
A framework for searching encrypted databases
Pedro Geraldo M. R. Alves, Diego F. Aranha

Instituto de Computação – Universidade Estadual de Campinas (Unicamp)
Av. Albert Einstein, 1251 – CEP 13083-852, Campinas/SP – Brazil

{pedro.alves, dfaranha}@ic.unicamp.br

Abstract. Cloud computing is a ubiquitous paradigm. It has been responsible for
a fundamental change in the way distributed computing is performed. The possi-
bility to outsource the installation, maintenance and scalability of servers, added
to competitive prices, makes this platform highly attractive to the industry. De-
spite this, privacy guarantees are still insufficient for data processed in the cloud,
since the data owner has no real control over the processing hardware. This work
proposes a framework for database encryption that preserves data secrecy on an
untrusted environment and retains searching and updating capabilities. It employs
order-revealing encryption to provide selection with time complexity in Θ(log n),
and homomorphic encryption to enable computation over ciphertexts. When com-
pared to the current state of the art, our approach provides higher security and
flexibility. A proof-of-concept implementation on top of MongoDB is offered and
presents an 11-factor overhead for a selection query over an encrypted database.

1. Introduction
Cloud computing is a ubiquitous paradigm. From mobile to scientific computing, the indus-
try increasingly embraces cloud services and take advantage of their potential to improve
availability and reduce operational costs [Hoffa et al. 2008, Dinh et al. 2013]. Despite this,
the cloud cannot be blindly trusted since malicious parties may have full access to the server
and consequently to data. This includes external entities exploiting vulnerabilities, govern-
mental institutions requesting information, and even curious cloud administrators. The data
owner has no real control over the processing hardware and therefore cannot guarantee the
secrecy of data [Xiao and Xiao 2013].

The risk of confidentiality breach caused by insecure use of cloud computing is
real. As examples, we can mention PRISM, a surveillance program from the USA govern-
ment that forced cloud companies to provide user data [Greenwald and MacAskill 2013,
Weber 2014]; the Ashley Madison case, when personal data of millions of users was
leaked by malicious parties exploiting security vulnerabilities [Thomsen 2015]; and the
Yahoo data breach, possibly the largest known and affecting about 500 million ac-
counts [BBC News 2016]. These security issues contribute to a growing crisis of confidence
and leads domestic and corporate users to slow down the adoption of the cloud. There are
estimates that the disclosures about PRISM may imply in a reduction of financial income
from U$ 35 billion to U$ 180 billion for the cloud computing market in 2016 [Miller 2014].
This could be avoided if data was encrypted by the user and kept this way all the time,
staying secret to the application and the cloud.

The problem of using standard encryption in an entire database is that it eliminates
the capability to select records or evaluate arbitrary functions without the cryptographic
keys. This reduces the cloud to a complex and huge storage service, discarding several

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

142 c©2016 SBC — Soc. Bras. de Computação



advantages it offers. Searchable encryption enables the cloud to manipulate encrypted data
on behalf of a client without learning information. Hence, it solves both of aforementioned
problems, keeping confidentiality in regard to the cloud but retaining some of its interesting
features.

This work follows the state of the art and proposes directives to the modeling of
a searchable encrypted database [Popa et al. 2011, Bösch et al. 2014]. We define the main
primitives of a relational algebra necessary to keep the database functional, while adding en-
hanced privacy-preserving properties. A set of cryptographic tools is used to construct each
of these primitives. It is composed by order-revealing encryption to enable data selection,
homomorphic encryption for evaluation of arbitrary functions, and a standard symmetric
scheme to protect and add flexibility to the handling of general data. In particular, our pro-
posal of a selection primitive achieves time complexity of Θ(log n). Moreover, we provide
a security analysis and performance evaluation to estimate the impact on execution time and
space consumption, and a conceptual implementation that validates the framework. It works
on top of MongoDB, a popular document-based database, and is implemented as a wrapper
over its Python driver. Its source code was made available to the community under a GNU
GPLv3 license [Alves 2016].

When compared to CryptDB [Popa et al. 2011], our proposal provides stronger se-
curity since it is able to keep data confidentiality even in the case of a compromise of the
database and application servers. Since CryptDB delegates to the application server the
capability to derive users’ cryptographic keys, it is not able to provide such security guaran-
tees. Futhermore, our work is database-agnostic. This way, it is not limited to SQL but can
be applied on different key-value-like databases.

2. Building blocks
Next, we revisit basic security notions and special properties that make a cryptosystem suit-
able to a certain context.

2.1. Security notions

Ciphertext indistinguishability is an important property that can be used to analyze the se-
curity of a cryptosystem. Two scenarios are considered, when an adversary has and does not
have access to an oracle that provides decryption capabilities. Usually these scenarios are
evaluated through a game in which an adversary tries to acquire knowledge about ciphertexts
generated by a challenger [Bellare et al. 1998].

Indistinguishability under chosen plaintext attack - IND-CPA. In the IND-CPA game
the challenger generates a pair (PK,SK) of cryptographic keys, makes PK public and
keeps SK secret. An adversary has as objective to recognize a ciphertext created from a
randomly chosen message from a known two-element message set. A polynomially bounded
number of operations is allowed, including encryption (but not decryption), over PK and
the ciphertexts. A cryptosystem is indistinguishable under chosen plaintext attack if no
adversary is able to achieve the objective with non-negligible probability.

Indistinguishability under chosen ciphertext attack/adaptive chosen ciphertext attack
- IND-CCA and IND-CCA2 This type of indistinguishability differs from IND-CPA due

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

143 c©2016 SBC — Soc. Bras. de Computação



to the adversary having access to a decryption oracle. In this game the challenge is again to
recognize a ciphertext as described before, but now the adversary is able to use decryption
results. This new game has two versions, non-adaptive and adaptive. In the non-adaptive
version, IND-CCA, the adversary may use the decryption oracle until it receives the chal-
lenge ciphertext. On the other hand, in the adaptive version he is allowed to use the de-
cryption oracle even after that event. For obvious reasons, the adversary cannot send the
challenge ciphertext to the decryption oracle. A cryptosystem is indistinguishable under
chosen ciphertext attack/adaptive chosen ciphertext attack if no adversary is able to achieve
the objective with non-negligible probability.

Indistinguishability under an ordered chosen plaintext attack - IND-OCPA Intro-
duced by Boldyreva et al., this notion supposes that an adversary is capable of retrieving
two sequences of ciphertexts resulting of the encryption of any two sequences of mes-
sages [Boldyreva et al. 2009]. Furthermore, he knows that both sequences have identical
ordering. The objective of this adversary is to distinguish between these ciphertexts. A
cryptosystem is indistinguishable under an ordered chosen plaintext attack if no adversary
is able to achieve the objective with non-negligible probability.

2.2. Order-revealing encryption (ORE)
Order-revealing encryption schemes are characterized by having, in addition to the usual
set of cryptographic functions like keygen and encrypt, a function capable of comparing
ciphertexts and returning the order of the original plaintext, as shown by Definition 1.

Definition 1 (Order-revealing encryption) Let E be an encryption function, C be a com-
parison function, and m1 and m2 be plaintexts from the message space. The pair (E,C) is
defined as an encryption scheme with the order-revealing property if:

C(E (m1) , E (m2)) =





LOWER, if m1 < m2,

EQUAL, if m1 = m2,

GREATER, otherwise.

This is a generalization of order-preserving encryption (OPE), that fixes C to a simple nu-
merical comparison [Boneh et al. 2015].

Security As argued by Lewi and Wu, the “best-possible” notion of security for ORE
is IND-OCPA, what means that it is possible to achieve indistinguishability of cipher-
texts. This property implies a much stronger security guarantee than OPE schemes can
have [Lewi and Wu 2016]. Furthermore, differently from OPE, ORE is not inherently de-
terministic [Kolesnikov and Shikfa 2012]. For example, Chenette et al. propose an ORE
scheme that applies a pseudo-random function over an OPE scheme, while Lewi and Wu
propose an ORE scheme completely built upon symmetric primitives, capable of limit-
ing the use of the comparison function and reducing the leakage inherent to this rou-
tine [Chenette et al. 2016, Lewi and Wu 2016]. Nevertheless, any scheme that reveals nu-
merical order of plaintexts through ciphertexts is vulnerable to inference attacks and fre-
quency analysis, as those described by Naveed et al. over relational databases encrypted
using deterministic and OPE schemes [Naveed et al. 2015]. Although ORE does not com-
pletely discard the possibility of such attacks, it offers stronger defenses.

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

144 c©2016 SBC — Soc. Bras. de Computação



2.3. Homomorphic encryption (HE)
Homomorphic encryption schemes have the property of conserving some plaintext structure
during the encryption process, allowing the evaluation of certain functions over ciphertexts
and obtaining, after decryption, a result equivalent to the same computation applied over
plaintexts. Definition 2 presents this property in a more formal way.

Definition 2 (Homomorphic encryption) LetE andD be a pair of encryption and decryp-
tion functions, and m1 and m2 be plaintexts. The pair (E,D) forms an encryption scheme
with the homomorphic property for some operator � if and only if the following holds:

E (m1) ◦ E (m2) ≡ E (m1 �m2) .

The operation ◦ in the ciphertext domain is equivalent to � in the plaintext domain.

Homomorphic cryptosystems are classified according to the supported operations
and their limitations. Partially homomorphic encryption schemes (PHE) hold on Defini-
tion 2 for either unlimited addition or multiplication operations, while fully homomorphic
encryption schemes (FHE) support both addition and multiplication operations.

Security In terms of security, homomorphic encryption schemes achieve at most
IND-CCA-1 [Bellare et al. 1998]. This is a natural consequence of the design requirements,
since these cryptosystems allow any entity to manipulate ciphertexts. Most of current pro-
posals, however, reach at most IND-CPA and stay secure against attackers without access to
a decryption oracle [Loftus et al. 2012].

3. Searchable encryption
In this section, the problem of searching over encrypted data is formally defined. We present
two state-of-the-art solutions to this problem, namely the CryptDB and Arx database sys-
tems.

3.1. The problem
Suppose a scenario where Alice stores a set of documents with an untrusted entity Bob. She
would like to keep this data encrypted because, as defined, Bob is not trustworthy. Alice
also would like to occasionally retrieve a subset of documents accordingly to a predicate
without revealing any sensitive information to Bob. Thus, sharing the decryption key is
not an option. The problem lies in the fact that communication between Alice and Bob
may (and probably will) be constrained. Hence, a naive solution consisting of Bob sending
all documents to Alice and letting her decrypt and select whatever she wants may not be
feasible. Alice must then implement some mechanism to protect her encrypted data so that
Bob will be able to identify the desired documents without knowing their contents or the
selection criteria [Song et al. 2000].

An approach that Alice can take is to create an encrypted index as in Definition 3.

Definition 3 (Searching on an encrypted index) Suppose a database DB =
(m1, . . . ,mn) and a list W = (W1, . . . ,Wm) of sets of keywords such that Wi

contains keywords for mi. The following routines are needed to build and search on an
encrypted index:

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

145 c©2016 SBC — Soc. Bras. de Computação



BUILDINDEXK(DB,W): The listW is encrypted using a searchable scheme under a
key K and results in a searchable encrypted index I. This process may not be
reversible (e.g., if a hash function is used). The routine outputs I.

TRAPDOORK(F): This function receives a predicate F and outputs a trapdoor T .
The latter is defined as the information needed to search I and find records that
satisfy F .

SEARCHI(T ): It iterates through I applying T and outputs every record that returns
TRUE for the input trapdoor.

This way, Alice is able to keep her data stored with Bob and remain capable of
selecting subsets of it without leaking information [Bösch et al. 2014].

3.2. CryptDB
CryptDB is a software layer that provides capabilities to store data in a remote database and
query over it without revealing sensitive information to the database management system
(DBMS). It introduces a proxy layer responsible to encrypt and adjust queries to the database
and decrypt the outcome [Popa et al. 2011].

The context in which CryptDB stands is a typical structure of database-backed appli-
cations, consisting of a DBMS server and a separate application server. To query a database,
a predicate is generated by the application and processed by the proxy before it is sent to the
DBMS server. The user interacts exclusively with the application server and is responsible
for keeping the password secret. This password is provided on login to the proxy (via appli-
cation) that derives all the keys required to interact with the database. When the user logs
out, it is expected that the proxy deletes their keys.

Data encryption is done through “onions”. These are defined as layers of encryp-
tion that are combined to provide different functionalities. Modeling a database involves
evaluating the meaning of each attribute and predicting the operations it must support. In
particular, keyword-searching as described in Definition 3 is implemented as proposed in
Song’s work [Song et al. 2000].

The authors address two types of threats with CryptDB: curious database adminis-
trators who try to snoop and acquire information about client’s data; and an adversary that
gains complete control of application and DBMS servers. The first threat is achieved through
the encryption of stored data and the ability to query it without any decryption or knowl-
edge about its content. The second threat, as the authors claims, applies only to logged-out
clients. In the described scenario, the cryptographic keys relative to data in the database
are handled by the application server. Thus, if the application server is compromised, all
the keys it possesses at that moment (that are expected to be only from logged-in users) are
leaked to the attacker.

3.3. Arx
Arx is a database system alternative to CryptDB [Poddar et al. 2016]. It targets much
stronger security properties and claims to protect the database with the same level of regular
AES-based encryption1, achieving IND-CPA security. This is a direct consequence of the

1The Advanced Encryption Standard (AES) is a well-established symmetric block cipher enabling high
performance implementation in hardware and software [Daemen and Rijmen 1999].

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

146 c©2016 SBC — Soc. Bras. de Computação



almost exclusively use of AES to construct selection operators, even on range queries. This
not only brings strong security but also good performance, due to efficiency of symmetric
primitives, sometimes even benefiting from hardware implementations. The building blocks
used for searching follow those described previously. Futhermore they apply a different
AES key for each keyword when generating the trapdoor.

At its core, Arx introduces two database indexes, ARX-RANGE for range and order-
by-limit queries and ARX-EQ for equality queries, both built on top of AES. The former
uses an obfuscation strategy to protect the data it compares and does not leak any informa-
tion, while enabling searches in logarithmic time. The latter embeds a counter into each
repeating value. This ensures that the encryption of both are different, protecting it against
frequency analysis. Using a small token provided by the client, the database is able to ex-
pand it in many search tokens and return all the occurrences desired, allowing an index to
be built over encrypted data.

The context in which Arx stands is similar to CryptDB. However, the authors con-
sider the data owner as the application itself. This way, it simplifies the security measures
and considers the responsibility to keep the application server secure outside of its scope.

4. Proposed framework
The goal of the proposed framework is to develop a database model capable of storing
encrypted records and applying relational algebra primitives on it without the knowledge of
any cryptographic keys or the need for decryption. A trade-off between performance and
security is desirable, however we completely discard deterministic encryption whenever
is possible for security reasons. The applicability of this framework goes beyond SQL
databases. Besides the relational algebra hereby used to describe the framework, it can be
extended to key-value, document-oriented, full text and several other databases classes that
keeps the same attribute structure.

The three main operations needed to build a useful database are insertion, selection
and update. Once data is loaded, being able to select only those pieces that correspond
to an arbitrary predicate is the fundamental block to construct more complex operations,
as grouping and equality joins. This functionality is fundamental when there is a physical
separation between the database and the data owner, otherwise high demand for bandwidth
is incurred to transmit large fractions of the database records. Furthermore, real data is
frequently mutable and thus the database must support updates to remain useful.

We define as secure a system model that guarantees that the data owner is the only
entity capable of revealing data, which can be achieved by his exclusive possession of the
cryptographic keys. Thus, a fundamental aspect of our proposal is the scenario in which the
database and the application server handle data with minimum knowledge.

Lastly, the framework does not ensure integrity, freshness or completeness of results
returned to the application or the user, since an adversary that compromises the database in
some way can delete or alter records. We consider this threat to be outside the scope of this
framework.

4.1. Classes of attributes

Records in an encrypted database are composed by attributes. These consist of a name and
a value, that can be an integer, float, string or even a binary blob. Values of attributes are

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

147 c©2016 SBC — Soc. Bras. de Computação



classified according to their purpose:

static An immutable value only used for storage. It is not expected to be evaluated
with any function, so there is no special requirement for the encryption.

index Used for building a single or multivalued searchable index. It should enable one
to verify if an arbitrary term is contained in a set without the need to acquire
knowledge of their content.

computable A mutable value. It supports the evaluation with arithmetic circuits and ensures
obtaining, after decryption, a result equivalent to the same circuit applied over
plaintexts.

The implementation of each attribute must satisfy the requirements without leaking
any vital information beyond those related directly with the attribute objective (i.e.: order
for index attributes). Since the name of an attribute reveals information, it may need to be
protected as well. However, the acknowledgement of an attribute is done using its name,
so even anonymous attributes must be traceable in a query. An option for anonymizing the
attribute name is to treat it as an index.

The aforementioned cryptosystems are natural suggestions to be applied within these
classes. Since static is a class for storage only and has no other requirements, any scheme
with appropriate security levels and performance may be used, as AES. On the other hand,
index and computable attributes are immediate applications of ORE and HE schemes. Par-
ticularly, the latter defines the HE scheme according to the required operations. Attributes
that require only one operation can be implemented with a PHE scheme, which provides
good performance; while those that requires addition and multiplication must use FHE and
deal with the performance issues.

Definition 4 (Secure ORE) Let E and C be, respectively, an encryption and a com-
parison function. The pair (E,C) forms an encryption scheme with the order-revealing
property defined as “secure” if and only if it satisfies Definition 1; the encryption of a
message m can be written as E(m) = (cL, cR) = (EL(m), ER(m)), where EL and ER

are complementary encryption functions; and the comparison between two ciphertexts
c1 and c2 is done by C (cL1, cR2). This way, C may be applied without the complete
knowledge of the ciphertexts.

In order to build a secure and efficient index, an ORE scheme that corresponds to
Definition 4 should be used. We define the search framework as in Definition 5.

Definition 5 (Encrypted search framework) Let S be a set of words, sk a secret key,
and an ORE scheme (ENC, CMP) that satisfies Definition 4. The operations required for
an encrypted search over S are defined as follows:

BUILDINDEXsk(S) Output the set

S∗ = {cR | (cL, cR) = ENCsk(w),∀w ∈ S} .

TRAPDOORsk(w) Output the trapdoor

Tw = (cL | (cL, cR) = ENCsk(w)) .

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

148 c©2016 SBC — Soc. Bras. de Computação



SEARCHS∗, r(Tw) To select all records in S∗ with the relation r ∈ {LOWER, EQUAL,
GREATER} to a word w, one computes the trapdoor Tw and iterates through S∗

looking for the records w∗ ∈ S∗ that satisfy

CMP (Tw, w
∗) = r.

The set Ŝ with all the elements in S∗ that satisfy this equation is returned.

4.2. Database operations

A relational algebra for database operations can be built over six main operations to query
on related sets of data: selection, projection, rename, Cartesian product, union and differ-
ence [Codd 1983]. They are defined as follows.

1. Selection (σ): The selection of entries in the database is done exclusively using index
attributes.

(a) index: The user wants all records with the relationship r when compared
to an arbitrary word w in an index attribute, where r ∈ {LOWER, EQUAL,
GREATER}. The trapdoor Tw = Trapdoorsk(w) is sent to the server that
executes SEARCH for the desired r.

2. Projection (π): Attribute names may or may not be encrypted.
(a) encrypted: If encrypted, a deterministic scheme is used or they are treated as

index values.
i. deterministic scheme: The user defines a set A of attribute names

and computes A∗ = {Enc(a) | a ∈ A} using the encryption function
related to the deterministic scheme chosen. A∗ is sent to the server
that returns only the records with names in it.

ii. index: The user defines a set A of attribute names, computes A∗ =
{Trapdoorsk(a) | a ∈ A} and sends it to the server, that selects the
projected attributes through the operation SEARCH.

(b) unencrypted: Unencrypted attribute names may be sent to and selected by
the server using a standard algorithm.

3. Rename (ρ): Attribute names may or may not be encrypted.
(a) encrypted: If encrypted, a deterministic scheme is used or they are treated as

index values.
i. deterministic scheme: The user picks an attributeA and the new name
B and computes (A∗, B∗) = (Enc(A), Enc(B)) using the encryp-
tion function related to the deterministic scheme chosen. (A∗, B∗) is
sent to the server that applies a standard algorithm.

ii. index: The user picks an attribute A and the new name B and com-
putes (A∗, B∗) = (Trapdoorsk(A), (cR | (cL, cR) = Encsk(B))).
(A∗, B∗) is sent to the server, that selects attributes related to A∗ as
EQUAL through the operation SEARCH and renames the result to B∗.

(b) unencrypted: Unencrypted attribute names may be renamed by the server
using a standard algorithm.

4. Cartesian product (×): The Cartesian product of two datasets encrypted with the
same keys is executed using a standard algorithm.

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

149 c©2016 SBC — Soc. Bras. de Computação



5. Difference (−): The difference between two datasets A and B encrypted with the
same keys is defined as A − B = σnot in B(A), that means a selection in A of all
elements not contained in B.

6. Union (∪): The union of two datasets encrypted with the same keys is defined as
A ∪B = A+ (B − A), where + is the usual set operator.

In addition, three other important operations must be defined to complete the set of
operators:

7. Insert: Encrypted data is provided and added to the database using a standard algo-
rithm.

8. Intersect (∩): The intersection of two sets A and B encrypted with the same keys is
defined as A ∩B = σin B(A).

9. Update: An update operation is defined as a selection followed by the evaluation of
a computable attribute by a supported homomorphic operation.

This set of operators enables operating over an encrypted database without the
knowledge of cryptographic keys or acquiring sensitive information from user queries.

4.3. Security analysis

We assume the scenario in which the data owner has exclusive possession of cryptographic
keys. This way, insertions to the database must be locally encrypted before being sent to
the server. The database or the application never deals with plaintext data. Our frame-
work thus has the advantage over CryptDB of preserving privacy even in the outcome of a
compromised database or application server.

Despite being conceptual similar to OPE, ORE is able to address several secu-
rity limitations of it. ORE does not necessarily generate ciphertexts that reveal their or-
der by design, but allows someone to protect this information and only reveals it through
specific functions. ORE is able to achieve the IND-OCPA security notion and adds ran-
domization to ciphertexts. Those characteristics make it much safer against inference at-
tacks [Naveed et al. 2015]. The proposal of Lewi and Wu goes even beyond that and is
capable of limiting the use of the comparison function [Lewi and Wu 2016]. Their scheme
generates a ciphertext that can be decomposed into left and right components such that a
comparison between two ciphertexts requires only a left component of one ciphertext and
the right component of the other. This way, the authors argue that robustness against such
attacks is ensured since the database dump may only contain the right component, that is
encrypted using semantically-secure encryption.

Nonetheless, an eavesdropper is capable of recognizing repeated queries by observ-
ing the outcome of a selection. This weakness may still be used for inference attacks, that
can breach confidentiality from related attributes. This issue can get worse if the trapdoor
is deterministic, when there is no other solution than implementing a key refreshment algo-
rithm. Besides that, the knowledge of the numerical order between every pair of elements
in a sequence may leak information depending on the application. This problem manifests
itself in our proposal on the σ primitive if it uses a weak index structure, like a naive sequen-
tial index. A balanced-tree-based structure, on the other hand, obscures the numerical order
of elements in different branches. This way, an attacker is capable of recovering the order of
up to O(log n) database elements and somewhat infer about the others, in a database with n
elements.

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

150 c©2016 SBC — Soc. Bras. de Computação



Finally, BUILDINDEX is not able to hide the quantity of records that share the same
index. This way, one is able to make inferences about those by the number of records. There
is also no built-in protection for the number of entries in the database. A workaround is to
fix the size of each static attribute value and round the quantity of records in the database
using padding. This approach increases secrecy but also the storage overhead.

4.4. Performance analysis
The application of ORE as the main approach to build a database index provides an
extremely important contribution to selection queries. SEARCH does not require walk-
ing through all the records testing a trapdoor, but only a logarithmic-smaller subset of it
when implemented over an optimal index structure, as an AVL tree or B-tree based struc-
ture [Sedgewick 1983]. This characteristic is highlighted on union, intersection and dif-
ference operations, that work by comparing and selecting elements in different groups.
Moreover, current proposals in the state of the art of ORE enjoys the good performance
provided by symmetric primitives and does not require more expensive approaches such as
public-key cryptography [Chenette et al. 2016, Lewi and Wu 2016, Boneh et al. 2015]. In
particular, although fully homomorphic cryptosystems promises to fulfill this task, it is still
prohibitively expensive for real-world deployments [Boneh et al. 2013].

Space consumption is also affected. Ciphertexts are computed as a combination of
the plaintext with random data. This way, a non-trivial expansion rate is expected. Differ-
ently from speed overheads which are affected by a single attribute type, all attributes suffer
with the expansion rate of encryption.

4.5. Capabilities and limitations
Our framework is capable of providing an always-encrypted database that preserves secrecy
as long as the data owner keeps the cryptographic keys secure. One is able to select records
through index and apply arbitrary operations on attributes defined as computable. Further-
more, it increases the security of data but maintaining the computational complexity of
standard relational primitives, achieving a fair trade-off between security and performance.

Although the framework has no constraints about attributes classified as both index
and computable, there is no known encryption scheme in the literature capable of satisfying
all the requirements. This way, the relational model of the database must be as precise
as possible when assigning attributes to each class, specially because the costs of a model
refactor can be prohibitive.

Some scenarios appear to be more compatible with an encrypted database as de-
scribed than others. An e-mail service, for example, can be trivially adapted. The e-mails
received by a user are stored in encrypted form as static and some heuristic is applied on
its content to generate a set of keywords to be used on BUILDINDEX. This heuristic may
use all unique words in the e-mail, for example. The sender address may be an important
value for querying as well, so it may be stored as an index. To optimize common queries, a
secondary collection of records may be instantiated with, for example, counters. The quan-
tity of e-mails received from a particular sender, how often a term appears or how many
messages are received in a time frame. Storing this metadata information in a secondary
data collection avoids some of the high costs of searching in the main dataset.

However, our proposal fails when the user wants to search for something that was
not previously expected. For example, regular expressions. Suppose a query that searches

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

151 c©2016 SBC — Soc. Bras. de Computação



for all the sentences that start with “Attack” and end with “dawn”, or all the e-mails on the
domain “gmail.com”. If these patterns were not foreseen when the keyword index was built,
then no one will be able to correctly execute this selection without the decryption of the
entire database. Since the format of the strings is lost on encryption, this kind of search is
impossible on our proposal.

5. Implementation
A proof-of-concept implementation of the proposed framework was developed aiming at the
popular document-based database MongoDB [Chodorow and Dirolf 2010] and made avail-
able to the community under a GNU GPLv3 license [Alves 2016]. It is written in Python
and works as a wrapper on its driver. This way, it becomes database-agnostic and limits the
database server to dealing with encrypted data. Table 1 provides the schemes used for each
attribute class, the parameter size and its security level.

Table 1. Chosen cryptosystems for each attribute presented in Section 4.
Attribute Cryptosystem Parameters Security level

static AES 128 bits 128 bits
index Lewi-Wu 128 bits 128 bits

computable - add Paillier 3072 bits 128 bits
computable - mul ElGamal 3072 bits 128 bits

Lewi-Wu’s ORE scheme relies on symmetric primitives and achieves IND-OCPA.
The authors claim that this is more secure than all existing OPE and ORE schemes
which are practical [Lewi and Wu 2016]. Finally, Paillier and ElGamal are known
public-key schemes. Both achieve IND-CPA and are based in the integer factoriza-
tion and discrete logarithm problems, respectively. Paillier supports homomorphic ad-
dition, while ElGamal provides homomorphic multiplication. Both are defined as PHE
schemes [Paillier 1999, ElGamal 1985]. The implementation of AES was provided by py-
crypto toolkit [Litzenberger 2016], while Lewi-Wu, Paillier and ElGamal were implemented
with our own code.

Table 2. Attribute structure of elements in the synthetic dataset.
Name Value type Class
e-mail string static

firstname string static
surname string static
country string static

age integer index
text string static

To measure the computational costs of managing an encrypted database, four syn-
thetic variable-sized datasets were generated with the structure described in Table 2. Each
one was loaded in encrypted and unencrypted form to a stock MongoDB database using in-
sertion element-by-element by a Python script. An AVL tree was used as index for the doc-
uments through the attribute “age”. While it was possible to index the unencrypted database
natively, it was not so simple with the encrypted version. MongoDB is not friendly to cus-
tom index structures or comparators, so we decided to construct the structure with Python

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

152 c©2016 SBC — Soc. Bras. de Computação



code and then insert it into the database using pointers based on MongoDB’s native identity
codes. This way, walking through the index tree depends on a database-external operation
at Python-side, calling MongoDB’s FIND method to localize documents related to left/right
pointers starting from the tree root. Encrypting this document structure took 2.13ms in a In-
tel Xeon E5-2630 CPU at 2.60GHz. As can be seen in Figure 1, the performance overhead
on queries in the encrypted database goes from 7 to 11 times.

Figure 1. Time required to perform a selection query on encrypted and unencrypted
databases in the worst case scenario for an AVL tree index. The measures are the
average of 100 independent executions.

Besides the need to walk through the AVL tree using database-external operations,
these results are comparable to those related to Arx [Poddar et al. 2016] and one magni-
tude higher than CryptDB [Popa et al. 2011]. This way, it is expected that an efficient im-
plementation, capable of executing searches completely inside MongoDB, will present an
expressive speedup compared with the state of the art.

6. Conclusion
We presented the problem of searching in encrypted data and a proposal of a framework that
guides the modeling of a database with support to this functionality. This is achieved by
combining different cryptographic concepts and using different cryptosystems to satisfy the
requirements of each attribute, like order-revealing encryption and homomorphic encryp-
tion. Over this approach, six main relational algebra operations were redefined to support
encrypted data: selection, projection, rename, Cartesian product, union and difference. An
overview of the security provided is discussed, as well as an analysis about the impact in
database performance. We present a proof-of-concept implementation in Python over the
document-based database MongoDB. A selection query on the worst case scenario was up
to 11 times slower on the encrypted database. In comparison with CryptDB our proposal
provides higher security, since it delegates exclusively to the data owner the responsibility
of encrypting and decrypting data. This way, privacy holds even in a scenario of database or
application compromised.

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

153 c©2016 SBC — Soc. Bras. de Computação



As future work, we intend to focus on performance and pursuit an efficient imple-
mentation of this framework.

References
[Alves 2016] Alves, P. (2016). A proof-of-concept searchable encryption backend for mon-

godb. https://github.com/pdroalves/encrypted-mongodb. Last ac-
cessed: 09/08/2016.

[BBC News 2016] BBC News (2016). Yahoo ’state’ hackers stole data from 500 million users.
Last accessed: 23/09/2016.

[Bellare et al. 1998] Bellare, M., Desai, A., Pointcheval, D., and Rogaway, P. (1998). Ad-
vances in Cryptology — CRYPTO ’98: 18th Annual International Cryptology Conference
Santa Barbara, California, USA August 23–27, 1998 Proceedings, chapter Relations
among notions of security for public-key encryption schemes, pages 26–45. Springer
Berlin Heidelberg, Berlin, Heidelberg.

[Boldyreva et al. 2009] Boldyreva, A., Chenette, N., Lee, Y., and O’Neill, A. (2009). Order-
preserving symmetric encryption. Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5479
LNCS:224–241.

[Boneh et al. 2013] Boneh, D., Gentry, C., Halevi, S., Wang, F., and Wu, D. J. (2013). Private
database queries using somewhat homomorphic encryption. In Proceedings of the 11th
International Conference on Applied Cryptography and Network Security, ACNS’13,
pages 102–118, Berlin, Heidelberg. Springer-Verlag.

[Boneh et al. 2015] Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., and Zimmer-
man, J. (2015). Semantically Secure Order-Revealing Encryption: Multi-input Func-
tional Encryption Without Obfuscation, pages 563–594. Springer Berlin Heidelberg,
Berlin, Heidelberg.

[Bösch et al. 2014] Bösch, C., Hartel, P., Jonker, W., and Peter, A. (2014). A survey of prov-
ably secure searchable encryption. ACM Comput. Surv., 47(2):18:1–18:51.

[Chenette et al. 2016] Chenette, N., Lewi, K., Weis, S. A., and Wu, D. J. (2016). Practical
order-revealing encryption with limited leakage. In FSE.

[Chodorow and Dirolf 2010] Chodorow, K. and Dirolf, M. (2010). MongoDB: The Definitive
Guide. O’Reilly Media, Inc., 1st edition.

[Codd 1983] Codd, E. F. (1983). A relational model of data for large shared data banks.
Commun. ACM, 26(6):64–69.

[Daemen and Rijmen 1999] Daemen, J. and Rijmen, V. (1999). AES Proposal: Rijndael.

[Dinh et al. 2013] Dinh, H. T., Lee, C., Niyato, D., and Wang, P. (2013). A survey of mobile
cloud computing: architecture, applications, and approaches. Wireless Communications
and Mobile Computing, 13(18):1587–1611.

[ElGamal 1985] ElGamal, T. (1985). A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms. In Blakley, G. and Chaum, D., editors, Advances in
Cryptology, volume 196 of Lecture Notes in Computer Science, pages 10–18. Springer
Berlin Heidelberg.

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

154 c©2016 SBC — Soc. Bras. de Computação



[Greenwald and MacAskill 2013] Greenwald, G. and MacAskill, E. (2013). NSA Prism pro-
gram taps in to user data of Apple, Google and others.

[Hoffa et al. 2008] Hoffa, C., Mehta, G., Freeman, T., Deelman, E., Keahey, K., Berriman,
B., and Good, J. (2008). On the Use of Cloud Computing for Scientific Workflows. In
eScience, 2008. eScience ’08. IEEE Fourth International Conference on, pages 640–645.

[Kolesnikov and Shikfa 2012] Kolesnikov, V. and Shikfa, A. (2012). On the limits of privacy
provided by Order-Preserving Encryption. Bell Labs Technical Journal.

[Lewi and Wu 2016] Lewi, K. and Wu, D. J. (2016). Order-revealing encryption: New con-
structions, applications, and lower bounds. Cryptology ePrint Archive, Report 2016/612.

[Litzenberger 2016] Litzenberger, D. (2016). Python Cryptography Toolkit. http://www.
pycrypto.org/. Last accessed: 07/03/2016.

[Loftus et al. 2012] Loftus, J., May, A., Smart, N. P., and Vercauteren, F. (2012). On CCA-
Secure Somewhat Homomorphic Encryption. In Proceedings of the 18th International
Conference on Selected Areas in Cryptography, SAC’11, pages 55–72, Berlin, Heidel-
berg. Springer-Verlag.

[Miller 2014] Miller, C. C. (2014). Revelations of N.S.A. spying cost U.S. tech companies.
The New York Times. Last accessed: 02/04/2016.

[Naveed et al. 2015] Naveed, M., Kamara, S., and Wright, C. V. (2015). Inference attacks
on property-preserving encrypted databases. In Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security, CCS ’15, pages 644–655, New
York, NY, USA. ACM.

[Paillier 1999] Paillier, P. (1999). Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes. In Stern, J., editor, Advances in Cryptology — EUROCRYPT ’99,
volume 1592 of Lecture Notes in Computer Science, pages 223–238. Springer Berlin
Heidelberg.

[Poddar et al. 2016] Poddar, R., Boelter, T., and Popa, R. A. (2016). Arx: A strongly encrypted
database system. Cryptology ePrint Archive, Report 2016/591.

[Popa et al. 2011] Popa, R. A., Redfield, C. M. S., Zeldovich, N., and Balakrishnan, H. (2011).
Cryptdb: Protecting confidentiality with encrypted query processing. In Proceedings of
the Twenty-Third ACM Symposium on Operating Systems Principles, SOSP ’11, pages
85–100, New York, NY, USA. ACM.

[Sedgewick 1983] Sedgewick, R. (1983). Algorithms, chapter 15, page 199. Addison-Wesley.

[Song et al. 2000] Song, D. X., Wagner, D., Perrig, A., and Perrig, A. (2000). Practical tech-
niques for searches on encrypted data. Proceeding 2000 IEEE Symposium on Security
and Privacy. S&P 2000, pages 44–55.

[Thomsen 2015] Thomsen, S. (2015). Extramarital affair website Ashley Madison has been
hacked and attackers are threatening to leak data online. Last accessed: 25/05/2016.

[Weber 2014] Weber, H. (2014). How the NSA & FBI made Facebook the perfect mass
surveillance tool. Venture Beat. Published on 05/15/2014.

[Xiao and Xiao 2013] Xiao, Z. and Xiao, Y. (2013). Security and Privacy in Cloud Computing.
IEEE Communications Surveys Tutorials, 15(2):843–859.

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

155 c©2016 SBC — Soc. Bras. de Computação


	Artigos Completos
	A framework for searching encrypted databases.Pedro Alves (Unicamp), Diego Aranha (Unicamp)


