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Abstract. Smart energy meters grant to power providers the capability to per-
form many advanced services, and several countries already started to deploy
them. However, data analysis can raise privacy issues by inferring daily activi-
ties and appliance usages of consumers. Hence, there is a crucial need to deal
with the problem of consumers’ privacy in smart metering. Several approaches
offer ways to provide privacy and preserve some of the benefits. In this paper, we
list, experiment and evaluate five of these approaches based on three orthogonal
technologies: noise addition, rechargeable batteries, and homomorphic encryp-
tion. We evaluate them based on the main needed attributes, such as complexity
and accuracy, and conclude that there are many tradeoffs to be dealt with.

1. Introduction
Governments and power providers across the world have recognized that the traditional
grid, which has not significantly changed in the last decades, must be replaced by more
efficient, flexible and intelligent energy-distribution networks, called Smart Grids. These
are digitally monitored, self-healing energy systems that deliver electricity from gener-
ation sources, including distributed renewable sources, to points of consumption. They
optimize power delivery and enable end-user energy management, minimizing power dis-
ruptions and transporting only the required amount of power. The result is a lower cost to
the power provider and to the consumer, and a more reliable power generation, transmis-
sion and distribution.

Smart meters are devices that measure electricity consumption in real time and
transmit this data to remote servers. They may represent a turning point in the energy
industry and foster the development of new services and improvement of existing ones.
In a typical smart metering architecture, the analysis of the collected data can help power
providers to learn how to better manage the areas within their networks. Thus, helping to
understand the business benefits of investing in Smart Grids. Figure 1 presents a smart
metering system architecture.

Despite the benefits, smart meters raise concerns about the privacy of consumers.
Electricity data may contain private sensitive information, such as which appliances are
being used, if the house is empty, when people take a shower or shut down the tele-
vision. Using advanced power signature analysis tools, such as the Non-Intrusive Ap-
pliance Load Monitoring (NIALM), it is possible to find out private information about
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Figure 1. Smart metering system architecture and data usage applications
[Waters 2006].

consumer’s lifestyle. [Batra et al. 2014] designed some methodologies to identify the use
of appliances from load profiles. If the load monitoring algorithm is running remotely,
the consumers may not know that their behaviors are being monitored.

The information about a lifestyle of a person may be interesting to many busi-
nesses that can take advantages of it and offer their goods and services. In order to protect
consumers from misuse of their data, and to prevent smart meters to become a new type
of Big Brother, rules and regulations are needed [Boccuzzi 2010]. Sadly, such laws may
take decades to be created and applied. While this still needs to happen, smart meters are
already operational.

Taking these problems into account, there are a handful of solutions to protect
privacy in smart metering. Many of them provide levels of privacy and still preserve
several of the benefits of the smart metering deployment. Regarding some performance
aspects such as computational complexity, some solutions are fast and lightweight, while
others require heavy processing due to complex computations.

The solutions can be classified based on their approach to solve the privacy is-
sues. There are techniques based on homomorphic encryption, the techniques that use
rechargeable batteries, and the ones that make use of noise addition. In this paper, we re-
view these techniques, evaluate and discuss their performance, according to a few relevant
performance aspects. Besides computational complexity, we also evaluate other aspects,
such as scalability, meters’ independence, cost, environmental impact, and accuracy.

The rest of the paper is organized as follows. We summarize the problem state-
ment in Section 2 and present the privacy techniques in Section 3. In Section 4 we present
the conducted experiments and in Section 5 we discuss the obtained results. Finally, we
conclude the paper in Section 6.
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2. Problem Statement
There are many benefits of using a smart metering system. Some of them are: identify
technical and non-technical losses (e.g., power thefts), monitor energy quality scores, and
optimize load forecasting. However, information of power consumption may be used for
reasons not related to energy management, making the collection and distribution of such
information dangerous to the privacy of consumers. The privacy issues are some of the
main reasons why smart meters were still not deployed in many countries [Koehle 2012].

With the considerable amount of privacy-preserving techniques that can be
adopted to ensure privacy in smart metering, the need to better understand and compare
these solutions arises. To enable power providers to process smart meter measurements,
while preventing them to access private data, cryptographic tools like homomorphic en-
cryption may be used. With these approaches, before sending its measurement, each
smart meter runs a cryptographic routine. The utility provider receives encrypted mea-
surements, but can still perform useful computations and output the correct aggregate
values, like the total consumption of a consumer during a billing period or the total con-
sumption in the region in an instant of time. Thus, some benefits of using smart metering
are still provided, while the consumer’s privacy is maintained.

Techniques based on the usage of rechargeable batteries consist in using a battery
between the smart metter and home appliances. Therefore, the disclosed information is
the battery load profile, but not the daily activities and appliance usages of consumers.

Through noise addition techniques, individual measurements are masked by
adding random numbers. This masking happens in a way that does not affect the out-
come of the aggregating operations but hides the individual measurements.

In this paper, we address the following business problem: which privacy preserv-
ing solution in smart metering is more suited for a specific scenario? It is important for
the development of smart grids that all involved parties understand the solutions, know-
ing what are their strengths and weaknesses. Some solutions might be simple for only
one end (e.g., in the smart meters), but not for the other (e.g., power providers). Having
an outline of solutions, descriptions, advantages and disadvantages is useful to assist the
choice of techniques that are best fit for specific situations.

3. Privacy Techniques
Below we present some of the proposals for preserving privacy in smart metering. Since
the main privacy issues are derived from individual data (like the consumption in a in-
stant of time), these privacy preserving approaches tend to reveal aggregate data (like
the total consumption through a billing period or the total consumption in a region) and
hide individual data. The presented approaches follow a Trust No One philosophy, that
is, the privacy techniques are applied in the smart meter, and trusted third parties are not
required.

3.1. Noise Addition

Noise addition is a privacy preserving technique to mask the data. [Wang et al. 2012]
propose an approach to mask the data adding random numbers from a GMM (Gaussian
Mixture Models), whereas [Bohli et al. 2010] and [He et al. 2013] propose approaches to
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mask the data using Gaussian noise. Noise addition is a promising and efficient tech-
nique, however, these mentioned aproaches do not have formal models to calculate the
amount of noise that should be added to guarantee desired privacy and utility levels. In
fact, [He et al. 2013] argue that for real world system design, a proper trade-off between
privacy protection and accuracy should be considered.

[Barbosa et al. 2014] propose that for every measurement, the smart meter reads
the consumption and adds a random number. Thus, after an aggregating operation (such as
the calculation of the total consumption in a region or the total consumption of a consumer
in the end of a billing period), the result will be:

N∑

i=1

ci ≈
N∑

i=1

(ci + xi)

where N is the total number of measurements, xi is a random number generated from a
probabilistic distribution and ci is an individual consumption measurement.

The previous formalization can also be rewritten as follows:

N∑

i=1

ci =
N∑

i=1

(ci + xi) − eo

where eo is the obtained error by the addition of random numbers. Therefore, eo is the
sum of all added random values:

eo =
N∑

i=1

xi .

[Barbosa et al. 2015] developed many analytical models using probability theory
for different distributions. Here we will consider the Laplace distribution. Let xi be a
random variable generated from this distribution. Its variance is σ2

x = 2b2, where b is a
scale parameter. Now, for a large N , the central limit theorem ensures that the obtained
error for billing purpose follows a normal distribution with mean µeo = 0 and variance:

σ2
eo = N2(σ2

x / N) = Nσ2
x = 2Nb2 . (1)

In other words, to have an obtained error between two accepted values (with high
probability), we can use the following normal distribution:

eo ∼ N
(
0, 2Nb2

)
.

As an example, Figure 2 shows a daily profile of a residential consumer.1 There are
16 appliances in this consumption profile. However, the appliance with highest wattage
and easier to identify is the laundry dryer.

1Combining appliance signatures we can generate arbitrary large populations and measure-
ment frequency. Several databases of appliance signatures are available online (e.g., Tracebase
[Reinhardt et al. 2012]).
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Figure 2. Residential (black solid) and Laundry Dryer (red dashed) daily profiles
with measurements at each 1 minute.

00:00
30-Sep

03:00 06:00 09:00 12:00 15:00 18:00 21:00

Time

−0.08
−0.06
−0.04
−0.02

0.00
0.02
0.04
0.06
0.08
0.10

Co
ns

um
pt

io
n 

(k
W

h)

Masked Daily Profile

Figure 3. Residential masked daily profile with measurements at each 1 minute.

Assuming the billing period as one month, the total consumption of this consumer
during the billing period (one month of 31 days) is 131.978 kWh. Considering a maximal
allowed error of 5% for billing purpose, we have 6.5989 kWh. Thus, the variance for
a high probability (e.g., 0.98) of not exceeding this value is σ2

eo = 8.04626. Isolating
the scale parameter b from Equation 1, we have (for measurements at each 1 minute,
N = 44, 640):

b =
√
σ2
eo/ (2N) = 0.0094934 .

Figure 3 presents the daily masked profile using this Laplacian noise. Considering
that at the end of the month the power provider sums the informed masked values by the
consumer, it obtains a value of 133.7977 kWh. The real value is 131.978 kWh. The
difference between these values is an error of 1.3788%, less than the maximum allowed
error (5%). This error may be less if the consumer does not mask the measurements all
the time.
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Using this noise addition approach, it is possible to provide differential privacy
[Dwork 2006] guarantees for appliance usages, making them indistinguishable in a con-
sumption profile [Barbosa et al. 2016].

3.2. Rechargeable Batteries

Rechargeable batteries between appliances and smart meters can help to reduce the pri-
vacy issues as the appliance signatures are no longer legible [Backes and Meiser 2014,
Kalogridis et al. 2010, McLaughlin et al. 2011, Zhao et al. 2014].

[McLaughlin et al. 2011] propose an approach called Non-Intrusive Load Level-
ing (NILL). The goal of a NILL system is to level the load profile to a constant target
load, thus removing appliance signatures. When an appliance turns ON, it will exert a
load beyond the target load. Thus, NILL will discharge the battery to partially supply the
load created by the appliance, maintaining the target load. Similarly, if an appliance enters
the OFF state, the load profile will decrease below the target load. These opportunities
are used to charge the battery while restoring the target load.

The NILL system consists of two parts: a battery and a control system that regu-
lates the battery’s charge and discharge based on the present load and battery state. The
controller attempts to maintain a steady state target load KSS , but will go into one of two
special states KL or KH if the battery needs to recover from a low or high state of charge.

The essence of NILL is described by the equation, u(t) = d(t) + b(t), where b(t)
is the battery’s rate of charge overtime, d(t) is the actual load profile of the residence
and u(t) is the load under the influence of NILL as perceived by the smart meter and
what is disclosed to the power provider. If b(t) > 0, the battery is charging, otherwise
b(t) < 0 and the battery is discharging. Finally, c(t) is used to represent the battery’s state
of charge, thus:

c(t) =

∫ t

t0

b(t)dt+ c(t0) .

Therefore, c(t) is monitored. If c(t) < L, where L is the lower safe limit on the
battery’s state of charge, then the battery needs to be recharged and the system goes to
the KL state. Similarly, if c(t) > H , the system goes to the KH state and the battery is
discharged.

3.3. Using a Modified ElGamal Encryption

The first homomorphic encryption solution that we consider is based on a modification
in the ElGamal encryption, a cryptographic system that relies on the discrete logarithm
problem. The ElGamal cryptosystem proceeds as follows:

• Set up: two large primes p and q such that q | p− 1 are chosen. Next, a generator
g of the order q multiplicative subgroup G of Z∗p is selected. Afterwards, g, p and
q are published.
• Key generation: a secret key x is generated by setting its value as a random number
x ∈R Z∗q . The corresponding public key is computed as y = gx.
• Encryption: a messagem ∈ G is encrypted under public key y by taking a random

number r ∈R Z∗q and computing c = gr and d = m · yr. The ElGamal encryption
of m under public key y, Ey(m), is the tuple (c, d).
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• Decryption: a ciphertextEy(m) is decrypted using the private key x by computing
m = d · c−x.

Given messages m1 and m2, we can obtain an encryption of m1 ·m2 by computing:

Ey(m1) · Ey(m2) = (c1 · c2, d1 · d2)
= (gr1+r2 ,m1 ·m2 · yr1+r2)
= Ey(m1 ·m2) .

Hence, ElGamal is a multiplicative homomorphic cryptosystem.

To calculate the total consumption in a region, [Busom et al. 2015] propose a pro-
tocol which uses an additive ElGamal cryptosystem. Given Ey(gm1) and Ey(gm2), then,
Ey(g

m1) · Ey(gm2) = Ey(g
m1 · gm2) = Ey(g

m1+m2).

Initially, each smart meter possess the following values: a big prime number q and
its generator g; a secret key xi; a public key yi = gxi . To encrypt the measurements, it is

necessary a global public key y =
N∏
i=1

yi.

Let mi denote the measurement of a smart meter. To calculate the total consump-
tion in the region, the following protocol is executed:

1. Each meter generates a random noise value zi ∈ Z∗q and computes a ciphertext
as Ci = Ey(g

mi+zi) = (ci, di) which is sent to the aggregator (which can be the
power provider).

2. The aggregator combines all the messages as C = (
N∏
i=1

ci,
N∏
i=1

di) = (c, d) and

sends c to each meter.
3. Each meter computes Ti = cxi · gzi and sends the result to the aggregator. After

that, each meter removes zi from its memory.

4. Finally, the aggregator computes D = d · (
N∏
i=1

Ti)
−1 and loggD = M =

N∑
i=1

mi,

where M is the total consumption in the region.

Notice that, since M is a relatively small number, the discrete logarithm problem
in step 4 can be solved in a short time. In step 2, the aggregator computes:

C = (
N∏

i=1

gri ,
N∏

i=1

gmi+zi · yri) = (gr, gM+z · yr) = (c, d) ,

and in step 3, each meter computes:

Ti = cxi · gzi = gr·xi · gzi = gxi·r · gzi = yri · gzi .

Therefore, the protocol works because in step 4 the aggregator computes:

D = d · (
N∏

i=1

Ti)
−1 =

gM+z · yr
N∏
i=1

(yri · gzi)
=

gM+z · yr

(
N∏
i=1

yri ) · gz
=
gM+z · yr
gz · yr = gM .
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3.4. Using Paillier Encryption and Secret Sharing

A protocol based on Paillier encryption and secret sharing was proposed by
[Garcia and Jacobs 2010]. The Paillier cryptosystem proceeds as follows:

• Set up: two large primes p and q are chosen, n = p · q, and λ = lcm(p− 1, q− 1).
A random number g ∈R Z∗n2 is chosen in such a way that gcd(b, n) = 1, where
b = L(gλ mod n2) and L(u) = (u−1)

n
.

• Key generation: let µ be the modular multiplicative inverse of b modulo n, i.e.,
µ = b−1 mod n. Thus, the public key is Pk = (n, g) and the private key is
Sk = (n, λ, µ).
• Encryption: a message m is encrypted under public key Pk by taking a random

number r ∈R Z∗n−1 and computing EPk
(m) = gm · rn mod n2.

• Decryption: a ciphertext c = EPk
(m) is decrypted using the private key Sk by

computing m = L(cλ mod n2) · µ mod n.

Given messages m1 and m2, we can obtain an encryption of m1 +m2 by computing:

EPk
(m1) · EPk

(m2) = gm1 · rn1 · gm2 · rn2 mod n2

= gm1+m2 · (r1 · r2)n mod n2

= EPk
(m1 +m2) .

Hence, Paillier is an additive homomorphic cryptosystem.

[Garcia and Jacobs 2010] propose that each smart meter possess a public key Pki
and a private key Ski. Let mi denote the measurement of the meter. To calculate the total
consumption in the region, the following protocol is executed:

1. Each meter sends its public key to the aggregator.
2. The aggregator receives all public keys and shares them with all meters.

Thus, each meter stays with its private key Ski and all the public keys
{Pk1, Pk2, . . . , Pkn}.

3. Each meter calculates N secret sharings for its measurement mi, in such a way

that mi =
N∑
j=1

sij . Then, the meter keeps sii privately and sends to the aggregator

all the other secret sharings encrypted with the public keys of the other N − 1
meters, i.e., it sends EPkj

(sij) for j = 1, . . . , i− 1, i+ 1, . . . , N .
4. After receiving all the encrypted secret sharings, the aggregator multiplies the ones

encrypted with the same public key. Due to the Pailier homomorphic property, for

each meter i, it hasEPki
(m′i) =

N∏
j 6=i

EPki
(sji) = EPki

(
N∑
j 6=i

sji). Then, the aggregator

sends EPki
(m′i) for each meter i.

5. Using its private key Ski, each meter decrypts EPki
(m′i) and adds its sii, obtaining

N∑
j=1

sji. The meter then sends this value to the aggregator.

6. Finally, the aggregator can sum all the received values, obtaining the total con-

sumption in the region M =
N∑
i=1

N∑
j=1

sji.
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In this approach, the total consumption in the region is computed and at the same
time, neither the aggregator nor any other consumer has access to any real measurement
from a consumer, for they can only access random shares. Since in step 6 the aggregator
simply sum all the secret shares, the proof that the protocol works is straightforward.

3.5. Using a Modified Paillier Encryption

[Erkin and Tsudik 2012] propose a protocol based on a modification in the Paillier en-
cryption. Starting, there is a single pair of Paillier keys (Pk and Sk) shared with all N
meters. Let mi denote the measurement of the meter. To calculate the total consumption
in the region, the following protocol is executed:

1. Each meter generates N−1 random numbers, one for each other meter, and sends
them using secure communication (e.g., RSA encryption between meters). Thus,
there is a total of N · (N − 1) message exchanges in this step.

2. After receiving all the random numbers generated by the other meters, the meter

computesRi = n+
N∑
j 6=i

r(i→j)−
N∑
j 6=i

r(j→i), where n is the Paillier modulo and r(i→j)

is the random number generated by the meter i for the meter j.
3. Following, the meter computes a hash ht using the timestamp of the current

measurement mi. This hash must be coprime with the Paillier modulo n, i.e.,
gcd(ht, n) = 1. Since the timestamp is synchronized, the obtained hash is the
same for all meters.

4. After computing Ri and ht, the meter encrypts mi using the following modified
scheme of Paillier: EPk

(mi) = gmi · hRi
t . Then, this encrypted measurement is

disclosed to all other N − 1 meters.
5. Finally, after receiving all the encrypted measurements of the other meters, the

meter calculates EPk
(M) =

N∏
i=1

EPk
(mi) = EPk

(
N∑
i=1

mi). This is true due the

homomorphic property.

Possessing EPk
(M), the meter can decrypt this value and then send the total con-

sumption in the region M to the aggregator. This way, the total consumption is computed
and privacy is preserved, for the meter does not have access to the other measurements in
plaintext.

The protocol works because in step 5, the meter computes:

EPk
(M) = gm1+m2+···+mN · h

(
N∑
i=1

n)+(
N∑
i=1

N∑
j 6=i

r(i→j))−(
N∑
i=1

N∑
j 6=i

r(j→i))

t ,

and
EPk

(M) = gM · hN ·nt .

Considering that r = hNt , this configuration represents the original paillier cryptosystem.

4. Our Experiments
In order to analyze and compare solutions, we describe the performance aspects that are
considered in our studies. It is important because, for example, solutions might excel at
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Figure 4. Processing time of smart meters in 5 different privacy preserving ap-
proaches.

computational complexity but their installation and usage has high costs and harms the
environment. Thus, the need to consider different aspects of performance. In Section
5, we discuss the following aspects: computational complexity, scalability, meters’ inde-
pendence, cost, environmental impact and accuracy. Here, we present an experiment that
aims to compare the response time (which is also related to computational complexity) of
the approaches.

We implemented simulators2 in C programming language. These simulators make
use of a few functions in the libgmp3, libpaillier4 and libcrypto5 libraries to implement
algorithms that mimic the protocols described in this paper. The simulators were executed
in a machine with 1.6 GHz Intel Core i5 processor, 6 GB of RAM memory and the Ubuntu
14.04 operating system.

In our simulations, using different configuration scenarios (number of meters,
ranging from 1 to 200) to calculate the total consumption in the region, we measured
the processing time of each meter (Figure 4) and the aggregator (Figure 5).

Each scenario was executed 10 times and the average values are being considered.
This amount of repetitions were enough to get precise average values. Due to the very
low obtained variations, the confidence intervals are being omitted here, except for the
aggregation in the approach proposed by [Busom et al. 2015], which needs a trial and
error mechanism to solve the discrete logarithm problem. The confidence intervals in
these cases are of 95%.

From these measurements, we conclude that the noise addition approach and the
one that uses rechargeable batteries presented very low response times, whereas the ho-
momorphic encryption approaches presented considerable delays. It is also important to

2The source codes can be found at our GitHub repository (https://git.lsd.ufcg.edu.br/
pedroysb/privacy-performance-smart-metering/tree/master).

3libgmp: https://gmplib.org
4libpaillier: http://acsc.cs.utexas.edu/libpaillier
5libcrypto: https://www.openssl.org/docs/manmaster/crypto/crypto.html
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Figure 5. Processing time of the aggregator in 5 different privacy preserving
approaches.

note that there are many message exchanges in the homomorphic encryption approaches,
but we are not considering possible network delays in our experiments.

5. Discussions
We have presented several examples of privacy-preserving solutions to the computation
of aggregate values. Now, we discuss the solutions regarding each of the performance
aspects and taking into consideration the experimental results presented in Section 4.
Table 1 presents a summary and comparison of approaches discussed.

Table 1. Comparison of noise addition (NA), rechargeable batteries (RB), and
homomorphic encryption (HE) approaches.

NA RB HE

Low complexity 3 3

Scalability 3 3

Meters’ independence 3 3

Low cost 3 3

Low environmental impact 3 3

Accuracy 3 3

5.1. Cost and Environmental Impact
As mentioned, usage of rechargeable batteries can help to diminish many privacy issues.
Nevertheless, it is hard to ignore the environmental effects and the costs of using batteries.
[McLaughlin et al. 2011] stipulate that a lead-acid battery of 50 Ah which operates at 12
V may cost approximately $100, and to achieve a typical residential nominal voltage of
120 V it is required 10 of such batteries (aprox. $1,000). The lifetime of each battery
is approximately two years. Therefore, these solutions can not be considered low cost
and cause a high environmental impact. Noise addition and homomorphic encryption
approaches do not have these limitations.
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5.2. Meters’ Independence and Scalability
In order to exchange randomly generated numbers, keys and secret shares, the homo-
morphic encryption protocols require communication between meters and/or the power
provider. Some solutions even require a large key distribution and certification. For this
reason, in these approaches, the meters are not independent. This overhead can be the
bottleneck of the smart metering system. Hence, actually optimizing communication at
the meters is a hard task that has not been fully addressed in homomorphic encryption
approaches. Additionally, if one meter fails in any message exchange, the aggregation
becomes impossible because it requires computations using all distributed keys or secret
shares. Therefore, these solutions may raise scalability issues when used in an area with
a large number of meters. Noise addition and rechargeable batteries approaches do not
have these limitations.

5.3. Accuracy
As mentioned, noise addition masks the data and introduces some error in an aggregation
operation. This error is controlled and usually smaller than an acceptable value. Also,
allowing the enabling or disabling of masking would make errors smaller in both dimen-
sions: for billing, since a consumer would not mask all the time, and for load monitoring
in a region, since not all consumers would mask in an instant of time. However, the noise
addition privacy preserving approach is still not considered one hundred percent accurate.
In the case of [Barbosa et al. 2015], the use of noise will introduce errors in the billing
reports. These errors tend to be cancelled over time, but there is a probability that a higher
value can occur. Rechargeable batteries and homomorphic encryption approaches do not
have this limitation.

5.4. Computational Complexity
Low complexity is desired mainly because most of the deployed smart meters are low-
cost microcontrollers and with limited computational resources. Through the analysis of
the solutions’ running time growth order, we have the complexities presented in Table 2.
We consider that, regarding computational complexity, noise addition and rechargeable
batteries stand in relation to the homomorphic encryption approaches.

Although estimation through asymptotic complexity is a good way to estimate
computational complexity, we claim that experimental analysis is essential to present
concrete results when comparing different proposals. As explored in Section 4, the ex-
periments we conducted have shown that the noise addition and the rechargeable batteries
approaches have considerably better performance regarding processing time.

6. Conclusions
Through the collection of energy consumption data, smart meters foster the development
of new utilites and services. However, this same data can bring privacy issues for con-
sumers, thus the need to study and develop privacy protection solutions. In this paper, we
reviewed five solutions, one based on the use of noise addition, other based on the use of
rechargeable batteries and three others based on homomorphic encryption schemes. We
evaluated these approaches considering the main needed performance aspects and con-
clude that each solution has its advantages and disadvantages. As an example, by using
rechargeable batteries the desired low levels of computational complexity is achieved, but
on the other hand, they have a high cost and cause damage to the environment.
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Table 2. Complexity analysis for different privacy preserving approaches in smart
metering.

NA RB MEE PESS MPE

Operation SM AG SM AG SM AG SM AG SM AG

Encryption - - - - O(1) - O(N) - O(1) -
Decryption - - - - - O(M) O(1) - O(1) -
Transmission O(1) O(N) O(1) O(N) O(1) O(N) O(N) O(N2) O(N) -
Sum O(1) O(N) O(1) O(N) - - O(1) O(N) O(N) -
Product - - - - - O(N) - O(N2) O(N) -

Legend:
• NA: Noise Addition [Barbosa et al. 2015];
• RB: Rechargeable Batteries [McLaughlin et al. 2011];
•MEE: Modified ElGamal Encryption [Busom et al. 2015];
• PESS: Paillier Encryption and Secret Sharing [Garcia and Jacobs 2010];
•MPE: Modified Paillier Encryption [Erkin and Tsudik 2012];
• SM: Smart Meter;
• AG: Aggregator;
• N: Number of consumption measurements;
•M: Total (aggregate) consumption value.
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