
Speeding up Elliptic Curve Cryptography on the P-384 Curve

Armando Faz-Hernández, Julio López∗

Institute of Computing, University of Campinas.
1251 Albert Einstein, Cidade Universitária. Campinas, Brazil.

{armfazh,jlopez}@ic.unicamp.br

Abstract. The P-384 is one of the standardized elliptic curves by ANSI and
NIST. This curve provides a 192-bit security level and is used in the computation
of digital signatures and key-agreement protocols. Although several publicly-
available cryptographic libraries support the P-384 curve, they have a poor
performance. In this work, we present software techniques for accelerating
cryptographic operations using the P-384 curve; first, we use the latest vector
instructions of Intel processors to implement the prime field arithmetic; second,
we devise a parallel scheduling of the complete formulas for point addition law.
As a result, on Skylake micro-architecture, our software implementation is 15%
and 40% faster than the OpenSSL library for computing ECDSA signatures and
the ECDH protocol, respectively.

Resumo. A P-384 é uma das curvas elípticas padronizadas pelo ANSI e o NIST.
Ela fornece um nível de segurança de 192 bits e é usada tanto na computação de
assinaturas digitais como nos protocolos de acordo de chaves. Embora várias
bibliotecas criptográficas disponíveis publicamente suportam a P-384, elas pos-
suem um baixo desempenho. Neste trabalho, apresentamos técnicas de imple-
mentação em software para acelerar operações criptográficas usando a curva
P-384; primeiro, usamos as mais novas instruções vetoriais dos processado-
res Intel para implementar a aritmética de corpo primo; depois, propomos um
escalonamento paralelo das fórmulas completas para calcular a lei de adição
de pontos. Como resultado, na microarquitetura Skylake, a nossa implementa-
ção em software é 15% e 40% mais rápida do que a biblioteca OpenSSL para
calcular assinaturas ECDSA e o protocolo ECDH, respectivamente.

1. Introduction
The elliptic curve cryptography (ECC) is well-known for providing secure algorithms that
are faster and use shorter key sizes in comparison with practical cryptosystems like the
RSA [Rivest et al. 1978]. In July 1999, the National Institute of Standards and Technol-
ogy (NIST) recommended a set of elliptic curves and parameters to be used by federal
government applications [NIST 1999]. This recommendation considers a set of 15 ellip-
tic curves that covers five security levels: 80, 112, 128, 192, and 256 bits. Five of these
curves are defined over prime fields and are known as P-192, P-224, P-256, P-384, and P-
521. Afterward, the American National Standards Institute (ANSI) standardized the use
of NIST’s curves [ANSI 1999]; and this had an impact on the widespread use of ECC for
establishing secure communications. For instance, a scan performed in 2014 over around

∗The authors gratefully acknowledge the support from the Intel Labs University Research Office.

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

170 c©2016 SBC — Soc. Bras. de Computação



Table 1. Set of algorithms classified according to the security levels defined by
Suite B. Entries marked with ? denote algorithms considered for legacy support.

Primitive Algorithm Suite B Security Level

SECRET TOP SECRET

Data Encryption AES AES-128 AES-256

Hash Function SHA2 SHA-256 SHA-384

Key Agreement ECDH P-256 P-384
DH? 2,048-bit modulus 3,072-bit modulus

Digital Signature
ECDSA P-256 P-384
DSA? 2,048-bit modulus 3,072-bit modulus
RSA? 2,048-bit modulus 3,072-bit modulus

30.2 millions of Internet hosts revealed that 7.2% of them support a cipher suite based on
elliptic curves [Bos et al. 2014]. The authors also showed that 98% of these hosts support
the P-256 curve, 80% support the P-384 curve, and only 17% support the P-521 curve.
The use and application of ECC are nowadays a suitable alternative for implementing
public-key cryptography systems.

The Committee on National Security Systems (CNSS) in the United States se-
lected a set of standardized security protocols and cryptographic algorithms to define a
cipher suite called Suite B [CNSS 2012]. The Suite B defines two security levels: the
SECRET level and the TOP SECRET level, detailed in Table 1. The most remarkable of
Suite B is the choice of elliptic curves as the preferred cryptosystem over other public-
key algorithms such as RSA and DSA. Recently in 2015, the CNSS announced an update
concerning the usage of the Suite B [CNSS 2015]. The announcement was motivated by
the effect of quantum computing on information assurance; in particular, the weakness
of ECC against an attack by a quantum computer [Proos and Zalka 2003]. At this time,
the latest quantum computers do not represent a threat to the ECC instances approved in
standards. Thus, before making a transition to quantum-resistant algorithms, the CNSS
restricted the use of the Suite B to work only at the TOP SECRET level.

In some computational systems, like those dependent on a cryptographic hardware
infrastructure, upgrading to the TOP SECRET level could incur into a serious investment
for updating the whole infrastructure in cases where the higher security level is not sup-
ported. However, in systems using a cryptographic software infrastructure, this upgrade
can be performed by setting the appropriate parameters in the software libraries. Unfortu-
nately, a loss of performance can occur, since some cryptographic libraries have inefficient
implementations for the higher security levels, like in the case of the P-384 curve. Con-
sequently, the transition to the TOP SECRET level enhances security but downgrades on
performance.

Regarding software implementations, the increasing support for parallel comput-
ing in the latest micro-architectures favors algorithms that can be partitioned into a series
of independent tasks. Thus, it is necessary to provide new algorithms, or adapt the ex-
istent ones, to take advantage of modern processors. In that sense, it is crucial to devise
formulations that increase the parallelism degree of algorithms that support ECC.

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

171 c©2016 SBC — Soc. Bras. de Computação



In this work, we focus on a high-performance software implementation of the
P-384 curve using advanced software techniques and efficient algorithms for the secure
execution of cryptographic operations. The following is the synopsis of our contributions.
In a lower level, we optimize the execution of prime field arithmetic by using vector in-
struction sets. At a higher level, we devise a scheduling of the field operations employed
in the complete formulas for calculating point additions; this scheduling allowed that
point additions be executed in parallel with low communication between the processing
units. To determine the impact of the techniques proposed, we apply them to the imple-
mentation of the Elliptic Curve Diffie-Hellman protocol (ECDH) [ANSI 2001] and the
Elliptic Curve Digital Signature Algorithm (ECDSA) [Vanstone et al. 1992]. Finally, we
compare the performance of our implementation against some publicly-available crypto-
graphic libraries.

Now, we detail some software optimizations targeting the NIST’s curves. Käsper
presented a fast implementation of the P-224 curve using a redundant representation for
implementing the prime field arithmetic [Käsper 2012]. Gueron and Krasnov showed op-
timizations for the P-256 curve by computing the field multiplication efficiently using
Montgomery-friendly primes [Gueron and Krasnov 2014]. Granger and Scott described
a novel technique for accelerating multiplications in the field F2521−1, which they used for
the implementation of the P-521 curve; this technique can also be extended to Crandall’s
numbers [Granger and Scott 2015]. Unfortunately, from these prime field arithmetic op-
timizations, only the redundant representation applies to the prime modulus used by the
P-384 curve.

2. Elliptic Curve Cryptography
An elliptic curve in short Weierstrass form over Fp is defined by Ea,b(Fp) : y

2 = x3 +
ax + b, where a, b ∈ Fp and −16(4a3 + 27b2) 6= 0. The set of points belonging to this
curve forms a commutative group E of cardinality ` whereO is the identity element. The
group law is denoted by +; thus, for any P,Q ∈ E, the operation P + Q is called as
point addition; in the case that P = Q, then the operation 2P = P + P is called as point
doubling. The inverse of a point P = (x, y) is calculated as −P = (x,−y).

One of the most critical operations in ECC is the point multiplication. Given
a point P ∈ E and an integer k, the point multiplication is defined as the scalar prod-
uct kP = P + P + · · ·+ P , i.e. the point obtained after P was added to itself k times.
The most efficient algorithms to calculate point multiplication have a computational com-
plexity of O(log k); refer to [Hankerson et al. 2003] for a complete reference about point
multiplication algorithms.

Around 1986, Miller [Miller 1986] and Koblitz [Koblitz 1987] suggested the use
of elliptic curves for constructing public-key cryptosystems under the assumption that
the elliptic curve discrete logarithm problem (ECDLP) is computationally intractable.
This problem is stated as follows: given a generator point G of E and a point P ∈ E,
the ECDLP consists on finding a number k ∈ Z` such that P = kG. The best-known
algorithm to solve ECDLP has a computational complexity of O(

√
`) [Pollard 1975].

Hence, key sizes on ECC are shorter than on RSA for attaining the same security level.

The elliptic curve Diffie-Hellman protocol (ECDH) is used to establish a shared
secret between two entities securely. Assume that Alice and Bob want to agree on a

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

172 c©2016 SBC — Soc. Bras. de Computação



Domain parameter generation

Given: m, the security parameter.
Return: D = {p, E,G, `, h}, where p is a
prime number such that p ≈ 22m, E is the
group induced byEa,b(Fp),G ∈ E is a gen-
erator point of order `, and h is a hash func-
tion producing 2m bits.

Key Generation

Given: The domain parameters D.
1. Choose sk

$←− Z∗` .
2. Calculate pk← skG.

Return: (sk,pk).

Signature generation

Given: The domain parameters D, a mes-
sage M and a secret key sk.

1. Choose k $←− Z∗` .
2. Calculate (Rx, Ry)← kG.
3. Calculate r ← Rx mod `.
4. If r = 0 then go to Step 1.
5. Set s← k−1(h(M)+sk×r) mod `.
6. If s = 0 then go to Step 1.

Return: (r, s).

Verification

Given: The domain parameters D, a mes-
sage M , a signature (r, s) and a public key
pk.

1. Set u1 ← s−1 × h(M) mod `.
2. Set u2 ← s−1 × r mod `.
3. Calculate (x, y)← u1G+ u2pk.
4. If x ≡ r mod `, set v ← Accept;

otherwise, set v ← Reject.
Return: v.

Figure 1. Set of algorithms for the ECDSA scheme.

shared secret S. Then, both Alice and Bob create a pair of keys, (si,Pi), where the secret
key is randomly chosen as si

$←− Z∗` , and the public key is calculated as Pi ← siG for
i ∈ {A,B}. After that, they communicate their public keys to each other. To calculate
the shared secret S, both multiply their private key by the public key received; thus,
S = sAPB = sBPA. The main application of this protocol is for generating secret keys for
symmetric data encryption. The ECDH protocol was standardized by ANSI [ANSI 2001]
and by NIST [Barker et al. 2007].

The elliptic curve digital signature algorithm (ECDSA) is an adaptation of the
digital signature algorithm (DSA) [NIST 2000] that replaced the use of the group Zq by
the elliptic curve groupE. Figure 1 shows the set of algorithms of the ECDSA. The ANSI
standardized the ECDSA [ANSI 1999]; this had a strong influence on other agencies, such
as IEEE [IEEE 2000] and SECG [Brown 2009] that also approved its use.

3. Prime Field Arithmetic

3.1. Targeting the Machine Instruction Set

The latest processors strive to boost the performance of applications by improving on both
the instruction-level parallelism (ILP) and the data-level parallelism (DLP). Widening the
execution engine of a processor enhances the ILP; this means that by increasing the num-
ber of functional units will allow that several units execute instructions. For increasing
DLP, some micro-architectures have included a vector unit able to execute one instruction
over a set of words; this unit operates in concordance with the parallel paradigm known
as Single Instruction Multiple Data (SIMD). We focus on the use of vector instructions to
increase the performance of field arithmetic operations.

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

173 c©2016 SBC — Soc. Bras. de Computação



In 1999, the MMX was the first vector instruction set integrated into the Intel pro-
cessors; the MMX supported operations over vector registers of 64 bits. Since then, the
vector unit evolved into a more complex unit supporting both 128- and 256-bit vector
instruction sets; on Intel processors these instruction sets are known as SSE, AVX and
AVX2 [Intel Corporation 2011]. The AVX2 unit has 16 vector registers of 256 bits and
also provides instructions for computing operations over words of 64 bits. The first micro-
architecture supporting AVX2 was codenamed as Haswell and was released in 2014.
Nowadays, both the Broadwell and the Skylake micro-architectures also have support for
256-bit vector instructions. All these micro-architectures contain two functional units for
integer arithmetic instructions, three units for logic instructions, one unit for shift and
multiplication instructions (two units in the case of Skylake) and one unit for byte permu-
tations. A complete list of AVX2 instructions is available at [Intel Corporation 2011].

The most critical instruction in the implementation of prime field arithmetic is
the integer multiplier. In AVX2, the VPMULUDQ instruction computes four simultaneous
multiplications of 32-bit words producing four 64-bit products. This instruction takes
five clock cycles; meanwhile, the 64-bit native multiplier, provided by the instructions
MULQ and MULX, takes three clock cycles. This fact presents a trade-off between parallel
computation and latency.

3.2. Field Element Representation Suitable for Vector Instructions

The prime modulus used by P-384 is p384 = 2384 − 2128 − 296 + 232 − 1; this number
belongs to the Generalized Mersenne numbers [Solinas 1999] which were designed to
perform the modular reduction efficiently.

The implementation of operations in Fp384 requires operating over integers of 384
bits. Usually, field elements are split in digits, having a size equal to word size of the ma-
chine. One downside of this method appears on the implementation of modular additions,
which propagate carry bits from the first to the last digit; this propagation introduces a
dependency chain on computations. It has been observed that large dependency chains
reduce the throughput of a calculation significantly. As a corollary, it follows that reduc-
ing such dependencies is crucial to improve the performance.

In that sense, we express field elements using a redundant representation with the
aim of reducing carry dependencies [Käsper 2012]. In this representation, a field element
is split into digits of smaller size that the word size of the instruction set; for example, an
element of Fp384 can be represented by 14 digits of 28 bits using a 32-bit instruction set
or by seven digits of 55 bits using a 64-bit instruction set. This representation guarantees
that the addition of two elements will not overflow the registers, in that case, the carry-
bit propagation can be postponed. Moreover, a determined number of additions can be
processed without any carry propagation, which enables a parallel processing of digits
and leading to an immediate application of vector instructions.

We represent a field element using 14 digits of 28 bits. Operating with digit size
less than 32 is justified due to the VPMULUDQ instruction multiplies words of 32 bits
producing 64-bit products; these products can be operated using 64-bit integer arithmetic,
which is supported by AVX2. We considered to use 13 digits of 30 bits; however, digits
will not have enough room to store carry bits. The same argument applies to digits of 29
bits. In the other hand, using less than 28 bits per digit increases the number of digits and

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

174 c©2016 SBC — Soc. Bras. de Computação



a12a13

a8a9a10a11

a4a5a6a7

a0a1a2a3

Figure 2. We store the digits
ai into four 256-bit vector regis-
ters; each vector register is com-
posed of four 64-bit words. For
computing additions, digits will
have enough room (dark shading
space) for storing carry bits.

a6a13b6b13

...

a1a8b1b8

a0a7b0b7

Figure 3. We store the digits of
A and B into seven 256-bit vector
registers. This arrangement is in-
tended to reduce the use of per-
mutation instructions since they
move words across the 128-bit
boundary increasing the execu-
tion latency.

slows field operations.

An element a ∈ Fp384 is then split into 14 digits ai such that the following re-
lation holds a ≡ ∑13

i=0 2
28iai mod p384. We denote by A the ordered sequence of digits

(a0, . . . , a13), for which a digit d in the n-th position of the sequence represents the num-
ber 228nd. Figure 2 shows how we store one sequence of digits into four 256-bit registers.

3.3. Implementation of Arithmetic Operations
The addition c = a+b ∈ Fp384 is computed entirely in parallel; we proceed by performing
ci = ai + bi for all i ∈ [0, 14); using the representation shown in Figure 2 there are
required only four vector addition instructions (VPADDQ). For the case of the subtraction
d = a − b ∈ Fp384 , we restrict digits to be always positive; hence, we compute di =
ai − bi + 2pi for all i ∈ [0, 14), where pi is the redundant representation of p384.

Now, we show how to compute the multiplication a× b ∈ Fp384 . Our technique is
different from other implementations that process first the integer multiplication and then
the modular reduction; instead, we perform modular reduction during the processing of
integer multiplication. We express c = a× b in terms of an auxiliary function π as follows
c =

∑13
i=0 π

i(a)bi; where π is defined as π(x) = 228x mod p384. Algorithm 1 shows the
processing of modular multiplication using π. Lines 1 and 4 of Algorithm 1 calculate
component-wise additions and multiplications over sequences of 14 digits; therefore, we
can schedule 14 operations without dependency between them. This fact is crucial for
improving performance; particularly, the processor can issue VPMULUDQ instructions into
the pipeline every clock cycle since products do not present any dependency that could
stall the pipeline.

The π function, used in line 3 of Algorithm 1, is computed by Algorithm 2 as
follows. Given an input sequence A, every digit of A must be multiplied by 228, this
can be done by changing a digit from the n-th position to the (n+ 1)-th position in the
output sequence (line 1 of Algorithm 2). Now, notice that the a′14 represents the number
L = 2392a13, which is congruent to r = (2136 + 2104 − 240 + 28)a13 mod p384. Thus,
we add r to the digits of the output sequence; this addition must be processed ensuring
that the digits do not be greater than 232 since π(A) will be the input of another round of

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

175 c©2016 SBC — Soc. Bras. de Computação



Algorithm 1 Modular multiplication in
terms of the π function.
Input: A = (a0, . . . , a13) and

B = (b0, . . . , b13), be sequences of
the digits of a and b, respectively.

Output: C = (c0, . . . , c13), be a sequence
of digits such that

a× b ≡
13∑

i=0

228ici mod p384.

1: C ← A · b0
2: for i← 1 to 13 do
3: A← π(A) (Alg. 2.)
4: C ← C + A · bi
5: end for
6: return C

Algorithm 2 The π function.
Input: A = (a0, . . . , a13), be a sequence

of the digits of a.
Output: (a′0, . . . , a

′
13), be a sequence of

digits such that
228a ≡∑13

i=0 2
28ia′i mod p384.

1: a′i+1 ← ai for all i ∈ [0, 14)
2: L← a′14
3: a′0 ← 28(L mod 220)
4: a′1 ← a′1+ bL/220c−212(L mod 216)
5: a′2 ← a′2 − bL/216c
6: a′3 ← a′3 + 220(L mod 28)
7: a′4 ← a′4 + bL/28c+ 224(L mod 24)
8: a′5 ← a′5 + bL/24c
9: return (a′0, . . . , a

′
13)

multiplications. We guarantee this property by adding the correspondent portions of bits
of a13 into the digits of the output sequence as it is described in lines 2-8 of Algorithm 2.
The operations of Algorithm 2 are implemented using only logic and shift instructions;
moreover, whenever the shift displacement is multiple of 8, we use byte permutations
instead of shifts since permutations are executed by another functional unit. Therefore, by
taking advantage of the out-of-order execution, instructions for π are executed while the
long-latency multiplication instructions are processed increasing the ILP of this workload.

4. Elliptic Curve Arithmetic
The elliptic curve addition law is calculated using operations in the prime field such as ad-
ditions, multiplications, and squares that we denote by A, M, and S, respectively. Adding
points in affine coordinates implies the use of field inversions, which in general are com-
putationally expensive.

An alternative to avoid inversions consists on representing points using Jacobian
coordinates, i.e. a point P = (x, y) is represented by (X, Y, Z) such that x = X/Z2

and y = Y/Z3. This coordinate system presents the most efficient formulas to compute
the addition law for curves in the short Weierstrass form. Specifically, the NIST’s curves
fix a = −3. Thus, the point addition requires 12M, 4S, and 7A. Meanwhile, the point
doubling uses 4M, 4S, and 8A [Hankerson et al. 2003]. The formulas using Jacobian
coordinates are not complete; this means that for some particular cases, formulas com-
pute addition law incorrectly. Implementations using incomplete formulas must verify
the presence of such special cases and handle them in a proper way. Otherwise, some vul-
nerabilities can be exploited [Izu and Takagi 2002]. For that reason, the use of complete
formulas is recommended.

Renes et al. [Renes et al. 2016] introduced an optimization on the evaluation of
complete formulas presented by Bosma and Lenstra [Bosma and Lenstra 1995]. This ap-
proach represents points in projective coordinates; i.e. a point P = (x, y) is represented
by (X, Y, Z) such that x = X/Z and y = Y/Z. For the case of a = −3, the point ad-

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

176 c©2016 SBC — Soc. Bras. de Computação



Algorithm 3 Parallel scheduling of point addition for a = −3 using complete formulas.
Input: P = (X1, Y1, Z1), Q = (X2, Y2, Z2), and the coefficient b from E−3,b(Fp).
Output: P +Q = (X3, Y3, Z3).

LEFT

1: l0 ← X1 + Y1

2: l1 ← X1 + Z1

3: l2 ← X2 + Z2

4: p0 ← X1 ×X2

5: p1 ← l0 × r0
6: p2 ← l1 × l2
7: l0 ← 3p0
8: l3 ← p0 + q1
9: l4 ← p2 − l3

10: p3 ← b× l4
11: l5 ← p3 − p0

RIGHT

r0 ← X2 + Y2

r1 ← Y1 + Z1

r2 ← Y2 + Z2

q0 ← Y1 × Y2

q1 ← Z1 × Z2

q2 ← r1 × r2
r0 ← 3q1
∅
∅
q3 ← b× q1
r5 ← l4 − q3

LEFT

12: l6 ← l5 − r0
13: l7 ← 3l6
14: l8 ← l0 − r0
15: l9 ← l8
16: l10 ← p0 + q0
17: l11 ← p1 − l10
18: p4 ← l11 × r9
19: p5 ← r9 × r8
20: p6 ← l11 × l9
21: X3 ← p4 − q4
22: Z3 ← p6 + q6

RIGHT

r6 ← r5
r7 ← 3r6
r8 ← q0 − r7
r9 ← q0 + r7
r10 ← q0 + q1
r11 ← q2 − r10
q4 ← r11 × l7
q5 ← l7 × l9
q6 ← r11 × r8
Y3 ← p5 + q5
∅

23: return (X3, Y3, Z3)

Algorithm 4 Parallel scheduling of point doubling for a = −3 using complete formulas.
Input: P = (X1, Y1, Z1), and the coefficient b from E−3,b(Fp).
Output: 2P = (X2, Y2, Z2).

LEFT

1: p0 ← X1 ×X1

2: p1 ← X1 × Y1

3: p2 ← 2X1 × Z1

4: p3 ← b× p2
5: l0 ← p3 − p0
6: l1 ← 3p0
7: l2 ← 3q2
8: l3 ← l1 − l2

RIGHT

q0 ← Y1 × Y1

q1 ← Y1 × Z1

q2 ← Z1 × Z1

q3 ← b× q2
r0 ← q3 − p2
r1 ← q0
r2 ← 3r0
r3 ← r1 + r2

LEFT

9: l4 ← l0 − l2
10: l5 ← 3l4
11: p4 ← l3 × l5
12: p5 ← p1 × r5
13: ∅
14: X2 ← 2(p5 − q5)
15: Z2 ← 8q6

RIGHT

r4 ← r1 − r2
r5 ← r4
q4 ← r3 × r5
q5 ← q1 × l5
q6 ← q1 × r1
Y2 ← p4 + q4

16: return (X2, Y2, Z2)

dition uses 12M, 2Mb, and 29A, while the point doubling requires 8M, 2Mb, 3S, and
21A; where Mb denotes the multiplication by the coefficient b of the elliptic curve. For
point additions, Renes’ formulas are as efficient as the Jacobian ones; however, there is a
considerable amount of field additions.

4.1. Parallel Scheduling of Complete Addition Formulas

By analyzing the Renes’ formulas, we notice that is possible to schedule field
operations in such a way that two independent operations be executed in parallel. Our
proposed schedule is listed in Algorithm 3 for point addition and in Algorithm 4 for
point doubling. Assuming the use of two execution units, say LEFT and RIGHT units, the
scheduling proceeds as follows. The LEFT unit will compute variables named pi whenever
the operation is a field multiplication; otherwise, they are called li. Analogously, the
RIGHT unit will compute variables qi for field multiplications, and ri for the rest of the
operations. Every line of Algorithm 3 (and Algorithm 4) computes pairs (pi, qi) or (li, ri)
using in most of the cases the same type of field operation. A line with ∅ symbol denotes
no computation in this unit. The communication between units occurs when the LEFT
unit uses variables previously computed by the RIGHT unit, and vice versa; we arranged
field operations in such a way that minimizes the communication required.

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

177 c©2016 SBC — Soc. Bras. de Computação



We take advantage of the AVX2 vector unit to process field operations simultane-
ously since the 256-bit vector unit can also behave like two independent vector units of
128 bits. Hence, by making a slight modification in the distribution presented in Figure 2,
we store two elements a, b ∈ Fp384 by packaging the digits ai and bi in seven 256-bit
vector registers as Figure 3 depicts. The techniques for arithmetic operations presented in
Section 3.3 are straightforwardly applicable to this representation.

The benefit of using the parallel scheduling proposed is notorious since it reduces
by half the amount of operations required to compute point additions. For example, Al-
gorithm 3 takes 6M̂, 1M̂b, and 15Â, where ·̂ denotes field operations executed in par-
allel. The communication between units is accomplished by performing permutations of
the 128-bit parts that conform a 256-bit vector register using either the VPERMQ or the
VPERM2I128 instruction.

5. Elliptic Curve Point Multiplication

We focus on the optimization of three special cases of point multiplication. First, the
variable-point multiplication, kP , where k represents a secret value, and P is an arbitrary
point. Second, the fixed-point multiplication, kP , is processed under the assumption that
the point P is previously known and fixed, and k is a secret value . Third, the double-point
multiplication, kP + lQ, where P is a fixed point, and Q is an arbitrary point.

5.1. Variable-Point Multiplication

We compute variable-point multiplication using a deterministic execution pattern. First,
we implemented the algorithm employed by Bos et al. [Bos et al. 2015, Alg. 1] and re-
produced in Algorithm 5. For this case, we set ω = 6, which implies to calculate a series
of five point doublings followed by one point addition. Since the fixed-window recoding
works only for odd numbers, we recode either k (when odd) or ` − k (when even), and
at the end of the algorithm, we must choose between kP or −kP . We remark that both
selections require running in constant time; hence, we use Algorithm 7 for meeting this
requirement.

In line 8 of Algorithm 5, we perform queries, denoted by φ, to the look-up table
according to the digits k′i; to do that securely, we read the entire table and conditionally
select the appropriate entry. The secure query (Algorithm 6) uses two primitives to oper-
ate: conditional move operation (Algorithm 8) and selection operation (Algorithm 7). We
implement these functions using logic arithmetic over vector registers; this avoids that
running time depends on the values of the operands reducing the success chances of a
timing attack.

5.2. Fixed-Point Multiplication

In this case, the point multiplication can be accelerated by generating a look-up table con-
taining some precomputed points. Since it is allowed to produce a large look-up table,
this scenario exhibits a trade-off between speed and memory footprint. In our implemen-
tation, the fixed-point multiplication algorithm read the entire look-up table; hence, it
would be desirable that a large part of the table fit on L1-D (data memory cache), which
has a capacity of 32 KiB in the Intel Core i7 processors.

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

178 c©2016 SBC — Soc. Bras. de Computação



Algorithm 5 Variable-point multiplication
using a deterministic pattern.
Input: P , k, and ω, where P ∈ E, k is a

positive integer lesser than `, and ω is
a positive integer.

Output: Q, a point such that Q = kP .
1: t← dlog2(`)/(ω − 1)e
2: T = {(2i+ 1)P | for i ∈ [0, 2ω−2)}
3: k′ ← Select(`− k, k, k mod 2, 0)
4: (k′0, . . . , k

′
t−1)← Recoding(k′, ω)

5: Q← O
6: for i← t− 1 to 0 do
7: Q← 2ω−1Q
8: Q← Q+ φ(T, k′i) (Alg. 6.)
9: end for

10: Qy ← Select(−Qy, Qy, k mod 2, 0)
11: return Q

Algorithm 6 Secure look-up table query φ.
Input: T and v, where T is a look-up ta-

ble storing d points; and v is an integer
stored into a n-bit word.

Output: R, a point in projective coordi-
nates such that R = Tv.

1: (x, y)← (0, 0)
2: (V, S)←

(
bv+1

2
c, v � (n− 1)

)

3: for i← 1 to d do
4: (xT , yT )← Ti
5: x← x⊕ CMove(xT , i, V ) (Alg. 8.)
6: y ← y ⊕ CMove(yT , i, V ) (Alg. 8.)
7: end for
8: y ← Select(1, 0, V, 0) (Alg. 7.)
9: z ← Select(0, 1, V, 0) (Alg. 7.)

10: y ← Select(y,−y, S, 0) (Alg. 7.)
11: return R← (x, y, z)

Algorithm 7 Select: Secure selection
operation.
Input: A, B, x, and y, whereA andB are

two k-bit integer numbers; and, x and
y are two n-bit integers.

Output: If x = y, returns A; otherwise,
returns B.

1: b← (−(x ∧ y))� (n− 1)
2: M ← (bbb · · ·︸ ︷︷ ︸

n times

)2

3: return (¬M ∧ A)⊕ (M ∧B)

Algorithm 8 CMove: Secure conditional
move operation.
Input: A, x, and y, where A is a k-bit in-

teger number; and, x and y are two n-
bit integers.

Output: If x = y, returns A; otherwise,
returns 0.

1: b← (−(x ∧ y))� (n− 1)
2: M ← (bbb · · ·︸ ︷︷ ︸

n times

)2

3: return ¬M ∧ A

Initially, we precompute a look-up table with entries Ti = {j24iP} for all even
i ∈ [0, 96) and all 0 ≤ j ≤ 8. For computing kP , first, we split scalar k in 96 signed digits
of four bits, such that k =

∑95
i=0 ki2

4i. Then, kP is obtained as kP = Q0 + 24Q1, where
Q0 =

∑95
i=0 φ(Ti, ki) for i ≡ 0 mod 2, and Q1 =

∑95
i=0 φ(Ti−1, ki) for i ≡ 1 mod 2. This

computation requires in total 96 point additions and 4 point doublings; whereas regarding
memory footprint, the look-up table stores 384 points in affine coordinates accounting
for 36 KiB of read-only memory; what is close to the size of L1-D. Like in the case of
variable-point multiplication, the queries are securely processed by Algorithm 6.

5.3. Double-Point Multiplication
The kP + lQ operation can be computed using the interleaved algorithm together with
ω-NAF representation [Hankerson et al. 2003, Alg. 3.51]. This algorithm encodes both
scalars k and l into ω-NAF expansions [Solinas 2000]. Indeed, the value of the window-ω
can be different for each scalar; thus, let ωk and ωl be the window values selected for the
scalar k and l, respectively. The value ωk impacts significantly on both the running time

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

179 c©2016 SBC — Soc. Bras. de Computação



and the memory footprint of the implementation, whereas the ωl value impacts only on
the running time. In our implementation, we choose ωk = 7 and ωl = 5 since these values
minimize the running time of the double-point multiplication.

6. Benchmarking Results

To evaluate the impact on the performance of our optimizations, we measure the time
to compute the shared secret in the ECDH protocol, the signature generation, and the
verification operation of the ECDSA scheme. Then, we make a comparison against
other publicly-available cryptographic libraries. We choose libraries mainly written in
C-language that offer support to the P-384 curve, and we end up with the following:

• OpenSSL (v1.0.2h) is the state-of-the-art on open-source cryptographic imple-
mentations; this library is in continuous development containing a vast number of
optimizations [The OpenSSL Project 2003].
• Nettle (v3.2) is a low-level cryptographic library that provides a back-end func-

tionality to the GnuTLS library [Niels Möller 2001].
• mbed TLS (v2.2.1), previously known as PolarSSL, is a multi-platform library

with the aim to ease the development of cryptographic algorithms [Bakker 2008].
• Relic toolkit (v0.4.1) is a modern library that supports a broad range of crypto-

graphic algorithms. Measurements were done using the default configurations,
and setting GMP as the arithmetic backend [Aranha and Gouvêa 2009].
• BoringSSL (commit fe47ba2f) is a fork of the OpenSSL library modified with

the aim to cover the requirements needed by Google’s products [Google 2015].

Table 2 shows the performance comparison obtained. As can be seen, the cryptographic
libraries selected offer similar performance for the P-348 curve, except the mbed TLS
library, which is by far the slowest. In all scenarios, our software implementation outper-
forms the timings of the other libraries. We want to note that these libraries still compute
the point addition using the Jacobian formulas, which present special cases that must be
handled in constant time, and this could add a considerable performance penalty.

The authors of complete point addition formulas presented a proof-of-concept im-
plementation of their formulas using the OpenSSL library [Renes et al. 2016]; they ob-
served a slow-down factor of 1.41× for computing the ECDH protocol. We state that this
factor can be reduced by using the implementation techniques presented in this work. For
example, we benchmark the prime field arithmetic operations and notice that our imple-
mentation computes modular additions 3× faster than the OpenSSL library, which is a
relevant result since the complete formulas require lots of prime field additions; thus, our
implementation reduces the overhead caused by the complete formulas.

Regarding differences in the performance observed on the Haswell and the Sky-
lake micro-architectures, our implementation had better performance improvement that
the other libraries. For example, in the shared secret computation, the running time of our
software is around 10% faster when is executed on Skylake, whereas the other libraries
are accelerated only in 5%. A plausible explanation of this situation is that the improve-
ments in the latest micro-architectures have a higher impact on vector instructions rather
than the native scalar instructions. Therefore, it is expected that vectorized code will have
a greater performance in the forthcoming micro-architectures.

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

180 c©2016 SBC — Soc. Bras. de Computação



Table 2. Performance of ECC protocols using the P-384 curve. Entries repre-
sent 106 clock cycles measured on a Haswell (Core i7-4770) and on a Skylake
(Core i7-6700K) micro-architectures. All libraries were compiled using the GNU
Compiler Collection (v5.3.1) and executed with the Intel Turbo Boost and the Intel
Hyper-Threading technologies disabled.

Crypto-
graphic
library

Haswell Skylake

ECDH ECDSA ECDH ECDSA

Shared secret Signature Verification Shared secret Signature Verification

mbed TLS 18.70 7.15 26.49 17.90 6.72 25.25
BoringSSL 3.60 3.78 4.47 3.43 3.67 4.33
Relic toolkit 1.79 0.89 2.40 1.52 0.77 2.06
Nettle — 0.77 2.07 — 0.62 1.57
OpenSSL 2.12 0.65 2.60 2.03 0.62 2.49

This work 1.25 0.56 1.31 1.11 0.53 1.11

7. Concluding Remarks
Given the recent discovery of the efficient evaluation of the complete formulas for point
addition, we contributed with a new parallel scheduling of field operations that allows
computing two independent operations simultaneously. This technique works either for
hardware or software implementations. Moreover, the scheduling is not restricted to the
P-384 curve, since by applying slight modifications, it applies to all prime elliptic curves
in short Weierstrass form.

Additionally, we presented software techniques for implementing the arithmetic
operations of Fp384 using vector instructions. Essentially, we packed pairs of field ele-
ments into 256-bit vector registers, and we arranged vector instructions to perform two
field operations at the same time. These operations served as building blocks for the im-
plementation of the parallel scheduling of the complete formulas for point addition. In
fact, we optimized our implementation to make an efficient use of the execution engine
for micro-architectures supporting the AVX2 instruction set.

The widespread use of ECC can be hampered by low-performance implementa-
tions provided by some cryptographic libraries. In this work, the benchmark results re-
vealed that the use of parallel execution units improves the performance of ECC. Specifi-
cally, we observed that the combination of the parallel scheduling proposed together with
the efficient computation of field arithmetic allowed to obtain a significant reduction in
the running time of the ECDSA scheme and the ECDH protocol using the P-384 curve.
Finally, we expect that the techniques presented in this work contribute to improving the
performance of elliptic curves on processors that support vector instructions.

Acknowledgments. We thank the anonymous reviewers for their helpful comments.

References
[ANSI 1999] ANSI (1999). ANS X9.62 Public Key Cryptography for the Financial Services

Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA).

[ANSI 2001] ANSI (2001). ANS X9.63 Public Key Cryptography for the Financial Services
Industry: Key Agreement and Key Transport Using Elliptic Curve Cryptography.

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

181 c©2016 SBC — Soc. Bras. de Computação



[Aranha and Gouvêa 2009] Aranha, D. F. and Gouvêa, C. P. L. (2009). RELIC is an Effi-
cient LIbrary for Cryptography. https://github.com/relic-toolkit.

[Bakker 2008] Bakker, P. (2008). mbed TLS. (v2.3). https://tls.mbed.org/.

[Barker et al. 2007] Barker, E. B., Johnson, D., and Smid, M. E. (2007). SP 800-56A. Rec-
ommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm
Cryptography (Revised).

[Bos et al. 2015] Bos, J. W., Costello, C., Longa, P., and Naehrig, M. (2015). Selecting
elliptic curves for cryptography: an efficiency and security analysis. Journal of Cryp-
tographic Engineering, pages 1–28.

[Bos et al. 2014] Bos, J. W., Halderman, J. A., Heninger, N., Moore, J., Naehrig, M., and
Wustrow, E. (2014). Elliptic Curve Cryptography in Practice, pages 157–175. Springer
Berlin Heidelberg, Berlin, Heidelberg.

[Bosma and Lenstra 1995] Bosma, W. and Lenstra, H. (1995). Complete Systems of Two
Addition Laws for Elliptic Curves. Journal of Number Theory, 53(2):229–240.

[Brown 2009] Brown, D. R. L. (2009). SEC 1: Elliptic Curve Cryptography. http://
www.secg.org/sec1-v2.pdf.

[CNSS 2012] CNSS (2012). National Information Assurance Policy on the Use of Pub-
lic Standards for the Secure Sharing of Information Among National Security Sys-
tems. CNSSP Policy 15. https://www.cnss.gov/CNSS/issuances/
Policies.cfm.

[CNSS 2015] CNSS (2015). Use of Public Standards for the Secure Sharing of Information
among National Security Systems. CNSS Advisory Memorandum 02-15. https:
//www.cnss.gov/CNSS/issuances/Memoranda.cfm.

[Google 2015] Google (2015). BoringSSL. https://boringssl.googlesource.
com/boringssl/+/fe47ba2fc5512436696f745b5756d08c7d8ceb0b.

[Granger and Scott 2015] Granger, R. and Scott, M. (2015). Faster ECC over F2521−1 . In
Katz, J., editor, Public-Key Cryptography – PKC 2015: 18th IACR International Con-
ference on Practice and Theory in Public-Key Cryptography, Gaithersburg, MD, USA,
March 30 – April 1, 2015, Proceedings, pages 539–553, Berlin, Heidelberg. Springer
Berlin Heidelberg.

[Gueron and Krasnov 2014] Gueron, S. and Krasnov, V. (2014). Fast prime field elliptic-
curve cryptography with 256-bit primes. Journal of Cryptographic Engineering, pages
1–11.

[Hankerson et al. 2003] Hankerson, D., Menezes, A. J., and Vanstone, S. (2003). Guide to
Elliptic Curve Cryptography. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

[IEEE 2000] IEEE (2000). IEEE Standard Specifications for Public-Key Cryptography.
Number 1363, pages 1–228. IEEE Std 1363-2000.

[Intel Corporation 2011] Intel Corporation (2011). Intel R© Advanced Vector Extensions
Programming Reference. Technical report. https://software.intel.com/
sites/default/files/m/f/7/c/36945.

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

182 c©2016 SBC — Soc. Bras. de Computação



[Izu and Takagi 2002] Izu, T. and Takagi, T. (2002). Exceptional Procedure Attack on Ellip-
tic Curve Cryptosystems. In Desmedt, Y. G., editor, Public Key Cryptography — PKC
2003: 6th International Workshop on Practice and Theory in Public Key Cryptography
Miami, FL, USA, January 6–8, 2003 Proceedings, pages 224–239, Berlin, Heidelberg.
Springer Berlin Heidelberg.

[Käsper 2012] Käsper, E. (2012). Fast Elliptic Curve Cryptography in OpenSSL. In
Danezis, G., Dietrich, S., and Sako, K., editors, Financial Cryptography and Data
Security, volume 7126 of Lecture Notes in Computer Science, pages 27–39. Springer
Berlin Heidelberg.

[Koblitz 1987] Koblitz, N. (1987). Elliptic Curve Cryptosystems. Mathematics of Compu-
tation, 48(177):203–209.

[Miller 1986] Miller, V. S. (1986). Use of Elliptic Curves in Cryptography. In Williams,
H. C., editor, Advances in Cryptology — CRYPTO ’85 Proceedings, volume 218 of
Lecture Notes in Computer Science, pages 417–426. Springer Berlin Heidelberg.

[Niels Möller 2001] Niels Möller (2001). Nettle. http://www.lysator.liu.se/
~nisse/nettle.

[NIST 1999] NIST (1999). Recommended elliptic curves for federal government use.

[NIST 2000] NIST (2000). Digital Signature Standard (DSS). Federal Information Process-
ing Standards Publication 186-2. http://csrc.nist.gov/publications/
fips/archive/fips186-2/fips186-2.pdf.

[Pollard 1975] Pollard, J. (1975). A monte carlo method for factorization. BIT Numerical
Mathematics, 15(3):331–334.

[Proos and Zalka 2003] Proos, J. and Zalka, C. (2003). Shor’s Discrete Logarithm Quantum
Algorithm for Elliptic Curves. Quantum Information & Computation, 3(4):317–344.

[Renes et al. 2016] Renes, J., Costello, C., and Batina, L. (2016). Complete Addition For-
mulas for Prime Order Elliptic Curves. In Fischlin, M. and Coron, J.-S., editors, Ad-
vances in Cryptology – EUROCRYPT 2016: 35th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May
8-12, 2016, Proceedings, Part I, pages 403–428, Berlin, Heidelberg. Springer Berlin
Heidelberg.

[Rivest et al. 1978] Rivest, R. L., Shamir, A., and Adleman, L. (1978). A method for ob-
taining digital signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126.

[Solinas 2000] Solinas, J. (2000). Efficient Arithmetic on Koblitz Curves. Designs, Codes
and Cryptography, 19(2-3):195–249.

[Solinas 1999] Solinas, J. A. (1999). Generalized Mersenne Numbers. Technical Report
CORR 99-39, Center of Applied Cryptographic Research (CACR).

[The OpenSSL Project 2003] The OpenSSL Project (2003). OpenSSL: The Open Source
toolkit for SSL/TLS. http://www.openssl.org.

[Vanstone et al. 1992] Vanstone, S., Rivest, R. L., Hellman, M. E., Anderson, J. C., and
Lyons, J. W. (1992). Responses to NIST’s Proposal. Communications of the ACM,
35(7):41–54. (John Anderson communicated Vanstone’s proposal).

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

183 c©2016 SBC — Soc. Bras. de Computação


	Artigos Completos
	Sessão técnica 4 (ST4): Criptografia
	Speeding up the Elliptic Curve Cryptography on the P-384 Curve.Armando Faz Hernández (Unicamp), Julio Hernandez (Unicamp))


