this task. The analysis
of social media for this specific application can enhance the results and bring
more agility by collecting data from online discussions and applying machine
learning techniques to detect real-world exploits. In this paper, we use a tech-
nique that combines Twitter data with public database information to classify
vulnerabilities as exploited or not-exploited. We analyze the behavior of differ-
ent classifying algorithms, investigate the influence of different antivirus data
as ground truth, and experiment with various time window sizes. Our findings
suggest that using a Light Gradient Boosting Machine (LightGBM) can benefit
the results, and for most cases, the statistics related to a tweet and the users who
tweeted are more meaningful than the text tweeted. We also demonstrate the im-
portance of using ground-truth data from security companies not mentioned in
previous works.

1. Introduction

Exploit detection is an essential application for system administrators as system updates
sometimes involve rigorous impact analysis and even severe adaptations or migrations.
An exploited vulnerability on a particular system should demand urgent responses from
its administrator in the sense of prioritizing patches. Given this scenario and the fact that
many vulnerabilities might never be exploited in real-world attacks [Nayak et al. 2014]],
knowledge of which vulnerabilities are more likely to be exploited in the wild can be
an excellent tool for system administrators to prioritize patch deployments. There are
a few metrics that could be used with this purpose (such as the Common Vulnerability
Score System - CVSS base scores and the Microsoft Update Severity Rating System), but
they err on the side of caution [Younis and Malaiya 2015]]. The analysis of social media
data can leverage this process by taking advantage of the community’s discussions on the
topic [Shrestha et al. 2020].

The work presented in [Sabottke et al. 2015] has shown that hackers, system ad-
ministrators, and software vendors discuss vulnerabilities on social media like Twitter.
The authors also showed, for the first time, that this information could be used to create
a framework for predicting exploits using machine learning techniques. Several works
published after that investigated the feasibility of such Twitter-based early exploit detec-
tors ( [Bullough et al. 2017], [Queiroz et al. 2017], and [Chen et al. 2019]). Despite
these works shown the potential of using Twitter data to detect exploits, they still have



limitations. References [Bullough et al. 2017] and [Queiroz et al. 2017], for example,
uses only Support Vector Machine (SVM) as its classifier algorithm. [[Chen et al. 2019]
partially solves this issue by adding several other classifiers in their study. However, they
do not provide a performance comparison using the original dataset described in [Sabot-
tke et al. 2015[]. Another issue is related to the use of a single source, Symantec Intrusion
Protection Signature, for building the ground-truth of real-world exploits. As discussed
in [Sabottke et al. 2015]], this is a notable limitation since Symantec does not cover all
platforms and products uniformly.

Moreover, none of the previous work evaluates the impact of training Twitter-
based exploit detectors using past data to predict the future. For example, suppose that
an exploit detector was trained using data from 2017. What happens if only data from
2018 would be presented to this model? Would add more training data gives better perfor-
mance? This discussion is important to evaluate the practical implications of using Twitter
data to build exploit detectors and consequently helping prioritize which vulnerabilities
to patch. Based on these analyses, we propose to evaluate the extent to which different
factors influence the performance of Twitter-based exploit detectors. We focus on explor-
ing some machine learning characteristics, training classifiers with different time-window
sizes, and evaluating the impact of ground-truth labels from different sources.

The paper has four main contributions. First, we identify a suitable classifier for
building Twitter-based exploit detectors using a five-year dataset composed of tweets and
vulnerability information. Second, we develop a ground-truth for labeling real-world ex-
ploits using data from sources other than Symantec. Third, we provide empirical evidence
that using ground-truth information from a single vendor can bias the model toward some
vulnerabilities and induce to non-optimal performance on real-world scenarios. Fourth,
we examine if the performance of an exploit detector model is affected along the time.
Our results suggest that models trained and tested using data from a single calendar year
outperform those trained with data from previous years. This indicates that selecting the
right amount of past information that will feed the model is decisive to improve its per-
formance.

The rest of this paper is organized as follows. Section [2] presents the basic ter-
minology about security vulnerabilities. Section [3|reviews and compares related studies
with this work. Section |4 details the dataset, features and classifiers that are used in our
system architecture. Section [5] presents the results and shows some threats to validity.
Finally, Section [6] concludes the paper and suggests future work.

2. Terminology

Common Vulnerabilities and Exposures (CVE) is a list maintained by MITRE which
assigns a unique number to each disclosed vulnerability. Meltdown vulnerability, for
instance, is identified by the number CVE-2017-5754. Aside from the official channels,
some vulnerabilities may also be disclosed through forums, social media, or blogs, which
may lead to a situation where the CVE of a non-patched flaw can be published. In either
scenario, official and non-official disclosure, malicious hackers can take advantage of a
vulnerability to harm unpatched systems. Exploit is the term used to define the techniques
or tools developed with this goal.

Exploits can be divided into two categories: proof of concept (PoC) and real-



world (RW) exploits [Sabottke et al. 2015]. While the first is developed as part of the
disclosure process to demonstrate a particular vulnerability, the latest is created to perform
real attacks. Although some PoC may be used in real-world scenarios, others are too
impractical to be. Therefore, vulnerabilities with exploits in the wild are a subset of the
ones with PoC exploits.

3. Related Work

Many previous works have addressed the task of using machine learning to predict
whether a vulnerability will be exploited or not. [Bozorgi et al. 2010] trained an SVM
classifier using features extracted from the Open Source Vulnerability Database (OSVDB)
and the NVD to predict if a vulnerability is likely to be exploited. As ground truth, the
authors used a metric called “Exploit Classification” from the OSVDB, no longer avail-
able since 2016. Despite getting nearly 90% of accuracy, the ground truth used presents
a very high positive rate (exploited vulnerabilities), contrasting with most related works
( [Nayak et al. 2014]], and [Bilge and Dumitras 2012]], for example).

[Sabottke et al. 2015] introduced the use of Twitter to help classifying vulnera-
bilities as exploited or not exploited. Like [Bozorgi et al. 2010], the authors acquired data
from the NVD and the OSVDB, but they added an extra set of features extracted from
Twitter, including text and statistics about tweets and users who tweeted. The work di-
vides the ground truth into two groups, PoC and RW exploits, using the Exploit Database
(EDB) E] as a source for PoC and Symantec’s antivirus and IPS signatures for RW. They
collected tweets from February 2014 and January 2015 and found evidence that the use
of Twitter data could increase the classifier’s overall performance. The paper, however,
does not explore other classifiers options (only SVM was used) or methods to overcome
dataset imbalance, it uses only one year’s worth of data, and relies on a single antivirus
vendor for RW ground truth information. [Queiroz et al. 2017] used a similar approach to
detect useful information about security vulnerabilities using Twitter data. They collected
posts from security specialists from March 2016 to early March 2017 and manually la-
beled training data. Despite not being the focus of the paper, the approach was able to
identify useful alerts about vulnerability exploits.

[Bullough et al. 2017] raised questions about prior work’s methodology and high-
lighted how small changes in using the dataset could affect the performance of predictive
models. The authors have been especially critical about temporal intermixing caused by
random splitting data for train and test. Such ideas are valuable and should be considered
when planning new models, but their conclusion about using a temporal split may not
be accurate. In Section we reproduce this test in a variety of ways, and our results
suggest that performance differences may have different reasons. Furthermore, the work
uses only PoC ground truth from EDB and found 18% of their CVEs exploited, a value
significantly above those presented in works about RW exploits.

[Chen et al. 2019] used an ensemble of regression algorithms to predict when a
vulnerability will be exploited, both for PoC and RW scenarios. As features, the authors
created a graph-based model relating CVE-Authors-Tweet and, for ground truth, only
Symantec’s data was used. The authors also approached the temporal intermixing issue,

Thttps://www.exploit-db.com



demonstrating how, in some cases, the CVSS is not available at the time of the vulnera-
bility’s disclousure. In our work, we will demonstrate in section [5.1| that the CVSS plays
a small part in the classifier’s performance. Nonetheless, those issues may indicate that
more relevant NVD data could be affected similarly and should also be studied.

4. Proposal and Experiments

In this work, we evaluate and propose improvements in the Twitter-based exploit detec-
tion method presented in [[Sabottke et al. 2015]]. We chose to use that paper as our baseline
because other related works were not entirely comparable to the best of our knowledge,
displaying very different rates of exploited vulnerabilities or using completely different
data sources. We start by using the same dataset from the mentioned work, which contains
messages posted on Twitter, together with public data, and we experiment with different
machine learning techniques to classify if a vulnerability will be exploited. We then ex-
tend the ground truth with information from different anti-malware software, and finally,
we extend the dataset with data from 2015 to 2018. In all cases, we only consider already
cataloged vulnerabilities (those to which a CVE number was assigned). To summarize,
this paper has four main goals:

* Compare classification algorithms: we want to compare the performance of four
well-known algorithms on classifying vulnerabilities as “exploited” or “not ex-
ploited” based on data from Twitter and public vulnerabilities databases. Namely,
we compared Support Vector Machines, Logistic Regression, XGBoost, and
LightGBM. We also intend to evaluate how different groups of features impact
each algorithm. In our method, we divide features into four groups: Twitter text,
Twitter metadata, CVSS score and subscores, and a set of data from public vul-
nerabilities databases (mainly from the NVD).

* Compare Multiple Ground Truth: previous works rely only on Symantec’s an-
tivirus and intrusion protection system (IPS) signatures to indicate real-world ex-
ploits. We want to evaluate if other antivirus databases can provide useful insight
and improve prediction performance.

* Class Balancing: we want to verify if class balancing methods can improve the
overall results, given that class imbalance is one of the main challenges of this
task.

* Updated Data and Different Time Window Sizes: we want to evaluate how the
method behaves on more recent data and understand how the classifier is affected
by temporal splits and changes in the volume of training and testing data. To do
that, we create time windows with different sizes covering different periods to
train and test our model.

Our classifier considers each CVE as an instance to which should be assigned true,
if the vulnerability was exploited, or false otherwise. The features used to characterize
each instance summarize the data collected about a specific CVE. They contain a Bag-
of-Words (BoW) representation of tweets mentioning that CVE, Twitter statistics and
metadata related to those tweets, and public database information about the vulnerability.
In Section [4.3] we detail these features.

To train a classifier, we need a way to resolve if a vulnerability has any known
exploit. On the first test, we use the same ground truth data as defined in [Sabottke et al.



2015]: the ExploitDB (EDB) and Symantec’s antivirus and intrusion protection system
(IPS) signatures. For all remaining tests, we improve the ground truth with data from
Avas ESE and Trend Microﬂ The EDB is an online resource of known exploits
that also provides information about the vulnerabilities affected. While the EDB is an
excellent resource of PoC exploits, an antivirus signature is probably the best indicator
that an exploit has been spotted in the wild. Past works only included Symantec’s database
as a source for such information, but we were able to find similar data from other vendors.
In Section we analyze the quality of data and how they can impact past results.

4.1. System’s Architecture
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Figure 1. System Architecture

Fig. [I] represents the system used in this work. Data gathering process and its
sources (numbers 1 to 4) are detailed in subsection[d.2] Feature extraction process is pre-
sented in 4.3| while the machine learning techniques and the balancing phase (number 5)
are clarified in§4.4, We developed several Python scripts for supporting the data gathering
and feature extraction process. We also use the scikit-learn library [Pedregosa et al. 2011]]
for conducting the classification tasks.

Table 1. Vulnerabilities mentioned on Twitter

# of Vulnerabilities | Mentioned on Twitter %
2015 6484 822 13%
2016 6447 776 12%
2017 14714 1292 9%
2018 16556 3753 23%

4.2. Dataset

For the first part of this work, we used the same dataset described in [Sabottke et al. 2015]]
as it was a good baseline for comparison. In essence, it consists of tweets collected using
Twitter’s Streaming API from February 2014 to January 2015 using the keyword “CVE”.
Each tweet was automatically associated with a vulnerability using the CVE number,
and then, to each vulnerability, detailed data (such as vendor, CVSS, and description)
were collected from the NVD and the Open Source Vulnerability Database (OSVDB).
The authors were able to collect 287,717 tweets containing explicit references to CVE
numbers and referencing 5,865 different CVEs from the period studied.

Zhttps://www.avast.com/exploit-protection.php
3https://www.virusradar.com/en/threat_encyclopaedia
“https://www.trendmicro.com/vinfo/us/threat-encyclopedia



For the second part of our research, we collected tweets containing the word
“CVE” from January 2015 to December 2018, filtered out those referring to vulnera-
bilities outside our test period and those not mentioning a valid CVE number. We were
able to find 44,570 messages, mentioning 6,643 vulnerabilities discussed by 4,033 users.
Table [I| shows the number of CVEs mentioned on Twitter by year. In 2018, for example,
23% of all CVEs disclosed in that year were mentioned at least one time on Twitter.

Unlike [Sabottke et al. 2015], which collected tweets through Twitter Stream
API, we collected messages by searching old tweets using the GetOldTweets3 tool [Mottl
2018]. We believe this may be the cause of the difference in information volume since ac-
counts and messages deleted will not be found in our method. We also collected data from
the NVD for feature extraction. Section 4.3 contains the list of features to each CVE. As
discussed in [Sabottke et al. 2015]], we also used two different ground truth for the dataset:
one for proof-of-concept (PoC) and another for real-world (RW) exploits. Therefore some
of the experiments are also divided into two categories, one for each type of exploit. For
PoC we used data from ExploitDB. For the real-worlds exploits, most related studies use
signatures from Symantec’s antivirus and IPS. We included information from four other
vendors: Avast, ESET, Trend Micro, and Kaspersky. We believe that relying on a single
vendor can lead to biased results and less efficient learning from the model. In all cases,
not all signatures mention the CVE exploited, imposing some limitations on the results.

4.3. Features

For all of our tests, we divided the features used by the classifier into four categories: Twit-
ter text, Twitter statistics and metadata, CVSS score, and Public Vulnerabilities Databases.
Twitter text represents a combination of all messages tweeted about a CVE. Table [2]shows
a summary of our features. We represent the text with the Bag of Word (BoW) model,
and the words chosen were the same as in [Sabottke et al. 2015]]. The keyword dataset
comprises 36 words and some examples include: Oday, advisory, beware, ssl, and fix.
Twitter statistics contain data such as the number of retweets related to a CVE and the
combined number of followers from all users who tweeted a CVE. Public Vulnerabilities
Database originally included information from the NVD and the OSVDB, but we used
only the former since the latter is no longer available. The CVSS category contains fea-
tures representing the CVSS vectors. For the 2015 to 2018 data, we included features for
the CVSS 3.0. We also included impact and exploitability subscores for both versions 2.0
and 3.0.

Table 2. Summarized List of Features

Position | Category Data type

0-35 Twitter text BoW

36 - 47 Twitter metadata All Numeric

48-56 | CVSS Score 2.0 3 Numeric, 6 Categorical Ordinal
57 - 67 CVSS Score 3.0 3 Numeric, 8 Categorical Ordinal
68 - 78 | Public Vulnerabilities Databases | 6 Numeric, 5 Binary

4.4. Classifiers

We used the SVM classifier as our baseline since it is well suitable for text categoriza-
tion [Joachims 1998|] and because it was used in most related works. We tested sev-
eral supervised classification algorithms, but we will approach the ones which stood out



2014% 2015 2016 2017 2018
Mentioned CVEs 5,865 822 776 1292 3753
Exploited 77 (1.3%) 71(8.6%) | 31 (4.0%) 61 (4.7%) | 133 (4.2%)
PoC 383 (6.5%) | 115 (14.0%) | 90 (11.6%) | 220 (17.0%) | 257 (11.9%)

*Sabottke dataset

Table 3. Number of CVEs exploited compared to total

best: Logistic Regression, XGBoost, and Light Gradient Boosting Machine (LightGBM).
We also tried several class balancing algorithms available on Python’s imbalanced-learn
API [1mbalanced-learn APl documentation 2019]. In this paper, we will cover only the
ones which performed best with our application: Synthetic Minority Over-sampling Tech-
nique (SMOTE), Adaptive Synthetic (ADASYN), Nearest-Neighbor (AIIKNN), and the
Random Under Sampler (RUS). The first two being over-sampling techniques and the
other two under-sampling algorithms.

We used the stratified 10-fold cross-validation and averaged the results. When
testing the balancing algorithms, we applied the methods on the training set of each fold.
Because our dataset contains features with different data types, and the experimented al-
gorithms also use different types as input, we tested multiple scaling and feature represen-
tation methods for each algorithm and used the one which performed best. All categorical-
ordinal data (mostly related to the CVSS score) or binary features were first converted to
numeric values. Standardization was done through sklearn’s StandardScaler.

5. Experimental Results

To compare our results with the original work ( [Sabottke et al. 2015]), we use as our
baseline an SVM classifier with no class balancing and Symantec as the single source of
information about real-world exploits. Results are shown using the values of precision

(775 the fraction of correct positive prediction), recall (77 the fraction of pos-

TP+FP>
itive cases that were correctly predicted), and F-score (2 * precisionsrecall - ha harmonic
precision+recall

mean of precision and recall). We use the precision-recall (PR) curve as the visual rep-
resentation for all experiments, considering the database is highly imbalanced. Table
shows how imbalanced the classes are. Since we already have conservative exploits in-
dicators on the CVSS scores, we prioritize the increase of the precision over the recall
without sacrificing the F-score. For each algorithm, we tested two scenarios: PoC and
RW exploits.

To extract more significant conclusions, we plotted the classifier results when
training and testing with each subset of features. We also plot a line for the results us-
ing all features combined. By adopting this strategy, it is possible to see how different
features may favor a particular algorithm. Furthermore, we ran tests with combinations
of subsets, e.g., CVSS and Twitter Statistics, and eventually concluded that certain fea-
tures are not suitable for some of the algorithms. We have shortened the names of the
categories: Words stands for Twitter text, Twitter Stats stands for Twitter statistics and
metadata, CVSS stands for the CVSS score and, Database stands for Public Vulnerabili-
ties Databases. A description of each subset can be found in Section



5.1. Analyzing the Performance of Different Algorithms and Groups of Features

Table {i| shows the overall performance of the tested algorithms using the same dataset de-
scribed in [Sabottke et al. 2015] which encompasses data from February 2014 to January
2015. Significance was calculated using a 10-fold cross-validated paired t-test between
the algorithm’s and the baseline’s f-score. P-values greater than 0.05 implies no signifi-
cant improvement. We also used the f-score because, in our tests, the SVM was the only
algorithm which had recall greater than the precision, so using either of these measures
could lead to incorrect conclusions. The results reveal that, regardless of the algorithm,
there is still room for improvement. We believe this can be achieved with modifications to
the preprocessing and the data-gathering technique. We’ll discuss that in Section[6] Next,
we analyze each of the used algorithms.

Precision | Recall | F-score | P-value
Baseline - SVM (PoC) 0.2075 0.7053 0.3199 —
LR (PoC) 0.6678 0.2434 0.3568 0.252
XGBoost (PoC) 0.7454 0.2746 0.4014 0.078
LightGBM (PoC) 0.7170 0.3293 0,4513 < 0.001

Baseline - SVM(RW) 0.0632 0.7660 0.1166 —
LR (RW) 0.7 0.1857 0.2935 0,007
XGBoost (RW) 0.4916 0.1535 0.2340 0,080
LightGBM (RW) 0.5219 0.2196 0.3091 0,004

Table 4. Overall results

5.1.1. SVM (Baseline)

Fig. [2] shows the difference between the Precision-recall curves for PoC and real-world
exploits. The first characteristic we would like to highlight is how the classifier performs
better with PoC data, probably because vulnerabilities with exploits published on the
ExploitDB are likely to have references on their description on NVD or OSDB. Therefore
the subset of features extracted from public vulnerabilities databases plays a big part in
the overall performance for PoC (this holds for all other algorithms).

Secondly, it is possible to notice how, in real-world scenarios, the Twitter Statistics
subset has an essential contribution to the overall result. As will be demonstrated here,
this characteristic depends on the algorithm. However, our results indicate that the “who
said it” might be a more relevant question than “what was said” to determine if a tweet
indicates an exploited vulnerability.

Another characteristic is how the CVSS tends to be a conservative indicator. In
other words, using just that score leads to labeling most of the vulnerability as exploited,
hence the low precision and high recall. On the other hand, Words subset tends to be the
other way around: higher precision but very low recall. This behavior reflects how certain
words on the BoW representation, such as “exploit” or “beware”, are particularly efficient
in detecting exploits but are generally related to only a subset of the exploits.

5.1.2. Logistic Regression (LG)

Considering the precision, the Logistic Regression (LG) was the best performing algo-
rithm for the RW scenario. When looking at F-score, the Logistic Regression was the
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Figure 2. Precision-recall curves for SVM and Logistic Regression

second best. Fig. 2]c) shows the PR curves for our test. In it, we display different combi-
nations of features. We can highlight how Twitter statistics was useful for all the tests it
was included, once again. It is worth mentioning that the model was one of the fastest to
train and test.

5.1.3. XGBoost and LightGBM

Both of the ensembles tested had good results, but only one of them, the LightGBM,
had a P-value of less than 0.05. Besides, the XGBoost demonstrated the second-longest
execution time, ahead of only the SVM. The LightGBM, on the other hand, was the fastest
algorithm to execute in our tests. Figure[3|shows the PR curves for both algorithms.

In conclusion, the LightGBM was the best performing algorithm, considering the
F-score, during our initial tests by a small margin, followed by the Logistic Regression.
Throughout our other tests, the LightGBM was able to improve more than the Logistic
Regression, as will be shown in Section [5.3] Finally, we would like to point out how the
CVSS subset of features plays a more significant part when testing with PoC exploits. For
RW exploits, the Twitter statistics and the NVD data become more relevant.
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Figure 3. Precision-recall curves for XGBoost and LightGBM

5.2. Multiple Ground Truth

In this experiment, we investigate how using different antivirus signatures as ground truth
interferes with the classifier efficiency. In our research, we were able to find public
databases with lists and descriptions of signatures from the following vendors: Avast,



2014 | 2015 | 2016 | 2017 | 2018 | Total
Symantec Tweeted ik 43 29 58 131 267
- Symantec Total 90* 261 247 219 364 | 1.228
Avast Tweeted 112 33 3 4 4 44
- Avast Total 123 220 97 21 8 346
Other Tweeted 11 5 2 14 7 28
- Others Total 14 19 3 15 7 45
PoC Tweeted 383 115 90 220 257 699
- PoC Total 823 721 549 | 1124 981 | 3.984

* [Sabottke et al. 2015]] dataset

Table 5. Number of exploited vulnerabilities mentioned by vendors

SVM LR LightGBM

Precision Recall F-score Precision Recall F-score Precision Recall F-score

Baseline 0.2244 0.8278 0.3531 0.5850 0.1094 | 0.1844 0.5458 0.2844 | 0.3740

ADASYNT 0.2271 0.8285 0.3565 0.1936 0.8403 0.3147 0.4640 0.3774 | 0.4162

SMOTE! 0.2391 0.8044 | 0.3686 0.2200 0.8181 0.3467 0.4867 0.3785 0.4258

AIIKNNTT 0.2271 0.8285 0.3565 0.4955 0.3007 0.3743 0.4956 0.5267 0.5107

RUS! 0.2330 0.8303 0.3639 0.1322 0.8921 0.2302 0.2212 0.8642 | 0.3523

TOver-sampling technique

'Under-sampling technique

Table 6. Results for class balancing for RW exploits

ESET, Symantec, and Trend Micro. We then developed web crawlers to collect this in-
formation, searched for CVEs mentions, and created an expanded ground truth that will
be shared with the general public.

To our knowledge, all previous works use only Symantec to tell if a vulnerability
has been exploited in the wild. Our findings indicate that, from 2015 to 2018, at least
248 of the 1,338 real-world exploited vulnerabilities are not mentioned by Symantec.
Furthermore, considering years before 2015, Symantec’s database misses 518 real-world
exploited vulnerabilities in a total of 2,655 mentioned in signatures descriptions. Notice
that this does not necessarily mean their antivirus has no signature for those exploits, but
it indicates that no reference was made in the description. Table [5] shows the amount
of exploited vulnerabilities mentioned by each vendor from 2015 to 2018. ESET and
Trend Micro contain limited information compared to Avast and Symantec, so we com-
bined their numbers and labeled them “Other”. Also, notice how the quantities change
drastically over time, we will discuss that at the end of this section.

One of our concerns about using public signature descriptions was to avoid ven-
dors that would only include PoC information and count it as “exploit detection”. To
verify if we were getting new information, for each vendor, we compared the lists of ex-
ploited vulnerabilities to our list of PoC. We found that a significant amount of exploited
vulnerabilities were nor mentioned by Symantec or EDB, so it is reasonable to consider
them as real-world exploits. Figure 4] shows the intersection of our new list of exploited
vulnerabilities with Symantec’s and EDB’s (from 2015 to 2018).

To check how the new ground truth affects our classifier, we conducted a series of
tests where the model was trained using labels from a single vendor but tested with the
combination of all vendors (the combined ground truth). Table [/| contains the precision,
recall, and F-score for each test with our best performing algorithm, the LightGBM.

The results suggest that in 2014, [Sabottke et al. 2015] could have achieved equal
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Figure 4. The intersection of the lists of exploited vulnerabilities

Precision | Recall | F-score | P-value
Symantec 0.5605 0.1233 0.2021 -
Avast 0.5242 0.2209 0.3109 0.086
Sym + Avast 0.5238 0.2795 0.3645 0.046
Sym + Avast + Others 0.5458 0.2844 0.3740 0.032

Table 7. Results with combined ground truth

or better results using Avast’s database instead of Symantec’s (the P-value larger than
0.05 means the improvement is not significant enough for us to declare it better, despite
the F-score). Most importantly, we conclude that using information from a single vendor
can bias the model toward some vulnerabilities and lead to non-optimal performance on
real-world scenarios. As we will explain in Section the gains of a combined ground
truth can even be emphasized when using a class balancing algorithm. Unfortunately, as
shown in Table E], since 2015, Avast, has gradually decreased the volume of information
about its signatures.

From this experiment, we conclude that using multiple ground truth sources is
crucial for any machine learning application dealing with exploit detectors. Despite that,
we see less of this information available in recent years, which may indicate less effective
classifiers on future works.

5.3. Class-balancing

In another experiment, we compared methods for dealing with class imbalance. The
severe imbalance in our application motivated this test, as shown in Table @ In this test,
we ran class balancing methods with all four classification algorithms, and once again, the
LighGBM outperformed the others. We used a Python library called “imbalanced-learn”
and tested several algorithms of both undersampling and oversampling. In our tests, we
used the combined ground truth from Section [5.2] on real-world exploits and executed
these algorithms for the training set from each fold of the 10-fold cross-validation. Table
6] shows the results for the best-performing ones.

As we can see, the SVM and the LightGBM behave differently with the balancing
algorithms. While the baseline could only get similar F-score values and no statistically
significant improvement, the Light GBM showed a considerable increase in performance,
with a P-value of 0.001, when used with the AIIKNN, an under-sampling technique. Other
algorithms were not able to obtain statistically different results, although some achieved
superior F-score.



In general, the AIIKNN outperformed the original experiments for all classifica-
tion algorithms, both for PoC and real-world exploits. It is worth mentioning that when
using only Symantec’s ground truth, improvements were more modest, highlighting the
importance of using multiple sources for ground truth.

5.4. Updated Data and Time Window Sizes

With our last test, we wanted two things. First, to understand if the results obtained using
data from 2014 would remain with an updated dataset. Second, to answer if training with
data from a more extended period would influence the results. To do that, we first trained
and tested the model separating our data by year, from 2015 to 2018. We then ran a
series of experiments where the model trained with different time windows from years
before 2018 but tested with data from 2018. More specifically, the model trained with
the following groups of years: 2017, then from 2016 to 2017, and finally, from 2015 to
2017. Here, we would like to evaluate whether adding more training data would positive
influence the performance of the model.In this experiment, we used the LightGBM with
the combined ground truth. The results are shown in Table[§] and Table 9]

Year | Precision | Recall | F-score
2015 0.6048 0.6282 | 0.6163
2016 0.2089 0.2333 | 0.2204
2017 0.5419 0.5681 | 0.5547
2018 0.6999 0.5529 | 0.6178

Table 8. Results for updated data - Training and testing using a one-year window
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Figure 5. Precision-recall curves for each year on RW exploits (2015 - 2018)

Train Test Precision Recall F-score
2018 (baseline) 2018 0.6999 0.5529 0.6178
2017 2018 0.3333 0.1654 | 0.2211
2016 2017 2018 0.3051 0.1353 0.1875
20152016 2017 | 2018 0.3208 0.1278 0.1828

Table 9. Results for training with different time windows

We can see from Table [J] that results remain reasonably constant throughout the
years, except for 2016, probably due to the small number of exploited vulnerabilities men-
tioned on Twitter (see Table [5). Moreover, as mentioned in Section [5.2] the contribution
of Avast and other antiviruses to our ground truth diminished in recent years, making the
model more dependent on Symantec as its only source of information.



When training with different time windows, our results suggest that there may
be some relation between CVEs from the same year that allows better learning from the
model. When training with data from past years, F-score remained around 0.2. From our
perspective, this difference was not expected since all data used for the model’s features
were equally available for all of the years. To check if information learned by the model
was getting old overtime or if it was missing new information, we ran tests with multi-
ple combinations of time windows (e.g., we would train just with 2015 or with 2015 and
2016, then with 2016 and 2017; we also tested with multiple years, and even trained with
years ahead of the testing one). In all cases, the performance was significantly lower than
the single year approach. We believe this behavior can relate to the fact that some vul-
nerabilities are disclosed together and be part of the same malware issue. The WannaCry
ransomware outbreak, for example, was related to six different CVEs (CVE-2017-0143,
CVE-2017-0144, CVE-2017-0145, CVE-2017-0146, CVE-2017-0147, and CVE-2017-
0148), all with a fairly similar description, CVSS, and affecting the same products. If that
is the case, maybe it is necessary to detect these groups of CVEs and treat them as a single
vulnerability. To conclude, we found no empirical evidence that using more than one year
of data can benefit a model that uses a temporal batch split.

5.5. Threats to validity

Our experiments were conducted with tweets acquired using a tool called GetOldTweets3
[Mottl 2018]], which can search for Twitter messages regardless of their posting time but
cannot obtain deleted tweets or tweets from deleted users. In contrast, if we were using
the Twitter Stream API, messages would be obtained and stored in our database when
posted. This limitation leads to a diminished tweet volume. We believe our contributions
can apply for batch training with or without a temporal split, but it is necessary to mention
that time intermixing can be a limitation on our tests using single year data. In our method,
we also discarded tweets referencing older vulnerabilities (for example, we only consider
CVE:s disclosed in 2018 when collecting Twitter mentions in 2018), which may prevent
the system from detecting new exploits on old vulnerabilities.

6. Conclusion and Future Work

In this paper, we explored several aspects of Twitter-based exploit detectors. We have
compared the performance of four commonly used classification algorithms, conducted
tests with different data sources for ground truth to real-world exploits, applied balancing
algorithms, and trained and tested our classifier with different time windows.

By selecting a suitable algorithm, managing class imbalance issues, and adding
new ground truth, we were able to outperform the baseline and evaluate the performance
of exploit detectors using updated data. Some of our results raised questions that we
would like to tackle in future work, some of them involve: monitoring the NVD data
to check which of our features is available when a CVE is published; understanding how
related CVEs interfere on our classifier and if that is the real cause of inferior performance
using time windows; enhance the tweet searching by using keywords other than “CVE”.
We also want to experiment with different feature selection and text representations.
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