
An Architecture for Self-adaptive Distributed Firewall
Edmilson P. da Costa Júnior1, Silas T. Medeiros2,

Carlos Eduardo da Silva1, Marcos Madruga2

1Digital Metropolis Institute
Federal University of Rio Grande do Norte (UFRN)

Natal – RN – Brazil

2Departament of Informatics and Applied Mathematics
Federal University of Rio Grande do Norte (UFRN)

Natal – RN – Brazil

edmilsonjnior@info.ufrn.br,silastiagoo@gmail.com

kaduardo@imd.ufrn.br,marcos@dimap.ufrn.br

Abstract. The notion of secure perimeter given by border firewalls ignores the
possibility of attacks originating from inside the network. Although distributed
firewalls allow the protection of individual hosts, the provided services might
still be susceptible to attacks, as firewalls usually do not analyze application
protocols. In this way, software vulnerabilities may be exploited until the prob-
lem has been fixed. From vulnerability discovery to the application of patches
there is an exposure window that should be reduced. In this context, this paper
presents an architecture for a distributed firewall system, in which a Vulnera-
bility Assessment System is integrated for providing a self-adaptive mechanism
capable of detecting vulnerabilities and executing actions to reduce exposure,
contributing to mitigate the risk of vulnerability exploitation.

1. Introduction
Several institutions nowadays, such as universities all over the world, deal with complex
network infrastructure, involving an increasingly number of equipments (e.g., switches,
routers) and servers, usually providing different services. Considering the diversity of
activities and different research topics conducted throughout an university, it is common to
find situations where several services, and servers, need to be provided for different groups
of people, and more often than not, maintained by these different groups. This leads to an
inconsistency in management and security procedures, where servers poorly configured
and/or with outdated services, become potential targets for known vulnerabilities.

In this context, the traditional approach for network security, in which firewalls are
deployed on the border of the network is no longer effective. Also known as centralized
firewalls, these components are placed between the internal network of an institution and
the Internet, with the objective of filtering the network traffic that goes in and out of the
institution, limiting the services that would be exposed to the Internet, and defining the
notion of a security perimeter. Clearly, this centralized model is not able to deal with
attacks originated from inside the security perimeter [Ioannidis et al. 2000].

Today’s technology movements, such as Bring Your Own Device (BYOD) and the
availability of 3G/4G connections, mean that a malicious user has already penetrated the

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

338 c©2016 SBC — Soc. Bras. de Computação

border defenses. This is exacerbated when we consider university environments, which
is usually open to the public in general, and contains a number of servers maintained
by researchers, with outdated and potentially vulnerable services. Once one of those
vulnerable servers is compromised, the attacker is free to search the network for other
vulnerable servers, even though those servers are not exposed to the Internet. The bottom
line is that, once an attacker compromises one of those vulnerable servers, he/she is inside
the network, and the use of border firewall will contribute nothing in deterring his/her
actions.

A solution for such scenario is the use of distributed firewall [Bellovin 1999]. A
distributed firewall solution increments security by including firewalls in different points
of the network and servers, besides the traditional border firewall. In this way, it is possi-
ble to control what services running on those servers are exposed on the network, and only
for specific client hosts. However, the application of distributed firewall also brings some
challenges, such as the management of these firewalls and their rules, and the response
time in case of an incident. Traditional solutions for intrusion detection usually notify an
administrator, which then assess and decides how to respond for rectifying and/or contain-
ing the situation [Meng et al. 2015]. However, this approach is usually not fast enough for
avoiding service unavailability, information theft, or the infection of new systems/servers,
mainly because attackers usually conduct their activities during strategic times, such as
the middle of the night or weekends.

In this context, the contribution of this paper is an architecture for network security
based on self-adaptive concepts. The motivation for using self-adaptation is the proven ef-
fectiveness and efficiency of self-adaptation in dealing with uncertainty in a wide range of
applications, including those related to security [Bailey et al. 2014, Pasquale et al. 2012,
Yuan et al. 2014]. The Self-Adaptive Distributed Firewall (SADF) architecture is based
on the cooperation of different components usually found in a network infrastructure,
such Vulnerability Assessment Systems and Configuration Management Systems. More
specifically, we demonstrate how this architecture can be applied for managing a dis-
tributed firewall, in which possible threats can be detected (i.e., servers with vulnerabili-
ties) and appropriate decisions be made for mitigating their impacts.

The remain of this paper is organized as follows: Section 2 contextualizes our
work defining its scope and presenting some background on self-protection. Section 3
presents a conceptual view of the SADF architecture. Section 4 describes a prototype that
has been implemented to demonstrate our approach feasibility. Section 5 discuss some
related work. Section 6 concludes the paper.

2. Contextualization

As previously mentioned, due to the limitations of a centralized model, the border fire-
wall does not protect equipment against internal attacks. This motivated the definition
of a distributed firewall model [Bellovin 1999]. In a distributed firewall, security poli-
cies are defined in a centralized fashion using an specific language, and then distributed,
by secure means, to be applied into different enforcement points. These enforcers can
either be located on different segregation points inside the network, such as routers and
switches, or on each host of the network [Ioannidis et al. 2000]. Figure 1 presents a gen-
eral view of a network infrastructure where we can identify a Rules Management Server,

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

339 c©2016 SBC — Soc. Bras. de Computação

which is responsible for dealing with and distributing the firewall rules into the different
enforcement points, in this case, firewalls in different servers of the network.

Figure 1: General view of the distributed firewall scope considered in this paper.

Operating and maintaining this infrastructure required a continuous effort as, even
though there are different tools for facilitating management and maintenance actions, it is
common to find out that most of these operations are still manually conducted. For exam-
ple, as shown in Figure 1, the majority of institutions use, apart from firewalls, some sort
of tool for configuration management, resource and service monitoring, and vulnerability
assessment systems, which scans the network pointing out vulnerable services. These are
important tools for maintaining the network infrastructure, but there is a lack of integra-
tion among them, requiring human intervention for conducting some tasks, and wasting
valuable time between the moment an incident is detected and an administrator performs
some corrective action to mitigate its impact.

A self-adaptive software system is able to modify its own structure and/or be-
haviour during run-time in order to deal with changes in its requirements, the environment
in which it is deployed, or the system itself [Cheng et al. 2009]. Among the different
properties of a self-adaptive system, self-protection has been identified as a key concept
for building autonomous self-managed systems. While systems’ architectures are becom-
ing more dynamic and adaptive, the majority of the protection mechanisms have kept
simple, with security policies usually manually defined, in a slow and costly way.

One way for achieving self-adaptation is through the Monitor-Analyse-
Plan-Execute-Knowledge (MAPE-K) feedback control loop over a target system
[Kephart and Chess 2003]. In this way, a self-protection mechanism allows the protected
system to monitor and analyze its resources in order to detect possible problems, being
able to react accordingly to deal with the detected problem. This reaction depends on the
type of incident and the type of system being protected, and can range from emergency
system shutdown, deactivation of damaged module and replacement for a new instance,
user and/or connection blocking, etc [Yuan et al. 2014].

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

340 c©2016 SBC — Soc. Bras. de Computação

Figure 2: Self-Protection Reference Architecture [Yuan et al. 2014].

Figure 2 presents a reference architecture for a system that implements self-
protection. At a meta-level we have a protecting sub-system, responsible for implement-
ing the MAPE-K feedback control loop that protects the protected sub-system at the base
level. The protected sub-system contains the system functionality associated with the
main application logic, and may incorporate different security mechanisms, such as ac-
cess control and cryptography. The meta-level subsystem is responsible for detecting
security related incidents and for the decision making associated with the use of the se-
curity mechanisms by the base-level [Yuan et al. 2014]. The base-level sub-system runs
over, and interacts with, a domain, which can also be monitored for helping in the decision
making of the MAPE-K at the meta-level.

In this way, a Self-Adaptive Distribute Firewall (SADF) solution can be employed
as a preventive mechanism for dealing with new vulnerabilities. For example, whenever
a particular server contains a vulnerability with a score greater than a pre-defined value,
the firewall could be configured to only allow access to server from clients in the same
network.

3. Architecture for Self-Adaptive Distributed Firewall

Our solution for a Self-Adaptive Distributed Firewall (SADF) is built on top of the MAPE-
K reference model as the means for logically structuring the different tasks involved in
the management of the security aspects for a network infrastructure, and for integrating
the different tools usually involved in those tasks, allowing for their automation. Figure 3
presents our architecture.

Each phase of the MAPE-K feedback control loop is implemented by an engine,
which encapsulates the concrete components that allow for each engine functionality. To
perform self-adaptation, the Monitor, Analyze, Plan and Execute engine components use
different models that provide an abstraction of relevant aspects of the managed system, its
environment, and the self-adaptation goals [Iglesia and Weyns 2015]. These models are
maintained by a knowledge base (not represented in the Figure).

The Monitoring engine is responsible for collecting information about the differ-
ent servers of the network infrastructure. This collection happens through Sensor inter-
faces in each server. This data is represented by a Server description model, which is a
format that can be manipulated and reasoned upon by the components of SADF. A service

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

341 c©2016 SBC — Soc. Bras. de Computação

Figure 3: Conceptual architecture of proposed solution.

description model contains, among other information, details about operating system, IP
Address, services‘ names, versions and network port. Furthermore, it captures the fire-
wall rules currently in effect on the server. The Monitoring engine is also responsible for
obtaining Vulnerabilities from an external Vulnerability base. Vulnerabilities are repre-
sented through CVE1, which defines a dictionary and standard representation format for
vulnerabilities descriptions. These descriptions are published through the CVE List and
maintained by different vulnerabilities databases (e.g., the NVD2). Vulnerabilities have
an associated severity score calculated based on the CVSS3, which defines metrics and
formulas for deriving a vulnerability score, and a standard format representation.

The Analyzer engine relies on a Vulnerability Assessment System (VAS) to search
for known vulnerabilities on the services currently running on the network. A VAS works
by scanning the network and conducting different tests in order to find vulnerabilities
in systems and servers, producing a vulnerability report for each server. Based on the
server descriptions, the VAS can be employed with higher priority to scan known ser-
vices running on each server, usually when there are changes in the server descriptions
or new vulnerabilities have been published. In the meantime, full vulnerability analysis
of servers can still be performed. A High-level policy captures the requirements of the
administrator, and together with the VAS report and the server description, is used for de-
tection of policy violations. For example, servers with a vulnerability score greater than a
particular threshold should only be accessible from machines in the same network, but the
current firewall rules allow access from anywhere. All these data is used by the Analyzer
engine component for producing Analysis report, which indicates for example, servers
with known vulnerabilities.

1Common Vulnerabilities and Exposures - https://cve.mitre.org
2The National Vulnerability Database maintained by NIST - https://nvd.nist.gov/
3Common Vulnerability Scoring System - https://www.first.org/cvss

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

342 c©2016 SBC — Soc. Bras. de Computação

The Decision engine component is responsible for the plan phase of the MAPE-
K loop. This component is responsible for making decisions on how to respond to the
encountered situation based on the analysis report, the server descriptions, the high-level
policies and a set of Firewall rules templates. These templates provide a sort of parame-
terized firewall rules for different services, which can then be employed by the Decision
engine for defining specific firewall rules to be applied. The creation of firewall rules must
employ mechanisms for avoiding conflicts between rules. Besides creating firewall rules
to be applied onto the servers of the network, the Decision engine also produces a report
intended for a human administrator.

At the execute phase we have a Firewall rule application engine component,
which is responsible for effecting the new firewall rules on the servers. This compo-
nent must take in consideration mechanisms for guaranteeing secure communication with
each server, and configuration management techniques.

4. Instantiating the SADF
The proposed SADF architecture has been instantiated into a prototype implementation
using a combination of existing open source and in-house developed components. This
instantiation has been used to build a case study in order to demonstrate the feasibility of
our approach. In order to demonstrate the prototype, in this paper we consider the server
to be protected a Web server running the Apache HTTPD software and the ssh daemon.

In this section we present details about the different representation models em-
ployed in our instantiation, followed by a description of the developed prototype. We
conclude this section with a brief discussion on our approach.

4.1. Representation Models

One aspect that must be considered for a self-protection solution is the representation of
the protected environment, such as servers, services, and firewall rules.

For representing servers and their deployed services we chose the representation
language defined by the Puppet4 configuration management tool. The Puppet language
allows the description of servers, services, and configurations using a parameterized ap-
proach and well defined semantics. Puppet configures systems in two main stages com-
piling and applying a catalog. A catalog is a document that describes the desired system
state. It lists all of the resources that need to be managed, as well as any dependencies
between those resources. The core of the Puppet language is declaring resources. Groups
of resources can be organized into classes, which are larger units of configuration. While
a resource may describe a single file or package, a class may describe everything needed
to configure an entire service or application. The Figure 4a show a simple example of
representation of a server and some services. One class was created with name foo. This
class has an attribute host to describe a hostname and IP address. Furthermore, httpd and
sshd were describe using the attribute service. The ensure attribute is used to indicate that
those services should be in a running state.

In a similar way, it is necessary to represent firewall rules in a format that
can be reasoned upon. For this purpose, we decided to employ the FLIP language

4https://puppet.com/

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

343 c©2016 SBC — Soc. Bras. de Computação

c l a s s foo {
h o s t { ’ foo ’ :

h o s t a l i a s e s => foo . domain ,
i p => 2 0 0 . 1 7 7 . 2 . 4 6 ,

}
s e r v i c e { ’ h t t p d ’ :

e n s u r e => runn ing ,
}
s e r v i c e { ’ sshd ’ :

e n s u r e => runn ing ,
}

}

(a) Puppet class

domain serverHTTP = [1 9 2 . 1 6 8 . 1 0 0 . 3 5] ,
serverVAS = [1 0 . 5 . 5 4 . 1 0] ,

s e r v i c e h t t p = t c p . [p o r t =80] ,
s s h = t c p . [p o r t =22 , p o r t =2222] ,

p o l i c y g r o u p s e r v e r H T T P p o l i c y {
incoming :

s s h { a l l o w ∗}
h t t p { a l l o w ∗}

}
p o l i c y g r o u p s e r v e r H T T P w i t h v u l n e r a b i l i t y {

incoming :
s s h { a l l o w ∗}
h t t p {deny ∗ e x c e p t serverVAS}

}
a p p l y s e r v e r H T T P p o l i c y on serverHTTP ;

(b) FLIP rule

Figure 4: Example of descriptions: (a) Class description using the Puppet lan-
guage. (b) Firewall rules using the FLIP language.

[Zhang et al. 2007][Al-Shaer 2014]. In FLIP, firewall rules are defined using a high-level
language that can be automatically translated into device specific format. FLIP provides
as well defined language with formal semantics, together with proven sound and com-
plete algorithms for conflict resolution and translation into device specific firewall rules.
Its formalism was one of the main reasons for choosing FLIP. The Figure 4b presents an
example of a rule in FLIP. The first block defines the domains that can be networks or
hosts. We define a HTTP server and a server that would be our VAS. The second block
of FLIP defines services, a service may have one or more ports. In this example http and
ssh was specified. Then defines the group policy which specifies the behavior that will
be taken in relation to services in a given scenario. Two groups were created, one that
allows access to services and another that blocks the http. Finally, is necessary to make a
connection between the group and the protected domain.

4.2. Prototype Implementation

In the sequence we describe our prototype implementation, whose concrete architecture
is presented in Figure 5.

As previously mentioned, we employ the Puppet configuration management lan-
guage for describing servers’ configurations. Puppet provides tools for applying config-
urations, and for obtaining the current status of a host. A Puppet agent component runs
on each host, and reports to (and receive commands from) the Puppet master component,
which stores servers description into the Puppet catalog. In this way, Puppet agents fulfill
the roles of sensor and effector of servers, while the Puppet master is responsible for the
monitor and execute phases of the MAPE-K. It is important to mention that the definition
of puppet description files for servers is out of the scope of this paper. We assume that this
is achieved by a third party (e.g., a member of the network administration team), while
our focus is on defining and applying firewall rules for the established configuration, or
for dealing (i.e., mitigating the impact) with known vulnerabilities that the server may be
susceptible to. In this way, the puppet agent and master components are used to obtain
the current service(s) configuration on each server.

Once we know the services running on each server of the network, we can then

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

344 c©2016 SBC — Soc. Bras. de Computação

Figure 5: Architectural view of prototype implementation.

employ vulnerability assessment as triggers for adaptation. In order to achieve this, we
employ the OpenVAS5 Vulnerability Assessment System (VAS). OpenVAS provides an
open-source solution for the identification, quantification and prioritization of vulnerabil-
ities, and we explore this for our Analyzer engine component. The OpenVAS Scanner is
responsible for conducting Network Vulnerability Tests (NVTs) on the hosts of the net-
work. An NVT can be defined as a test script, together with CVE description, and CVSS
score. NVTs can be obtained from the OpenVAS NVT Feed by the OpenVAS Manager
(acting in both monitor and analyze roles), and are developed based on the CVE and
CVSS score obtained from the NIST Network Vulnerability Database (NVD). The Open-
VAS Manager is responsible for managing the OpenVAS Scanner, providing its input and
processing its output. The interaction between the Manager and the Scanner happens via
the OpenVAS Transfer Protocol (OTP), which provides the means for controlling scan
execution. The Manager provides the OpenVAS Management Protocol (OMP), a XML-
based stateless API that can be used to interact and control the OpenVAS Manager. The
Analyzer engine employs the Servers’ description for driving the OpenVAS scans. The
interaction with OpenVAS is achieved by the OMP protocol, which receives as input an
XML description of the target host and the scanning tasks (i.e., the vulnerability tests)
to conduct on the host. The target can be defined as one, or a group of hosts, with an
optional list of ports. A task corresponds to scanner configurations, and defines how the
environment will be checked.

We detail the interaction between the Analyzer engine component and the Open-
VAS in Figure 6, using an UML sequence diagram. Once the servers’ descriptions have
been obtained, the Analyzer engine create the inputs for OpenVAS Manager (calls 2 and
3 in the sequence diagram) and starts a scan, receiving the scan ID as response. The scan
ID is then used to obtain the scan results and, in case a vulnerability has been found, the

5http://www.openvas.org/

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

345 c©2016 SBC — Soc. Bras. de Computação

Figure 6: UML sequence diagram showing the behaviour of analysis.

Decision engine component is activated to deal with it.

Following our case study, the OpenVAS found a vulnerability with CVSS score
7.8 in HTTP service that allows remote attackers to cause a denial of service (memory
and CPU consumption). An extract of the XML report is presented in Figure 7.

. . .
<p o r t >80/ t c p

<hos t >10.3 .128.20 < / hos t>
<s e v e r i t y >7.8</ s e v e r i t y >
< t h r e a t >High</ t h r e a t >

</ p o r t>
<n v t o i d = ” 1 . 3 . 6 . 1 . 4 . 1 . 2 5 6 2 3 . 1 . 0 . 9 0 1 2 0 3 ” >

<name>
Apache h t t p d Web S e r v e r Range Header D e n i a l o f S e r v i c e V u l n e r a b i l i t y

</name>
<f ami ly>D e n i a l o f S e r v i c e </ f ami ly>
<c v s s b a s e >7.8</ c v s s b a s e>
<cve>CVE−2011−3192</ cve>
<bid >49303</ b id>
. . .

Figure 7: Extract of OpenVAS report to a vulnerable HTTP server.

Once the Decision engine has been activated, it must decide on how to respond to
the found vulnerability. The behavior of this component is presented in Figure 8. Each re-
port is considered together with the actual server description, including the firewall rules
currently in place, against the high-level policy for deciding what to do regarding the
firewall of the affected host. For example, a CVSS score above 7 might require that the
service is no longer accessible. If this is the case, the Decision engine define the adequate
firewall rules using the FLIP language, and sends it to the FLIP tool, which is responsible
for checking the rule is conflict free, translating it into the puppet format, and applying
them in the puppet master. Regardless of the decision, the Decision engine sends a notifi-
cation report (represented by the notify administrator call). This notification can then be

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

346 c©2016 SBC — Soc. Bras. de Computação

Figure 8: Sequence diagram showing behaviour of decision engine.

used by a visualization tool, for example, a Web page listing all active vulnerabilities and
the respective firewall rules applied to those servers.

The Puppet master, together with its firewall module6, manage and configure fire-
wall rules from within the Puppet DSL. This module offers support for iptables and
ip6tables, which is the most common firewall in GNU/Linux distributions, being capa-
ble of acting on a running firewall. All rules employ a numbering system in the resource’s
title that is used for ordering. The Figure 9a presents an example of a puppet rule for
allowing http and ssh services, while Figure 9b presents the rule created by our prototype
for closing access to the http service.

Once the firewall rules are in place, new alerts of the same vulnerability will be
notified to administrator, but will not trigger changes in the firewall of the affected host.
On the other hand, once the vulnerability has been fixed, our tool will detect it, and adjust
the firewall rules accordingly.

4.3. Discussion
The main objective of this prototype was to demonstrate the feasibility of our approach
in integrating a VAS and a distributed firewall in an autonomic way. For this reason, the
decision making performed by our prototype has been implemented through simple if-
then-else statements using the fields of the different descriptions as parameters. We have
also employed very rudimentary high-level policies, simply defining range thresholds for
each response (e.g., access granted to all, access granted to clients in the same network,

6https://forge.puppet.com/puppetlabs/firewall

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

347 c©2016 SBC — Soc. Bras. de Computação

c l a s s my fw : : p r e {
F i r e w a l l {

r e q u i r e => undef ,
}
f i r e w a l l { ’000 Allow inbound HTTP ’ :

d p o r t => [8 0 , 4 4 3] ,
p r o t o => t cp ,
a c t i o n => a c c e p t ,

}
f i r e w a l l { ’001 Allow inbound SSH ’ :

d p o r t => 22 ,
p r o t o => t cp ,
a c t i o n => a c c e p t ,

}
}

(a) Allowing http and ssh

c l a s s my fw : : p r e {
F i r e w a l l {

r e q u i r e => undef ,
}
f i r e w a l l { ’000 Deny inbound HTTP ’ :

d p o r t => [8 0 , 4 4 3] ,
p r o t o => t cp ,
a c t i o n => deny ,

}
f i r e w a l l { ’001 Allow inbound SSH ’ :

d p o r t => 22 ,
p r o t o => t cp ,
a c t i o n => a c c e p t ,

}
}

(b) Denying http and allowing ssh

Figure 9: Examples of firewall rules in the Puppet language.

access denied to all). The experiments conducted, although initial, have showed that
we are indeed able to activate firewalls running on each server for preventing access to
vulnerable services.

We believe the administrator involvement is crucial to those types of solutions,
and the administrator notification aims to be a starting point for a more intelligent human
interaction. For example, in our prototype we have applied the new firewall rules into
the affected server without any kind of confirmation, but we also envision a scenario
where the rules as presented to an administrator that then authorizes their application,
or the existence of policies separating scenarios that should be automatically acted upon
from those where some sort of human confirmation is needed. Our solution can also be
used to identify new servers on the network that are not managed by the configuration
management tool in place (e.g., Puppet). Those would be part of the notification reports
sent to administrators.

The Puppet configuration management tool presents a pull based model, in which
agents query the master at pre-determined intervals in search of new commands (usually,
30 minutes). This might be considered an issue when responding on-the-fly to detected
situations, which is not the case in this paper. We are focused on preventing the exploit
of known vulnerabilities before they happen, opposed to traditional IDPS systems, which
focus on responding in real-time to incidents. In this way, we consider that 30 minutes
is a reasonable time for applying firewall rules blocking vulnerable services, although
this time could be reduced, and there are alternatives for employing a push-model to
puppet. Regarding the secure communication between the SADF and protected servers,
we employ the certificate based security provided by the Puppet tool, which takes care of
authentication and secure transit between the Puppet master and its agents.

5. Related Work
The discussion on centralized and distributed firewalls is well established in the litera-
ture [Bellovin 1999] [Stallings 2010]. One of its first implementation proposal has been
presented by Ioannidis [Ioannidis et al. 2000], in which kernel extensions have been de-
veloped for the OpenBSD distribution, together with a policy definition language (de-
nominated KeyNote) and use of IPsec for secure traffic amongst the hosts of the network.

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

348 c©2016 SBC — Soc. Bras. de Computação

More recently [Lai et al. 2009] introduces a distributed firewall system for Linux plat-
form that works upon Iptables/Netfilter for IPv6 networks with IPsec support. In order
to improve performance for handle the additional costs of encryption of packages with
IPsec, a distributed firewall architecture was proposed.

Autonomic computing and self-protection has been gaining traction as the means
for dealing with new security challenges and systems, in which static and rigid security
practices are not enough to deal with security threats that need to be detected and miti-
gated at runtime [Yuan et al. 2014]. In this context, Yuan et al. [Yuan et al. 2014] have
done an extensive systematic survey of the state of the art on self-protecting software,
identifying trends, patterns, and gaps. Some works focus on adapting authorization poli-
cies, such as the Self-Adaptive Authorisation Framework (SAAF) [Bailey et al. 2014] that
focus on adapting access control policies on the PERMIS system [Chadwick et al. 2008],
and SecuriTAS [Pasquale et al. 2012], a tool that enables dynamic decisions in awarding
physical access, based on a perceived state of the system and its environment.

Several researchers focus on Intrusion Detection Systems. For example, Uribe
and Cheung [Uribe and Cheung 2004] have looked into the integration between IDSs and
firewalls, proposing an approach for optimizing IDS configuration by only analysing traf-
fic that is not considered by the firewalls’ rules. Zhang and Shen [Zhang and Shen 2009]
employ a statistical learning based approach in order to reduce false-positives on IDSs.
These works are concentrated on improving the IDS.

Few works consider the analysis of vulnerabilities for making a decision at the
network level (i.e., firewall rules). Debar et al. [Debar et al. 2007] present formalisms for
the definition of security policies that can be dynamically modified in response to detected
threats. The formalism presented in their paper is at an abstract level, and may consider
vulnerability analysis in the threat detection process. Compared to our work, their ap-
proach can be considered as complementary, providing a series of formalism that could
improve the robustness of our approach regarding the definition of high-level policies.

One aspect that must be considered for a self-protection solution is the represen-
tation of the protected environment, such as servers, services, and firewall rules. We
present here some of the options found in the literature during our searches. The Net-
work Markup Language (NML) [van der Ham et al. 2013] is a generic model defined by
the OpenGrid Forum (OGF)7 as a standard for modelling networks, such as switches
and links, which is out of the scope considered in this paper. Regarding the represen-
tation of firewall rules, apart from the FLIP language (already presented), there is also
the AFPL2 [Pozo et al. 2009] (Abstract Firewall Policy Language 2), a domain-specific
language that provides an XML Schema for the definition of firewall rules independent
of firewall product. Although its support of NAT rules, AFPL2 has not evolved as FLIP,
and does not provide conflict resolution of firewall rules. The Distributed Management
Task Force (DMTF) proposed the Common Information Model (CIM), an specification
aimed at allowing the interoperation of management information. The CIM also provides
an extensible XML model and, although it has been employed by different vendors, its
extension for Network Policy Management [DMTF 2016] is still considered work-in-
progress, and may be subject to changes.

7https://www.ogf.org/

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

349 c©2016 SBC — Soc. Bras. de Computação

6. Conclusions & Future Work

This paper presented an approach for Self-Adaptive Distributed Firewall (SADF). We
presented an architecture built on top of the MAPE-K reference model as the means for
logically structuring the different tasks involved in the management of the security for the
network. The Analyze and Decision engine are at the heart of the operation of our architec-
ture for mitigating the risks of known vulnerabilities. Together, they detect vulnerabilities
and protect services before they are exploited. We made a prototype implementation to
demonstrate their feasibility using a combination of existing open source and in-house
developed components.

Some simple experiments were conducted with encouraging preliminary results,
where we are able to dynamically modify the firewalls on protected servers. The VAS
in Analyze engine detect vulnerabilities caused by software bugs or misconfiguration.
However, since we are at a prototype phase, our approach presents some limitations. For
instance, currently we only deal with each individual host in an independent way, and
more interesting possibilities arise due to the nature of distributed firewalls, in which
firewall could be employed on other points of the network, such as routers and switches.

The decision making and the definition of high-level policies have been simpli-
fied, and could be improved by using other specialized components, such as rule-based
systems. Some improvements on Decision engine may add capabilities to deal with a lot
of information and possibilities in order to enhance the security of network. For exam-
ple, a host firewall might redirect all incoming connection to an application level proxy
when a particular vulnerability has been detected, adding an extra layer of authentication
while the vulnerability has not been fixed. Another future work involves the integration
of our solution with traditional IDPSs, allowing it to react to attack exploiting zero-day
vulnerabilities.

References

Al-Shaer, E. (2014). Automated Firewall Analytics: Design, Configuration and Opti-
mization, chapter Specification and Refinement of a Conflict-Free Distributed Firewall
Configuration Language, pages 49 – 74. Springer International Publishing.

Bailey, C., Chadwick, D. W., and de Lemos, R. (2014). Self-adaptive federated autho-
rization infrastructures. Journal of Computer and System Sciences, 80(5):935 – 952.

Bellovin, S. M. (1999). Distributed firewalls. ;login:, pages 39–47.

Chadwick, D. W. et al. (2008). PERMIS: A Modular Authorization Infrastructure. Con-
curr. Comput. : Pract. Exper., 20(11):1341–1357.

Cheng, B. H. et al. (2009). Software Engineering for Self-Adaptive Systems: A Research
Roadmap. In Cheng, B. H., de Lemos, R., Giese, H., Inverardi, P., and Magee, J.,
editors, Software Engineering for Self-Adaptive Systems, pages 1–26. Springer-Verlag,
Berlin, Heidelberg.

Debar, H., Thomas, Y., Cuppens, F., and Cuppens-Boulahia, N. (2007). Enabling auto-
mated threat response through the use of a dynamic security policy. Journal in Com-
puter Virology, 3(3):195 – 210.

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

350 c©2016 SBC — Soc. Bras. de Computação

DMTF (2016). Network policy management profile. https://www.dmtf.org/
sites/default/files/standards/documents/DSP1048_1.0.0c_0.
pdf. [Online; accessed 19-June-2016].

Iglesia, D. G. D. L. and Weyns, D. (2015). Mape-k formal templates to rigorously de-
sign behaviors for self-adaptive systems. ACM Trans. Auton. Adapt. Syst., 10(3):15:1–
15:31.

Ioannidis, S., Keromytis, A. D., Bellovin, S. M., and Smith, J. M. (2000). Implementing
a distributed firewall. In Proceedings of the 7th ACM Conference on Computer and
Communications Security, CCS ’00, pages 190–199, New York, NY, USA. ACM.

Kephart, J. O. and Chess, D. M. (2003). The Vision of Autonomic Computing. IEEE
Computer, 36(1):41–50.

Lai, Y., Jiang, G., Li, J., and Yang, Z. (2009). Design and implementation of distributed
firewall system for ipv6. In Communication Software and Networks, 2009. ICCSN ’09.
International Conference on, pages 428–432.

Meng, G., Liu, Y., Zhang, J., Pokluda, A., and Boutaba, R. (2015). Collaborative security:
A survey and taxonomy. ACM Comput. Surv., 48(1):1:1–1:42.

Pasquale, L. et al. (2012). SecuriTAS: A Tool for Engineering Adaptive Security. In
Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, FSE ’12, pages 19:1–19:4, New York, NY, USA. ACM.

Pozo, S., Varela-Vaca, A. J., and Gasca, R. M. (2009). Afpl2, an abstract language for
firewall acls with nat support. In Second International Conference on Dependability
(DEPEND 2009), pages 52–59.

Stallings, W. (2010). Network Security Essentials: Applications and Standards. Prentice
Hall, 4th edition.

Uribe, T. E. and Cheung, S. (2004). Automatic analysis of firewall and network intrusion
detection system configurations. In Proceedings of the 2004 ACM Workshop on Formal
Methods in Security Engineering (FMSE 2004), pages 66 – 74.

van der Ham, J., Dijkstra, F., Łapacz, R., and Zurawski, J. (2013). Network markup
language base schema version 1. Grid Final Draft (GFD), Proposed Recommendation
(R-P) GFD-R-P.206, Open Grid Forum.

Yuan, E., Esfahani, N., and Malek, S. (2014). A systematic survey of self-protecting
software systems. ACM Trans. Auton. Adapt. Syst., 8(4):17:1–17:41.

Zhang, B., Al-Shaer, E., Jagadeesan, R., Riely, J., and Pitcher, C. (2007). Specifications
of a high-level conflict-free firewall policy language for multi-domain networks. In
Proceedings of the 12th ACM Symposium on Access Control Models and Technologies,
SACMAT ’07, pages 185–194, New York, NY, USA. ACM.

Zhang, Z. and Shen, H. (2009). M-aid: An adaptive middleware built upon anomaly
detectors for intrusion detection and rational response. ACM Trans. Auton. Adapt.
Syst., 4(4):24:1 – 24:35.

XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2016

351 c©2016 SBC — Soc. Bras. de Computação

	Artigos Completos
	Sessão técnica 7 (ST7): Segurança de Sistemas Distribuídos
	An Architecture for Self-adaptive Distributed Firewall.Edmilson Costa Junior, Silas de Medeiros, Carlos da Silva, Marcos Pinheiro (UFRN)

