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Abstract. We present a series of software implementations of the Fantomas block
cipher in resource-constrained ARM devices like the Cortex-M3 and Cortex-M4;
and more powerful processors such as the ARM Cortex-A15 and modern Intel
platforms. Our implementations span a broad range of characteristics: 32-bit
and 64-bit versions, side-channel resistant and vectorized code for NEON and
SSE instructions. Our implementations of the algorithm improve the state of
the art substantially, both in terms of efficiency or compactness, by making use
of novel algorithmic techniques and features specific to the target platform. In
particular, our unprotected 32-bit implementation achieves speedups from 35%
to 66% in the ARM Cortex-M architecture, while consuming considerably less
code size. The vectorized implementations improve performance over the state
of the art by 40% in the ARM Cortex-A15 and 50% in the Core i7 Ivy Bridge,
setting new speed records for the implementation of the block cipher.

1. Introduction
Lightweight cryptography for embedded systems has been a very active field of

research in the last years, and it recently gained renewed interest with the emergence
of the Internet of Things. Cryptographic primitives can indeed mitigate or even solve
several problems faced by connected devices collecting and exchanging sensitive in-
formation through an open network. Many innovative encryption algorithms were pro-
posed to maximize performance in resource-constrained devices and to provide lighter
alternatives to AES [Daemen and Rijmen 2002], without compromising security. Some
remarkable examples are the NSA-designed SPECK and SIMON block cipher fami-
lies [Beaulieu et al. 2013], the PRINCE block cipher [Borghoff et al. 2012], and more re-
cently the Low-power Encryption Algorithm (LEA) [Hong et al. 2014]. These lightweight
designs follow multiple constructions, such as Feistel, Substitution-Permutation and ARX
networks, posing distinct trade-offs in terms of efficiency, compactness and resistance
against different attacks. While these algorithms are still considered secure according to
the latest cryptanalytic results, their corresponding implementations may be susceptible to
attacks based on information leakage.

Side-channel analysis is a growing and important issue for security in cryptography,
specially in embedded devices. These attacks are based on information leaked during
computation through side channels such as execution time, energy consumption, acoustic
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and electromagnetic emanations. When successful, they help the adversary to identify and
recover secret data from observations captured from implementations of cryptography,
overcoming the much higher computational cost of cryptanalysis or exhaustive search
in the key space. Secret data may be a long-term private key, an ephemeral session
key or partial information about the internal state of a primitive, including bits of the
plaintext or round keys. The attacks may be based on a small number of observations, such
as Branch Prediction [Aciiçmez et al. 2007] or Simple Power Attacks (SPA); or require
traces from many consecutive observations, as in the case of Differential Power Attacks
(DPA) [Kocher et al. 1999]. Resistance to side-channel attacks has been considered as
an additional security requirement for low-cost ciphers, because the lightweight devices
implementing them may be physically accessible to the attacker. Algorithms with side-
channel resistance guarantees embedded in the construction itself have been thus favored
in the scientific literature, bringing attention to ciphers like PICARO [Piret et al. 2012]
and Fantomas [Grosso et al. 2015c].

The LS-Design paradigm [Grosso et al. 2015c] was created with side-channel
resistance in mind, because it allows the designer to construct lightweight algorithms
friendly to efficient implementation of side-channel countermeasures. LS-Design ciphers
typically combine a bitsliced substitution layer with a linear diffusion layer implemented
with precomputed tables, both amenable to masking techniques with controlled overhead.
Masking schemes were initially proposed in 2003 [Ishai et al. 2003] in the context of
protecting circuits against probing, but it has been later extended to much more complex
operations, even achieving provable security guarantees [Rivain and Prouff 2010]. Masked
implementations have the interesting property that the entire computation is performed
over shared secrets, decorrelating any potential side-channel leakages from the actual data
being encrypted or the real cryptographic keys. From this point of view, masking can
be seen as a collection of perturbation techniques to introduce external random noise in
the encryption or decryption processes, acting as countermeasure against several types of
side-channel attacks.

One of the first and most famous instances of the LS-Design construction is the
Fantomas block cipher. This work presents several efficient, compact, portable and se-
cure (in the sense of side-channel resistance) implementations of Fantomas. In terms of
performance, a number of optimizations are described to save execution time or code
size, several of them easily adaptable to other LS-Designs, such as the CAESAR candi-
date SCREAMv3 [Grosso et al. 2015b]. In terms of security, constant-time and masked
implementations are discussed. The constant-time implementation protects execution
against timing attacks [Kocher 1996] and avoids precomputed tables vulnerable against
cache latency attacks [Bernstein 2004, Bonneau and Mironov 2006]; and the masked im-
plementation illustrates several current challenges of the research field. The constant-time
implementation was validated using the FlowTracker static analysis tool [Silva et al. 2016].

This paper is organized as follows. Section 2 introduces the masking implemen-
tation strategy, LS-Designs and the Fantomas block cipher. Section 3 discusses multiple
implementations of the algorithm, targeting different platforms. Section 4 presents experi-
mental results and Section 5 concludes the paper.
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2. Preliminaries
In this section, we introduce the concept of masking for protecting implementations

against side-channel attacks and describe the LS-design construction instantiated by the
Fantomas block cipher.

2.1. Masking Scheme
Masking is one of the most investigated countermeasures against side-channel

cryptanalysis. In the context of block ciphers, masking aims to protect sensitive data, such
as plaintext during encryption, or the ciphertext during decryption. Because information
computed in these processes will be later transformed into the algorithm outputs, all
intermediary states must be protected at all time. The masked state of m with d+ 1 shared

secrets is given by m =
d⊕

i=0

mi = m0 ⊕m1 ⊕ . . .⊕md, where each mi is a shared secret

and all shared secrets form together a masked secret. From this definition, we can collect
some observations on ciphers employing operations in finite field F2:

1. Every linear operation over a masked secret m is equivalent to applying the same
operation over shared secrets of m:

L(m) ≡ L(m0 ⊕m1 ⊕ . . .⊕md) ≡ L(m0)⊕ L(m1)⊕ . . .⊕ L(md)

2. A NOT operation over a masked secret can be computed as:

¬m ≡ ¬m0 ⊕m1 ⊕ . . .⊕md

3. A XOR operation between masked secrets a =
d⊕

i=0

ai and b =
d⊕

i=0

bi can be seen as:

a⊕ b ≡
d⊕

i=0

ai ⊕
d⊕

i=0

bi ≡
d⊕

i=0

(ai ⊕ bi)

4. An AND operation between two masked secrets a =
d⊕

i=0

ai and b =
d⊕

i=0

bi is more

complicated and can be computed as in Algorithm 1.

Algorithm 1 Non linear operation AND performed on two masked secrets a and b

Require: Shares (ai) and (bi) satisfying ⊕d
i=0 ai = a and ⊕d

i=0 bi = b.
Ensure: Shares (ci) satisfying ⊕d

i=0 ci = a ∧ b
1: for i from 0 to d do
2: ri,i ← 0;
3: for j from i+ 1 to d do
4: ri,j ← random();
5: rj,i ← (ri,j ⊕ (ai ∧ bj))⊕ (aj ∧ bi);
6: end for
7: end for
8: for i from 0 to d do
9: ci ← ai ∧ bi;

10: for j from 0 to d do
11: ci ← ci ⊕ ri,j;
12: end for
13: end for
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These observations allow any algorithm employing binary field arithmetic to be
implemented in a masked way. An important challenge in masked implementations can be
seen in line 4 of the algorithm, in the form of random number generation. By considering
that every share ai is a unity, every masked AND requires (d+1)2−(d+1)

2
unities of random

data and additional space of (d+1)2 to store a matrix containing all possible combinations
of shares.

2.2. LS-Designs and Fantomas

LS-Designs were conceived to address side-channel threats, by combining the
advantages of bitslicing-capable ciphers with easy support to regular and masked soft-
ware implementations. Algorithm 2 presents a generic specification for an LS-Design,
illustrating its simplicity and regularity. Instances of a LS-Design cipher are character-
ized by the choice of bitsliced S-boxes S, an L-box matrix L acting as the diffusion
layer, a number of rounds Nr and round constants C(r). In the original LS-Design paper,
two ciphers were instantiated and analyzed: Robin, a faster involutive instance that later
succumbed to invariant subspace attacks [Leander et al. 2015]; and the non-involutive
candidate Fantomas.

Algorithm 2 LS-Design construction encrypting plaintext P with key K.
1: x← P ⊕K . x represents an s× l-bit matrix
2: for 0 ≤ r < Nr do
3: for 0 ≤ i < l do . S-box layer
4: x[i, ?] = S[x[i, ?]]
5: end for
6: for 0 ≤ j < s do . L-box layer
7: x[?, j] = L[x[?, j]]
8: end for
9: x← x⊕K ⊕ C(r) . Key and round constant addition

10: end for
11: return x

Fantomas employs the 3/5-bit S-boxes from the 3-round MISTY ci-
pher [Canteaut et al. 2016], as presented in detail on Algorithm 3. An important con-
sideration taken by the original authors of the cipher is the number of AND operations
in the choice of S-boxes. As discussed in Section 2.1, masked implementations of the
algorithm must rely on Algorithm 1 when computing ANDs. For security of the masking
countermeasure, a lower bound on the number of ANDs is the size of the S-boxes. Because
Fantomas employs S-boxes of 8-bit granularity, the S-boxes must contain at least 8 AND
operations to be appropriate for masking. There is some security margin in this design
decision because Fantomas employs 11 AND operations between elements of the cipher
state. The L-box is presented in Figure 1 and its computation can be seen as a vector-matrix
product in F2, as illustrated in the picture.
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Figure 1. Linear layer of Fantomas. The L-box matrix has gray cells for 1 bits and
white cells for 0 bits.

Algorithm 3 MISTY 3/5 bits S-boxes on state x = {X0, X1, . . . , X7}.

1: . S5
2: X2 ← X2 ⊕ (X0 ∧X1);
3: X1 ← X1 ⊕X2;
4: X3 ← X3 ⊕ (X0 ∧X4);
5: X2 ← X2 ⊕X3;
6: X0 ← X0 ⊕ (X1 ∧X3);
7: X4 ← X4 ⊕X1;
8: X1 ← X1 ⊕ (X2 ∧X4);
9: X1 ← X1 ⊕X0;

10: . Extend-Xor
11: X0 ← X0 ⊕X5;
12: X1 ← X1 ⊕X6;
13: X2 ← X2 ⊕X7;
14: . Key
15: X3 ← ¬X3;
16: X4 ← ¬X4;
17: . S3: 3-bit Keccak S-box

18: t0 ← X5, t1 ← X6, t2 ← X7;
19: X5 ← X5 ⊕ ((¬t1) ∧ t2);
20: X6 ← X6 ⊕ ((¬t2) ∧ t0);
21: X7 ← X7 ⊕ ((¬t0) ∧ t1);
22: . Truncate-Xor
23: X5 ← X5 ⊕X0;
24: X6 ← X6 ⊕X1;
25: X7 ← X7 ⊕X2;
26: . S5
27: X2 ← X2 ⊕ (X0 ∧X1);
28: X1 ← X1 ⊕X2;
29: X3 ← X3 ⊕ (X0 ∧X4);
30: X2 ← X2 ⊕X3;
31: X0 ← X0 ⊕ (X1 ∧X3);
32: X4 ← X4 ⊕X1;
33: X1 ← X1 ⊕ (X2 ∧X4);
34: X1 ← X1 ⊕X0;

3. Implementation
In this section, we present the multiple implementations of the Fantomas block

cipher performed by this work. We discuss portable implementations for 32-bit and
64-bit processors, mostly targeting ARM platforms, and additional code vectorized for
SSE/NEON instructions. Strategies for masked implementation are discussed later, before
experimental results are presented.

3.1. 32-bit implementation
We have implemented two 32-bit variants of the cipher: a constant-time version

protected against timings attacks and an unprotected one. Both versions require S/L-
boxes which operate over 16-bit chunks and other operations over 32-bit data, such as key
addition. Therefore, a portable and efficient implementation must simultaneously support
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the two data types in one concise structure. Following the C99 standard, we prevented
breaking strict aliasing point rules by representing the internal state as a union combining
pointers to the data types as in Figure 2.

typedef union {
uint32_t u32;
uint16_t u16[2];

} U32_t;

Figure 2. Union to respect the strict aliasing rule: two different pointers cannot
reference the same memory area.

The implementations still take aligned byte vectors as input and conveniently
converts them to 32-bit pointers when needed. The S-boxes must then be computed using
the union structure. Some operations over 16-bit chunks could be combined in 32-bit
operations, but this was avoided to prevent unaligned loads and stores. Their bitsliced
structure already provides the constant time property due to bitslicing, so no additional
countermeasures were needed for secure implementation of the substitution layer.

The diffusion layer is performance-critical and presents more obstacles to side-
channel resistance, since it is implemented through table lookups on the L-box. The
unprotected version employs two 256-position half-word precomputed tables, while the
protected version implements the operation online by performing a vector-matrix binary
multiplication, where two 16-bit words are processed at the same time. A small code
portion illustrating the unprotected L-box can be found in Figure 3, where state stores
the 128-bit state, LBoxH transforms the 8 most significant bits and LboxL transforms the
8 less significant bits for all j ∈ {0, 1, 2, 3}. Observe that the table lookups are vulnerable
to adversarial influence over the memory hierarchy in processors equipped with cache
memory [Bernstein 2004, Bonneau and Mironov 2006].

/* Unprotected L-box version */
state[j].u16[0] = LBoxH[state[j].u16[0]>>8] ˆ

LBoxL[state[j].u16[0] & 0xff];
state[j].u16[1] = LBoxH[state[j].u16[1]>>8] ˆ

LBoxL[state[j].u16[1] & 0xff];

Figure 3. Unprotected L-Box using the internal states of the union. L-BoxH con-
tains the higher 8-bit of the linear transformation and L-BoxL other less
significant 8-bit.

The protected implementation is a little more involved. The code portion in Figure 4
illustrates part of it, where x stores the 32 bits to be transformed by the L-box in 16-bit
pairs and y contains the s-th duplicate line of the binary matrix representing the linear
transformation. This function computes the dot product of the two 32-bit vectors in F2, and
calculates the parity of each 16-bit result, processing two transformations at the same time.

The key addition of Fantomas works by accumulating the key in the internal state
using 32-bit XOR operations, as in Figure 5.
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static inline uint32_t ProdLBox(uint32_t x, uint32_t y, uint8_t s) {
x &= y;
x ˆ= x >> 8;
x ˆ= x >> 4;
x ˆ= x >> 2;
x ˆ= x >> 1;
return (x & 0x00010001) << s;

}

Figure 4. Multiplying the s-th row of the matrix L containing the value y = (ys, ys)
by the value x = (xa, xb) where the result is the s-th value of (x · L)s =
(xa · ys, xb · ys).

for(j=0; j < 4; j++)
state[j].u32 ˆ= key_32[j];

Figure 5. Key Addition of Fantomas using the 32-bit state of the union.

3.2. 64-bit implementation

Two variants of the cipher were also implemented for 64-bit architectures. A modi-
fied union structure combines 16-bit and 64-bit words. The S-boxes must again be imple-
mented over the union without breaking alignment and causing performance penalties. The
unprotected L-box follows the same structure as the corresponding 32-bit implementation.
Function ProdLBox was transformed to operate over 64 bits with simple modifications
to the input and output types and a duplicated bit mask 0x0001000100010001 in the
last operation, allowing computation of 4 simultaneous evaluations of the L-box. We
also implemented a 64-bit version using the POPCNT instruction that proved much less
efficient.

3.3. Vectorized implementation

We first discuss what structures inside a typical LS-Design are friendly to vector-
ization, before the vector implementations for ARM (using NEON instructions) or Intel
platforms (equipped with SSE instructions) are described. The S-boxes are computed in a
bitsliced way, facilitating vectorization as long as the S-layer can compute over at least
8 blocks simultaneously, applying the same operation over each 16-bit chunk from the
same block. The L-box presents a higher obstacle, because memory accesses should be
reduced to increase arithmetic density. There are two clear ways of implementing the
L-box with high arithmetic density: the first one is to perform an explicit vector-matrix
multiplication over F2 as in the constant-time 32/64-bit implementation; or employing
byte shuffling instructions (such as Intel PSHUFB) for table lookups inside registers. Byte
shuffling instructions take 128-bit registers filled with bytes ra = a0, a1, . . . , a16 and
rb = b0, b1, . . . , b15 and replace ra with the permutation ab0 , ab1 , . . . , ab15 . A powerful
use of this instruction is to perform 16 simultaneous lookups in a 16-byte lookup table,
computing a mapping from 4-bit sets to 8-bit values. This can be easily done by storing
the lookup table in ra and the lookup indexes in rb. These two approaches were imple-
mented and the latter was clearly faster due to higher occupancy of the vector registers.
For portability over Intel and ARM, the table lookups were implemented using the GCC
intrinsic builtin shuffle() for byte shuffling. Because the Fantomas block size
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has 128 bits (or 16 bytes), the best choice for minimum number of blocks is 16. When
operating over 16 blocks simultaneously, the individual bytes can be stored and transposed
in a matrix to guarantee that every vector register has the same i-th byte of each block.

Observe that picking a certain number of simultaneous blocks to operate has impact
on the choice of block cipher operating mode, since parallelism must be supported in both
encryption and decryption. The traditional CBC mode of operation imposes a serialization
of encryption, thus vectorized implementations should stick to the CTR mode of operation,
where only the counters are encrypted/decrypted and later added to the plaintext/ciphertext,
respectively. We also implemented a single-block vectorized Fantomas for benchmarking
the CBC mode of operation, using the same substitution layer described in Algorithm 3.

The L-box is a linear transformation, thus the 16 bits can be broken in smaller pieces.
Hence the L-box in Figure 1 can be split in 4-bit chunks and the table reduced to 4 tables
of 16 positions storing 16-bit values. To make use of the shuffle instructions mapping 4-bit
sets to 8 bits, the splitting must divide the most significant bytes from the least significant
bytes and the entire table is stored in 8 vector registers of 128 bits. The single-block CBC
version operates separately in the most significant bytes and least significant bytes, and
combines them together at the end. The 16-block CTR version is a little more complex.
First, it is necessary to expand the CTR counter for the 16 simultaneous blocks. After
expansion, the counters must be transposed and stored in a different order. Counter updates
can be done by propagating carries using vector comparisons. The expanded counter is
computed from the original counter as in Figure 6a, and the state must be transposed and
stored as in Figure 6b below.

a�x� a�x� a�x�� a�x��

a�x� a�x� a�x�� a�x��

a��x� a��x� a��x�� a��x��

a��x� a��x� a��x�� a��x��

a�x� a�x� a�x�� a�x��

a�x� a�x� a�x�� a�x��

...

...

...

...

...

...
... ...

...

(a) Initial state of the counter

a�x� a�x� a��x� a��x�

a�x� a�x� a��x� a��x�

a�x�� a�x�� a��x�� a��x��

a�x�� a�x�� a��x�� a��x��

a�x� a�x� a��x� a��x�

a�x�� a�x�� a��x�� a��x��

...

...

...

...

...

...
... ...

...

(b) Final state of the counter

Figure 6. Counter transformation for the vectorized CTR implementation.

The organization in Figure 6 must be kept through the whole process, because
then the substitution layer can be performed in the first 8 blocks and then on the final
8 blocks. The linear layer is similar to the single-block version and the splitting is not
required, since the least significant bytes are stored in the first 8 blocks in Figure 6b and
the most significant bytes in the remaining 8 blocks in the same Figure. The SSE versions
of Fantomas are publicly available for independent benchmarking and reproducibility1.

1https://github.com/rafajunio/fantomas-x86
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3.4. Masked implementation

The masked implementation needs only large modifications in the S-boxes, because
every operation computed in Algorithm 3 must now be replaced by the operations specified
in Section 2.1. Countermeasures are still needed for encryption and decryption, because
the linear layer comes immediately before the last key addition in the encryption and
comes immediately after the first key addition in the decryption. A cache latency attack
would disclose the internal state in these positions and, with knowledge of the ciphertext,
an attacker could mount a critical key recovery attack.

Two functions are essential for preprocessing the blocks before masked encryption
and decryption can be performed. These functions convert a plaintext block to a masked
block and the converse, respectively. The first function must generate d− 1 randomized
blocks and combine these blocks with the original by means of XOR operations to generate
the last block. The second function must combine all masked blocks with XOR operations
after encryption and decryption are processed. There are two different ways to compute
key addition. The key can be added directly to the masked state and the key can also be
masked for addition in the masked state.

A substantial amount of random bits is required to generate the masked blocks and
to compute the masked AND described in Algorithm 1. We implemented random number
generation through the standardized HASH DRBG [Barker and Kelsey 2012] instantiated
with the SHA-256 hash function. This choice proved to be faster than reading bytes from
/dev/urandom by a 10-factor. Even if faster, generating random bits still impose a
massive performance penalty and represents around 97% of the execution time in the
masked implementation.

4. Experimental results

Our implementations were benchmarked in five different platforms:

• Cortex-M3: Arduino Due powered by an Atmel SAM3X8E ARM Cortex-M3
84MHz CPU. The compiler provided by the latest version of the Arduino Devel-
opment Kit, GCC 4.8.4, was used with flags -O3 -fno-schedule-insns
-nostdlib -mcpu=cortex-m3 -mthumb. Execution time was measured
by converting the output of the micros() function in Arduino for measuring
microseconds to cycles through simple multiplication by the nominal frequency.

• Cortex-M4: Teensy 3.2 board containing a MK20DX256VLH7 Cortex-
M4 72MHz processor. The same compiler used in the Cortex-M3 plat-
form was used, but with flags -O3 -fno-schedule-insns -nostdlib
-mcpu=cortex-m4 -mthumb. Execution time was measured through a native
cycle counting register and some Assembly code.

• Cortex-A15: ODROID-XU4 board containing a Samsung Exynos5422 Cortex-
A15 2Ghz and Cortex-A7 octa-core CPUs. We installed the official distribution of
Arch Linux for the board, which comes equipped with GCC 6.1.1 for ARM, using
the flags -O3 -fno-schedule-insns -mcpu=cortex-a15 -mthumb
-march=native. Execution time was measured by enabling reading from the
Cycle CouNT register (CCNT) from the Performance Monitor Unit (PMU) in user
level.
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• Cortex-A53: ODROID-C2 board containing an Amlogic ARM Cortex-
A53(ARMv8) 2Ghz quad-core CPUs. We installed Arch Linux and employed
GCC 6.1.1 cross-compiled for ARM with flags -O3 -fno-schedule-insns
-mcpu=cortex-a53 -mthumb -march=native. Execution time was also
measured through the PMU enabled by loading a special kernel module.

• Core i7 Ivy Bridge: Intel Core i7-3632Q 2.20GHz CPU. GCC 6.1.1 was
again used with flags -O3 -fno-schedule-insns -mssse3 -msse
march=native. The RDTSC register was used for cycle counting.

Table 1 presents results for the 32- and 64-bit portable implementations; and the
NEON and SSE vectorized implementations of Fantomas. All measurements take into
account the time to encrypt and decrypt using the operating modes CBC and CTR. The
constant-time implementations in C receive the CT abbreviation. The vector implementa-
tions are intrinsically constant time by operating over registers only. Cycle counts were
computed by encrypting and decrypting a 100 times the same message of length 1024
bytes and dividing the result by twice the number of bytes. The final result represents the
average time to encrypt or decrypt a single byte using a specific implementation.

Table 1. Execution time and code size (ROM bytes) for Fantomas bench-
marked in Cortex-M3/M4/A15/A53 ARM and Core i7 x86 Ivy Bridge. Figures
present average cycles for encrypting or decrypting a single byte (CPB) in
CBC/CTR mode, possibly using a constant-time implementation (CT) and
vectorized implementation in NEON/SSE.

Cortex-M3 Cortex-M4 Cortex-A15 Cortex-A53 I7 Ivy Bridge

Cycles

per byte

(CPB)

Code

size

(Bytes)

Cycles

per byte

(CPB)

Code

size

(Bytes)

Cycles

per byte

(CPB)

Code

size

(Bytes)

Cycles

per byte

(CPB)

Code

size

(Bytes)

Cycles

per byte

(CPB)

Code

size

(Bytes)

Fantomas 32 (CBC) 177.44 3202 143.62 3276 51.91 3900 87.65 3764 68.73 4040

Fantomas 32 (CTR) 171.88 1916 136.92 1934 50.71 2284 83.03 2364 67.06 2449

Fantomas 32 CT (CBC) 614.82 1858 489.13 1848 443.13 3084 232.73 3292 194.13 3680

Fantomas 32 CT (CTR) 629.59 1272 491.65 1262 443.44 1884 228.16 2148 194.13 2257

Fantomas 64 (CBC) 174.64 3198 142.88 3278 52.27 3628 80.87 3452 58.33 3736

Fantomas 64 (CTR) 168.81 1914 133.79 1934 50.66 2208 76.03 2200 56.03 2348

Fantomas 64 CT (CBC) 1920.06 4826 1559.42 4814 966.21 9372 226.54 2984 149.47 3395

Fantomas 64 CT (CTR) 1920.47 2738 1555.54 2734 961.77 5084 222.13 1984 127.95 2209

Fantomas NEON/SSE (CBC) – – – – 65.10 1844 62.04 1340 59.71 1490

Fantomas NEON/SSE (CTR) – – – – 63.81 1264 59.50 1160 46.49 1164

Fantomas16 NEON/SSE (CTR) – – – – 16.07 6846 17.93 3884 5.95 6139

Related work

Fantomas 32 (CBC) Fast1 274.21 4620 – – – – – – – –

Fantomas 32 (CTR) Fast1 220.13 2088 – – – – – – –

Fantomas 32 (CBC) Compact1 370.79 2916 – – – – – – – –

Fantomas 32 (CTR) Compact1 520.94 1384 – – – – – – – –

Fantomas16 NEON/SSE (CTR)2 – – – – 26.60∗ – – – 12.00∗ –

1 [Dinu et al. 2015] 2 [Grosso et al. 2015a] ∗ adjusted timings
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4.1. Discussion

The table contains plenty of interesting results to be discussed. Constant time
implementations with uniform access to memory receive a massive performance penalty.
In the Cortex-M, the 32-bit CBC/CTR constant time implementation of Fantomas proved
to be almost twice as compact, although more than 3 times slower than the unprotected
version. If the main objective is to obtain a smaller code fingerprint and/or resistance
against timing-based side-channel attacks, this implementation can still be a good choice.
Observe that Cortex-A processors and even some Cortex-M4 microcontrollers have cache
memory, so it is also important to measure the performance impact of protecting the
implementations against cache-timing leakage. The 64-bit implementations of Fantomas
showed little difference in comparison to the 32-bit code in all platforms, with the i7 Ivy
Bridge processor as the only exception with a 22% speedup. The Cortex-A53 is a great
platform for the 32-bit constant time implementation, producing an almost twice faster
implementation than the Cortex-A15. On the other hand, the Cortex-A53 is at the low-end
of the 64-bit ARM processors, so better performance for the 64-bit implementation might
be expected from higher-end processors. Our implementations were also tailored for ARM
processors and enjoy the benefits of the second-operand barrel shifter as much as possible.
Although not comparable, we note that cycle counts for 32-bit Fantomas were 25% lower
in the Cortex-A15 than a Desktop machine equiped with the Ivy Bridge processor.

Code sizes generally grow from the Cortex-M3 to the Ivy Bridge. In the case of 64-
bit code, there is a small code reduction starting in the Cortex-A53. This can be explained
by the fact that the Cortex-M3/M4/A15 do not have 64-bit instructions, which means that
64-bit operations insert pairs of 32-bit instructions, resulting in a larger footprint. The
code size for the Fantomas16 NEON (CTR) implementation in the Cortex-A53 was also
surprising, producing almost twice more compact binaries than the same NEON version in
the Cortex-A15 and the similar SSE version in the Core i7. There is a clear space-time
trade-off in this implementation. It is the largest implementation in terms of code size, but
also the fastest among all platforms supporting vector instructions.

Cycle counts for the masked implementation of Fantomas are presented in Figure 7.
A clear quadratic trend for the performance degradation can be observed in the graph, as
expected. Two versions were implemented: masked key addition and conventional key
addition. The two versions take such a close execution time that performance figures are
essentially the same, so we opted to only present the masked key addition version together
with the best curve fit. This happens because generating random bytes for the masked AND
operations in the S-boxes consumes approximate 97% of the execution time. Additionally,
the data point for a single shared secret is lower than the general trend. The reason for
this is mostly the lower requirement of random bytes, although simple calls to the random
number generation already cause a substantial performance penalty.

4.2. Comparison to related work

There are two main related works that established the previous state of the art in
the context of this work. The most recent is the massive implementation effort from the
FELICS framework [Dinu et al. 2015] to compare lightweight block ciphers performance-
wise in representative platforms of 8, 16 and 32 bits. The project website 2 also contains

2https://www.cryptolux.org/index.php/FELICS
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Figure 7. Cycle counts for encrypting and decrypting with the masked implemen-
tation of Fantomas using masked key addition in the Cortex-A15 platform,
as a function of the number d of shares.

results for some stream ciphers and block ciphers underlying MAC constructions. The
target 32-bit platform considered in their work is the same Cortex-M3 present in the
Arduino Due and two scenarios are taken into consideration. Scenario 1 considers con-
secutive encryption and decryption of 128 bytes in CBC mode. In the paper, the best
implementation according to their Figure of Merit (FOM) takes 70,197 cycles using 4620
bytes of ROM (or 274.21 CPB in Table 1). The website has more recent numbers for an
implementation capable of encrypting and decrypting in 94,921 cycles which consumes
2916 bytes of ROM (or 370.79 CPB in Table 1). Our implementation is 35.4% and 52.2%
faster than their implementations, respectively, and competitive in terms of code size with
the more compact implementation. In Scenario 2, FELICS reports a range of figures for
unprotected Fantomas when encrypting 128 bits in CTR mode, ranging from most compact
implementation to best execution time. The most compact takes 8335 cycles and 1384
bytes of ROM (520.94 CPB), the most efficient takes 3522 cycles and 2088 bytes of ROM
(220.13 CPB) and a good trade-off is found at 4550 cycles and 2184 bytes of code size
(284.38 CPB). After the proper conversions, our implementation improves these figures
by 66.5%, 20.9% and 37.7%, respectively, by spending only 1916 bytes of ROM. As a
reference point, FELICS reports much higher latencies for standardized block ciphers such
as AES under different operating modes (73,868 cycles for encrypting and decrypting in
CBC mode in the Cortex-M3, for example).

The second related work is the presentation for the SCREAMv3 candidate in the
CAESAR competition [Grosso et al. 2015a]. In the slides, numbers for a 16-block vector
implementation of Fantomas are also reported. We could not reproduce the numbers
presented in the table due to unavailability of the Fantomas code, and benchmarking
the publicly-available SCREAMv3 code gave rather different results. In private contact
with the authors, we discovered that their benchmarking code takes the outputs of the
gettimeofday() function for time measurement, a less precise approach than using
cycle counts measured directly. Additionally, it is not clear if their numbers were taken
in a machine with Turbo Boost enabled, as it is well known to distort benchmarking
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data [Bernstein and Lange 2016]. By using the difference observed when benchmarking
the SCREAMv3 reference code, we adjusted the timings in the CAESAR slides for
architectures ARM Cortex-A15 by a factor of 1.5; and Intel Core i7 Ivy Bridge by a factor
of 2, both observed in Table 1. After a simple comparison, we observed an approximate
performance gain of 40% and 50% of our implementation when compared to the adjusted
timings in the ARM and Intel platforms, respectively.

5. Conclusion

We presented several serial and vectorized software implementations of the Fan-
tomas block cipher, producing more efficient and compact implementations in the ARM
and x86 target platforms. Two approaches for side-channel resistance were implemented:
constant time and masking. The constant time approach for implementing the L-box
is of independent interest, as it can also be easily extended to other LS-Design ciphers.
The masked implementation illustrates the computational cost of powerful side-channel
countermeasures. Even if Fantomas was conceived to be easily masked in a protected im-
plementation, the performance penalty can be as high as a factor of 40 when compared to a
constant time implementation. Highly-efficient random number generation is a paramount
research target for enabling masked implementations in software to perform well in the
target platforms.
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Aciiçmez, O., Koç, c. K., and Seifert, J.-P. (2007). On the power of simple branch
prediction analysis. In ASIACCS, pages 312–320. ACM.

Barker, E. and Kelsey, J. (2012). NIST SP 800-90A – Recommendation for Random
Number Generation Using Deterministic Random Bit Generators.

Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., and Wingers, L. (2013).
The simon and speck families of lightweight block ciphers. Cryptology ePrint Archive,
Report 2013/404. http://eprint.iacr.org/2013/404.

Bernstein, D. J. (2004). Cache-timing attacks on AES. URL:
http://cr.yp.to/papers.html#cachetiming.

Bernstein, D. J. and Lange, T. (2016). eBACS: ECRYPT Benchmarking of Cryptographic
Systems. http://bench.cr.yp.to.

Bonneau, J. and Mironov, I. (2006). Cache-Collision Timing Attacks Against AES, pages
201–215. Springer Berlin Heidelberg, Berlin, Heidelberg.
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