
XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

16 © 2017 Sociedade Brasileira de Computação

2. A Zero-Knowledge Proof for the Hidden Subset Sum Problem
Charles F. de Barros

A Zero-Knowledge Proof for the
Hidden Subset Sum Problem

Charles F. de Barros1

1Departamento de Ciência da Computação (DCOMP)
Universidade Federal de São João Del Rei (UFSJ)

São João Del Rei – MG – Brazil

charlesbarros@ufsj.edu.br

Abstract. In this paper, we propose a zero-knowledge proof for a special
case of the hidden subset sum problem. This problem was presented by
[Boyko et al. 1998] as the underlying problem of methods for generating ran-
dom pairs of the form (x, gx (mod p)) using precomputations. The proof we
propose is an adaptation of a zero-knowledge protocol for the subset sum prob-
lem presented by [Blocki 2009].

1. Introduction

Zero-knowledge proofs have interesting cryptographic applications, as they provide
means for one party to prove knowledge of some secret, without revealing any informa-
tion about that secret to the other party. This is a very desirable property in authentication
scenarios, for example.

It is known that some conventional authentication protocols, such as password-
based ones, may be vulnerable to offline attacks, based on the use of dictionaries or rain-
bow tables, because hashes of the passwords must be transmitted or stored somewhere. If
an adversary has access to these hashes, he may compare them to a list of pre-computed
hashes of known passwords. Whenever a match is found, he is able to authenticate to the
system.

In this scenario, we say that the adversary learns something by intercepting the
password hash, as long as he is able to compare it to other hashes. In a zero-knowledge
protocol, the adversary learns nothing by eavesdropping on the communication between
the two parties.

A simple way of applying this concept to the design of authentication protocols
is to provide zero-knowledge proofs for hard mathematical problems. In this case, one
party could prove that she knows the solution for a given instance of the problem, without
revealing any information about that solution.

In this paper, we propose a zero-knowledge proof for the hidden subset sum prob-
lem. The proof we propose is based on a protocol by [Blocki 2009] for the classical subset
sum problem. The hidden subset sum problem was presented by [Boyko et al. 1998] as
the underlying problem of methods for generating randomly distributed pairs of the form
(x, gx (mod p)) using precomputations. This new mathematical problem was consid-
ered potentially as hard, or even harder than the classical subset sum problem, since no
algorithm was known to solve it, apart from exhaustive search.

XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

17 © 2017 Sociedade Brasileira de Computação

A Zero-Knowledge Proof for the
Hidden Subset Sum Problem

Charles F. de Barros1

1Departamento de Ciência da Computação (DCOMP)
Universidade Federal de São João Del Rei (UFSJ)

São João Del Rei – MG – Brazil

charlesbarros@ufsj.edu.br

Abstract. In this paper, we propose a zero-knowledge proof for a special
case of the hidden subset sum problem. This problem was presented by
[Boyko et al. 1998] as the underlying problem of methods for generating ran-
dom pairs of the form (x, gx (mod p)) using precomputations. The proof we
propose is an adaptation of a zero-knowledge protocol for the subset sum prob-
lem presented by [Blocki 2009].

1. Introduction

Zero-knowledge proofs have interesting cryptographic applications, as they provide
means for one party to prove knowledge of some secret, without revealing any informa-
tion about that secret to the other party. This is a very desirable property in authentication
scenarios, for example.

It is known that some conventional authentication protocols, such as password-
based ones, may be vulnerable to offline attacks, based on the use of dictionaries or rain-
bow tables, because hashes of the passwords must be transmitted or stored somewhere. If
an adversary has access to these hashes, he may compare them to a list of pre-computed
hashes of known passwords. Whenever a match is found, he is able to authenticate to the
system.

In this scenario, we say that the adversary learns something by intercepting the
password hash, as long as he is able to compare it to other hashes. In a zero-knowledge
protocol, the adversary learns nothing by eavesdropping on the communication between
the two parties.

A simple way of applying this concept to the design of authentication protocols
is to provide zero-knowledge proofs for hard mathematical problems. In this case, one
party could prove that she knows the solution for a given instance of the problem, without
revealing any information about that solution.

In this paper, we propose a zero-knowledge proof for the hidden subset sum prob-
lem. The proof we propose is based on a protocol by [Blocki 2009] for the classical subset
sum problem. The hidden subset sum problem was presented by [Boyko et al. 1998] as
the underlying problem of methods for generating randomly distributed pairs of the form
(x, gx (mod p)) using precomputations. This new mathematical problem was consid-
ered potentially as hard, or even harder than the classical subset sum problem, since no
algorithm was known to solve it, apart from exhaustive search.

The hardness of the problem was thoroughly analysed by
[Nguyen and Stern 1999], which established a security criterion for using the gen-
erators based on hidden subset sums. They proposed a lattice-based attack, which was
likely to succeed whenever the parameters of the problem satisfied certain conditions.

Nonetheless, no further cryptographic applications for the hidden subset sum
problem were proposed, maybe due to the lack of a more rigorous hardness result. In
this paper, we shed some light on the subject by presenting a possible relation between
the hardness of the hidden subset sum problem and the hardness of the classical subset
sum problem.

1.1. Roadmap

This paper is organized as follows: in Section 2, we fix some notations and present some
theoretical review on subset sums, hidden subset sums and interactive zero-knowledge
proofs. In Section 3, we review Blocki’s zero-knowledge proof for the subset sum prob-
lem, and in Section 4 we extend Blocki’s protocol to the hidden subset sum problem. A
brief performance analysis is presented in Section 5, and in Section 6 we present our final
remarks and proposals for future work.

2. Theoretical Review

In this section, we provide a brief review on subset sums, hidden subset sums and zero-
knowledge proofs. From now on, we denote by In the set of indices {1, · · · , n}, and the
cardinality of a set A shall be denoted by |A|. We also use the symbol ⊕ to denote the
xor operation (sum modulo 2).

2.1. The Subset Sum Problem

The subset sum problem is well known in complexity theory. Essentially, it consists of,
given a set

A = {a1, · · · , an} (1)

of integers and a target integer t, deciding whether exists a subset of A whose sum is t.
The problem is known to be NP-complete [Cormen et al. 2001].

We may think of the problem of deciding whether exists a subset of indices S ⊂ In

such that ∑
j∈S

aj = t. (2)

An interesting variant of the subset sum problem consists of finding two subsets of the
same size with the same sum. This variant is known as the equal partition problem.

Problem 2.1 (Equal Partition Problem) Given a set A = {a1, · · · , an} ⊂ Z, find a
partition In = S1 ∪ S2 such that

1. |S1| = |S2| = n/2;
2. S1 ∩ S2 = ∅; and
3.

∑
j∈S1

aj =
∑

j∈S2
aj = t for some target integer t.

XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

18© 2017 Sociedade Brasileira de Computação

Note that the problem can also be formulated over the ring of integers modulo M ,
for some integer M . In fact, given M,n positive integers, t ∈ ZM and a set

A = {a1, · · · , an} ⊂ ZM , (3)

decide whether exists S ⊂ In such that
∑
j∈S

aj ≡ t (mod M). (4)

In its non-decisional version, the goal of the subset sum problem is to find the subset
S , if such exists. Note that both the equal partition and the modular variants are still
NP-complete. In fact, we can reduce any instance of subset sum to an instance of equal
partition by simply appending n zeros to the input set (considered here as having cardi-
nality n). On the other hand, any instance A = {a1, · · · , an} of the subset sum problem
over the integers is also an instance over ZM+1, where M =

∑n
j=1 aj .

Despite the fact that the problem is NP-complete, there are methods to solve
“easy” instances, such as superincreasing sequences and low-density subset sums. We
focus our attention on the latter. We define the density in (1) as

d =
n

log2(max
1≤i≤n

ai)
. (5)

Similarly, in (3), the density is given by

d =
n

log2(M)
. (6)

It was shown by [Lagarias and Odlyzko 1985] that subset sums with sufficiently low den-
sity, namely less than 0.6463 · · · can be efficiently solved by using lattice reduction meth-
ods, such as [Lenstra et al. 1982] and [Schnorr 1994]. Posteriorly, [Coster et al. 1992]
improved the method to solve subset sums with density less than 0.9408 · · · .

The subset sum problem is a special case of the knapsack problem, which un-
derlies some well known public-key cryptosystems, such as [Merkle and Hellman 1978],
[Chor and Rivest 1988] and [T. Okamoto and Uchiyama 2000]. The core idea of a
knapsack-based cryptosystem is to use an “easy” knapsack as the secret key (a super-
increasing one, for example), while the public key is a “hard” knapsack. However, these
cryptosystems may be prone to low-density attacks, which exploit the fact that the public
key is a knapsack with low density.

2.2. The Hidden Subset Sum Problem

The hidden subset sum problem, as the name suggests, was inspired by the classical sub-
set sum problem. It was presented by [Boyko et al. 1998] as the underlying problem of
methods for generating random pairs of the form (x, gx (mod p)) using precomputation.
This is useful for protocols based on the discrete-logarithm problem, such as El Gamal
[El Gamal 1985] and DSS [NIST 1994] signatures, where generation of the aforemen-
tioned pairs is considerably expensive.

XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

19 © 2017 Sociedade Brasileira de Computação

Note that the problem can also be formulated over the ring of integers modulo M ,
for some integer M . In fact, given M,n positive integers, t ∈ ZM and a set

A = {a1, · · · , an} ⊂ ZM , (3)

decide whether exists S ⊂ In such that
∑
j∈S

aj ≡ t (mod M). (4)

In its non-decisional version, the goal of the subset sum problem is to find the subset
S , if such exists. Note that both the equal partition and the modular variants are still
NP-complete. In fact, we can reduce any instance of subset sum to an instance of equal
partition by simply appending n zeros to the input set (considered here as having cardi-
nality n). On the other hand, any instance A = {a1, · · · , an} of the subset sum problem
over the integers is also an instance over ZM+1, where M =

∑n
j=1 aj .

Despite the fact that the problem is NP-complete, there are methods to solve
“easy” instances, such as superincreasing sequences and low-density subset sums. We
focus our attention on the latter. We define the density in (1) as

d =
n

log2(max
1≤i≤n

ai)
. (5)

Similarly, in (3), the density is given by

d =
n

log2(M)
. (6)

It was shown by [Lagarias and Odlyzko 1985] that subset sums with sufficiently low den-
sity, namely less than 0.6463 · · · can be efficiently solved by using lattice reduction meth-
ods, such as [Lenstra et al. 1982] and [Schnorr 1994]. Posteriorly, [Coster et al. 1992]
improved the method to solve subset sums with density less than 0.9408 · · · .

The subset sum problem is a special case of the knapsack problem, which un-
derlies some well known public-key cryptosystems, such as [Merkle and Hellman 1978],
[Chor and Rivest 1988] and [T. Okamoto and Uchiyama 2000]. The core idea of a
knapsack-based cryptosystem is to use an “easy” knapsack as the secret key (a super-
increasing one, for example), while the public key is a “hard” knapsack. However, these
cryptosystems may be prone to low-density attacks, which exploit the fact that the public
key is a knapsack with low density.

2.2. The Hidden Subset Sum Problem

The hidden subset sum problem, as the name suggests, was inspired by the classical sub-
set sum problem. It was presented by [Boyko et al. 1998] as the underlying problem of
methods for generating random pairs of the form (x, gx (mod p)) using precomputation.
This is useful for protocols based on the discrete-logarithm problem, such as El Gamal
[El Gamal 1985] and DSS [NIST 1994] signatures, where generation of the aforemen-
tioned pairs is considerably expensive.

We present here a brief description of one of the generators based on the hidden
subset sum problem. Keep in mind that the goal is to generate randomly distributed pairs
of the form (x, gx (mod p)). Firstly, choose a prime number p and g ∈ Z∗

p of order M .
Generate random integers a1, · · · , an ∈ ZM and compute βi = gai , for i = 1, · · · , n.
Store the a′is and the β′

is in a table.

Whenever a pair (x, gx (mod p)) is needed, choose a random subset S ⊂ In and
compute

b =
∑
i∈S

ai (mod M). (7)

If b = 0, stop and start again with a new subset S. As soon as b �= 0, compute

B =
∏
i∈S

βi (mod p). (8)

The value of x is given by b and gx is given by B. Output the pair (b, B), where we have
clearly that B = gb (mod p). In an active attack, an adversary may gather many values
of b, say b1, · · · , bm, and try to figure out the values of the ai’s. This is an instance of the
hidden subset sum problem, which we state below.

Problem 2.2 (Hidden Subset Sum Problem) Let n,m,M be positive integers. We are
given B = {b1, · · · , bm} ⊂ ZM , and the goal is to find A = {a1, · · · , an} ⊂ ZM such
that, for all i = 1, · · · ,m, there exists Si ⊂ In such that

bi ≡
∑
j∈Si

aj (mod M). (9)

Until the publication of the work by [Nguyen and Stern 1999], no algorithm to
solve this problem was known. In their paper, Nguyen and Stern present a low-density
attack on the hidden subset sum problem, exploiting the low density of the hidden se-
quence a1, · · · , an. After running a series of experiments, they conclude that, for the case
where d = 1, the attack is already very unlikely to succeed, even if sparse subset sums
are chosen.

We remark that, although there are no formal hardness results for the hidden subset
sum problem, we have strong reasons to believe that it is at least as hard as the classical
subset sum problem.

In order to throw some light on this discussion, we must precisely define what it
means to solve an instance of the hidden subset sum problem. If by solving we mean
simply outputting the set A, then we are left with the problem of checking the validity of
the solution, since we would need to solve m instances of the subset sum problem. Hence,
we consider that an algorithm solves an instance of the hidden subset sum problem if it
outputs the set A and the subsets Si, for i = 1, · · · ,m, so that the decisional version of
the problem can be considered as a member of NP .

Provided with a precise notion of what it means to solve the hidden subset sum
problem, we may state the following conjecture regarding its hardness:

Conjecture 2.1 Let O be an oracle that takes as input three integers M , m, n and a
set B = {b1, · · · , bm} ⊂ ZM , and outputs A = {a1, · · · , an} ∈ ZM , together with the

XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

20© 2017 Sociedade Brasileira de Computação

subsets Si ⊂ In such that
bi ≡

∑
j∈Si

aj (mod M) (10)

for i = 1, · · · ,m. Given A = {a1, · · · , an} ∈ ZM and an integer t ∈ ZM , can we find a
subset S ⊂ In such that

t ≡
∑
j∈S

aj (mod M), (11)

given access to O?

We sketch a possible proof that the answer is yes, although there are some loose
ends that need tying up. We build an instance B = {b1, · · · , bm} of the hidden subset sum
problem, where b1 = t and each bi, for i > 1, is a randomly chosen subset sum of A.
Clearly, there is a probability that the oracle finds the desired solution, whenever A, t is a
“yes” instance.

In fact, if A, t is a “yes” instance, then A is a solution for the hidden subset sum
instance, which also contains the subset whose sum is t. Hence, we can solve a subset
sum by solving a hidden subset sum. However, this may not be the only solution, since
there are no guarantees as for the uniqueness of the solution for a hidden subset sum
instance. For example, the instance B = {0, 2, 5, 7} has at least two solutions in Z8,
namely {2, 3, 5, 7} and {1, 2, 4, 6}.

The question remains open as for the number of solutions for a given instance
of the hidden subset sum problem. If this number is polynomially bounded, and if we
consider an oracle capable of finding all the possible solutions, then the answer for the
conjecture above is “yes”, and the hidden subset sum problem is at least as hard as the
classical subset sum.

In this paper, we propose a variant of the hidden subset sum problem, in which
every bi is the sum of exactly n/2 elements of A. We refer to this variant as the balanced
hidden subset sum problem.

Problem 2.3 (Balanced Hidden Subset Sum Problem) Let n,m,M be positive inte-
gers and a set B = {b1, · · · , bm} ⊂ ZM . The goal is to find A = {a1, · · · , an} ⊂ ZM

such that, for all i = 1, · · · ,m, there exists Si ⊂ In such that |Si| = n/2 and

bi ≡
∑
j∈Si

aj (mod M). (12)

For instance, if M = 16, n = 4, m = 4 and B = {9, 6, 11, 4}, the set A = {2, 7, 4, 13} is
a solution, with S1 = {1, 2}, S2 = {1, 3}, S3 = {2, 3} and S4 = {2, 4}.

As for the hardness of this variant, we may consider a procedure, which is similar
to what we have done before, in order to solve the equal partition problem, given access
to an oracle that solves the balanced variant of the hidden subset sum problem. Therefore,
we assume that for sufficiently high density, namely d ≥ 1, the balanced variant is hard.

2.3. Interactive Zero-Knowledge Proofs
Zero-knowledge proofs were introduced by [Goldwasser et al. 1985]. In a zero-
knowledge proof, also referred to as zero-knowledge protocol, a party called the Prover,

XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

21 © 2017 Sociedade Brasileira de Computação

subsets Si ⊂ In such that
bi ≡

∑
j∈Si

aj (mod M) (10)

for i = 1, · · · ,m. Given A = {a1, · · · , an} ∈ ZM and an integer t ∈ ZM , can we find a
subset S ⊂ In such that

t ≡
∑
j∈S

aj (mod M), (11)

given access to O?

We sketch a possible proof that the answer is yes, although there are some loose
ends that need tying up. We build an instance B = {b1, · · · , bm} of the hidden subset sum
problem, where b1 = t and each bi, for i > 1, is a randomly chosen subset sum of A.
Clearly, there is a probability that the oracle finds the desired solution, whenever A, t is a
“yes” instance.

In fact, if A, t is a “yes” instance, then A is a solution for the hidden subset sum
instance, which also contains the subset whose sum is t. Hence, we can solve a subset
sum by solving a hidden subset sum. However, this may not be the only solution, since
there are no guarantees as for the uniqueness of the solution for a hidden subset sum
instance. For example, the instance B = {0, 2, 5, 7} has at least two solutions in Z8,
namely {2, 3, 5, 7} and {1, 2, 4, 6}.

The question remains open as for the number of solutions for a given instance
of the hidden subset sum problem. If this number is polynomially bounded, and if we
consider an oracle capable of finding all the possible solutions, then the answer for the
conjecture above is “yes”, and the hidden subset sum problem is at least as hard as the
classical subset sum.

In this paper, we propose a variant of the hidden subset sum problem, in which
every bi is the sum of exactly n/2 elements of A. We refer to this variant as the balanced
hidden subset sum problem.

Problem 2.3 (Balanced Hidden Subset Sum Problem) Let n,m,M be positive inte-
gers and a set B = {b1, · · · , bm} ⊂ ZM . The goal is to find A = {a1, · · · , an} ⊂ ZM

such that, for all i = 1, · · · ,m, there exists Si ⊂ In such that |Si| = n/2 and

bi ≡
∑
j∈Si

aj (mod M). (12)

For instance, if M = 16, n = 4, m = 4 and B = {9, 6, 11, 4}, the set A = {2, 7, 4, 13} is
a solution, with S1 = {1, 2}, S2 = {1, 3}, S3 = {2, 3} and S4 = {2, 4}.

As for the hardness of this variant, we may consider a procedure, which is similar
to what we have done before, in order to solve the equal partition problem, given access
to an oracle that solves the balanced variant of the hidden subset sum problem. Therefore,
we assume that for sufficiently high density, namely d ≥ 1, the balanced variant is hard.

2.3. Interactive Zero-Knowledge Proofs
Zero-knowledge proofs were introduced by [Goldwasser et al. 1985]. In a zero-
knowledge proof, also referred to as zero-knowledge protocol, a party called the Prover,

denoted by P , proves to another party (the Verifier, denoted by V) that a given statement
S is true, without conveying any information apart from the fact that S is true. In this
sense, V gains no knowledge from the proof, except for the trueness of the statement.

In a formal sense, this zero-knowledge property implies that V could simulate
his interaction with P , and this simulation would be indistinguishable from a real interac-
tion. This gives us the intuition that the information exchanged between P and V during
the protocol must look random. In fact, if everything that V receives from P appears to
be random, he gains no extra knowledge, because random data convey no information.
Hence, V is able to generate by himself everything he sees from his interaction with P .

Besides the aforementioned property, zero-knowledge proofs must be complete
and sound. Completeness means that, if P is honest and both P and V follow the proto-
col, then V will accept the proof with probability 1. The protocol is sound if any dishonest
prover P ′ is caught with high probability, provided that the protocol is repeated a suffi-
ciently large number of times. The reader may consult [Quisquater and Berson 1990] for
a very interesting illustration of a zero-knowledge proof.

As already mentioned, zero-knowledge proofs may be applied to authentication
protocols. In an authentication system, one party must prove its identity to a second party,
usually by showing that it knows some secret information (a password, for instance). The
problem with this scenario is that, in order to prove knowledge of some secret, typically
one must convey information about this secret. For example, one party computes the hash
of its secret password and sends it to the second, which gives an adversary the opportunity
of launching, for example, a dictionary-based attack against the system.

Zero-knowledge proofs offer the advantage of conveying no information at all
about the secret of which one wishes to prove knowledge. Another practical scenario of
application includes the proof that a given public key is good (satisfies all the security
criteria), without revealing the secret key. For example, proving that an RSA key is the
product of two safe primes.

3. A Zero-Knowledge Proof for the Subset Sum Problem

In this section, we review Blocki’s zero-knowledge proof for the subset sum problem
[Blocki 2009]. In his thesis, Blocki presents a protocol for the equal partition variant, by
which the prover P is able to convince the verifier V that he knows a solution for the
problem, without conveying any information about this solution.

Let A = {a1, · · · , an} be the input set, and t the target integer. Remind that the
prover wishes to convince a verifier that he knows a set S ⊂ In such that |S| = n/2 and

∑
j∈S

aj =
∑

j∈In\S

aj = t. (13)

Defining

M =
n∑

i=1

ai, (14)

the protocol works as follows:

XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

22© 2017 Sociedade Brasileira de Computação

1. The prover generates β1, · · · , βn ∈ ZM+1 uniformly at random and computes
γ1, · · · , γn ∈ ZM+1 such that

ai ≡ βσ(i) + γσ(i) (mod M + 1). (15)

for i = 1, · · · , n, where σ is a random permutation, which P does not reveal.
2. The prover computes the partial sums

b =
∑
j∈Sσ

βj (16)

and
c =

∑
j∈Sσ

γj, (17)

where
Sσ = {σ(i) | i ∈ S} . (18)

3. In the next step, the verifier asks to see exactly one of the following:
(a) All of the triples (ai, βσ(i), γσ(i)), checking whether

ai ≡ βσ(i) + γσ(i) (mod M + 1); (19)

(b) β1, · · · , βn, b, c and Sσ, checking whether
∑
j∈Sσ

βj ≡ b (mod M + 1) (20)

and
b+ c ≡ t (mod M + 1); (21)

(c) γ1, · · · , γn, b, c and Sσ, checking whether
∑
j∈Sσ

γj ≡ c (mod M + 1) (22)

and
b+ c ≡ t (mod M + 1). (23)

4. If any of the checks fails, the verifier rejects the proof.
It is easy to see that the protocol is complete. In fact, any prover who knows the

subset S is able to correctly build the subset Sσ and, by following the protocol, he always
convinces the verifier, because

b+ c =
∑
j∈Sσ

βj +
∑
j∈Sσ

γj =
∑
j∈Sσ

(βj + γj) =
∑
i∈S

(βσ(i) + γσ(i)) =
∑
i∈S

ai = t. (24)

The soundness of the protocol comes from the fact that, if a dishonest prover P ′ is cheat-
ing, then he does not know the subset S , which means that he is not able of choosing
the proper subset Sσ. Instead, he chooses a random subset S ′ (which is the wrong subset
with overwhelming probability), which leaves him with a probability at least 1/3 of being
caught (at least one of the checkings will fail if the wrong subset was chosen).

Finally, the protocol also has the zero-knowledge property, because each βi is just
a random number, while each γi is also a random number without βi. Thus, the verifier
is able to generate by himself everything that the prover shows him at each step of the
protocol. Then, he is able to simulate any of the choices (a), (b) and (c) as follows:

XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

23 © 2017 Sociedade Brasileira de Computação

1. The prover generates β1, · · · , βn ∈ ZM+1 uniformly at random and computes
γ1, · · · , γn ∈ ZM+1 such that

ai ≡ βσ(i) + γσ(i) (mod M + 1). (15)

for i = 1, · · · , n, where σ is a random permutation, which P does not reveal.
2. The prover computes the partial sums

b =
∑
j∈Sσ

βj (16)

and
c =

∑
j∈Sσ

γj, (17)

where
Sσ = {σ(i) | i ∈ S} . (18)

3. In the next step, the verifier asks to see exactly one of the following:
(a) All of the triples (ai, βσ(i), γσ(i)), checking whether

ai ≡ βσ(i) + γσ(i) (mod M + 1); (19)

(b) β1, · · · , βn, b, c and Sσ, checking whether
∑
j∈Sσ

βj ≡ b (mod M + 1) (20)

and
b+ c ≡ t (mod M + 1); (21)

(c) γ1, · · · , γn, b, c and Sσ, checking whether
∑
j∈Sσ

γj ≡ c (mod M + 1) (22)

and
b+ c ≡ t (mod M + 1). (23)

4. If any of the checks fails, the verifier rejects the proof.
It is easy to see that the protocol is complete. In fact, any prover who knows the

subset S is able to correctly build the subset Sσ and, by following the protocol, he always
convinces the verifier, because

b+ c =
∑
j∈Sσ

βj +
∑
j∈Sσ

γj =
∑
j∈Sσ

(βj + γj) =
∑
i∈S

(βσ(i) + γσ(i)) =
∑
i∈S

ai = t. (24)

The soundness of the protocol comes from the fact that, if a dishonest prover P ′ is cheat-
ing, then he does not know the subset S , which means that he is not able of choosing
the proper subset Sσ. Instead, he chooses a random subset S ′ (which is the wrong subset
with overwhelming probability), which leaves him with a probability at least 1/3 of being
caught (at least one of the checkings will fail if the wrong subset was chosen).

Finally, the protocol also has the zero-knowledge property, because each βi is just
a random number, while each γi is also a random number without βi. Thus, the verifier
is able to generate by himself everything that the prover shows him at each step of the
protocol. Then, he is able to simulate any of the choices (a), (b) and (c) as follows:

1. In order to simulate choice (a), he simply generates β1, · · · , βn at random and
computes γ1, · · · , γn such that βi + γi ≡ ai (mod M + 1);

2. In order to simulate choice (b), he generates β1, · · · , βn uniformly at random,
chooses a random subset S ′ ⊂ In such that |S ′| = n/2, computes

b =
∑
j∈S′

βj (25)

and picks c such that b+ c ≡ k (mod M + 1).
3. Analogously, in order to simulate choice (c), he generates γ1, · · · , γn uniformly at

random, chooses a random subset S ′ ⊂ In such that |S ′| = n/2, computes

c =
∑
j∈S′

γj (26)

and picks b such that b+ c ≡ k (mod M + 1).

4. Extending the Idea to the Hidden Subset Sum Problem
In this section, we extend Blocki’s protocol and present a novel zero-knowledge proof for
the hidden subset sum problem. Let us denote the number of combinations of x elements
taken y at a time by

(
x
y

)
. From now on, let m,n,M be positive integers such that

n! ≥
(
M

n

)
(27)

and
n ≥ log2M. (28)

The previous inequality implies that the hidden subset has density equal to or greater than
1, in order to mitigate low-density attacks. Furthermore, assume that

(
m+ 2

2m

)m

(29)

is a negligible amount. A set B = {b1, · · · , bm} ⊂ ZM is given, and P secretly knows
another set A = {a1, · · · , an} ⊂ ZM , of which he wishes to prove knowledge, such that
each bi is a subset sum modulo M of exactly n/2 elements of A. The protocol works as
follows:

1. V randomly chooses A0 =
{
a
(0)
1 , · · · , a(0)n

}
⊂ ZM from the uniform distribution

and sends it to P .
2. P reveals the set

A1 =
{
a
(1)
1 , · · · , a(1)n

}
⊂ ZM (30)

such that, for all i = 1, · · · , n,

ai ≡ a
(0)
i + a

(1)
σ(i) (mod M), (31)

where σ is a random permutation which P keeps secret.

XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

24© 2017 Sociedade Brasileira de Computação

3. P computes the subsets S(0)
i ,S(1)

i ⊂ In, satisfying |S(0)
i | = |S(1)

i | = n/2 for all
i = 1, · · · ,m, and computes

b
(0)
i ≡

∑

j∈S(0)
i

a
(0)
j (mod M) (32)

and
b
(1)
i ≡

∑

j∈S(1)
i

a
(1)
j (mod M), (33)

where
bi ≡ b

(0)
i + b

(1)
i (mod M) (34)

for all i = 1, · · · ,m.
4. P reveals the pairs (b(0)i , b

(1)
i), for i = 1, · · · ,m. If (34) does not hold, V immedi-

ately rejects.
5. V sends to P a random bit w ∈ {0, 1} and a random integer 1 ≤ k ≤ m.
6. P reveals S(w)

k .
7. V accepts if, and only if

∑

j∈S(w)
k

a
(w)
j ≡ b

(w)
k (mod M) (35)

and |S(w)
k | = n/2.

The protocol is repeated at least m times. Now we prove that the presented protocol has
the properties of completeness, soundness and zero-knowledge.

Theorem 4.1 (Completeness) The protocol is complete.

Proof: in fact, let us assume that P is an honest prover, who actually knows the set A.
Hence, for each i = 1, · · · ,m, he knows Si ⊂ In such that

∑
j∈Si

aj ≡ bi (mod M). (36)

Hence, for i = 1, · · · ,m, he may build the subsets S(0)
i and S(1)

i as follows:

S(0)
i = Si (37)

and
S(1)
i = {σ(j) ∈ In|j ∈ Si} . (38)

Thus, P is able to correctly compute the pairs (b(0)i , b
(1)
i) and, in fact,

b
(0)
i + b

(1)
i =

∑

j∈S(0)
i

a
(0)
j +

∑

j∈S(1)
i

a
(1)
j =

∑
j∈Si

a
(0)
j +

∑
j∈Si

a
(1)
σ(j). (39)

Since both sums are over the same index, we may write

b
(0)
i + b

(1)
i =

∑
j∈Si

(a
(0)
j + a

(1)
σ(j)) =

∑
j∈Si

aj ≡ bi (mod M). (40)

Therefore, V always accepts the proof, provided that P is honest and both follow the
protocol. �

XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

25 © 2017 Sociedade Brasileira de Computação

3. P computes the subsets S(0)
i ,S(1)

i ⊂ In, satisfying |S(0)
i | = |S(1)

i | = n/2 for all
i = 1, · · · ,m, and computes

b
(0)
i ≡

∑

j∈S(0)
i

a
(0)
j (mod M) (32)

and
b
(1)
i ≡

∑

j∈S(1)
i

a
(1)
j (mod M), (33)

where
bi ≡ b

(0)
i + b

(1)
i (mod M) (34)

for all i = 1, · · · ,m.
4. P reveals the pairs (b(0)i , b

(1)
i), for i = 1, · · · ,m. If (34) does not hold, V immedi-

ately rejects.
5. V sends to P a random bit w ∈ {0, 1} and a random integer 1 ≤ k ≤ m.
6. P reveals S(w)

k .
7. V accepts if, and only if

∑

j∈S(w)
k

a
(w)
j ≡ b

(w)
k (mod M) (35)

and |S(w)
k | = n/2.

The protocol is repeated at least m times. Now we prove that the presented protocol has
the properties of completeness, soundness and zero-knowledge.

Theorem 4.1 (Completeness) The protocol is complete.

Proof: in fact, let us assume that P is an honest prover, who actually knows the set A.
Hence, for each i = 1, · · · ,m, he knows Si ⊂ In such that

∑
j∈Si

aj ≡ bi (mod M). (36)

Hence, for i = 1, · · · ,m, he may build the subsets S(0)
i and S(1)

i as follows:

S(0)
i = Si (37)

and
S(1)
i = {σ(j) ∈ In|j ∈ Si} . (38)

Thus, P is able to correctly compute the pairs (b(0)i , b
(1)
i) and, in fact,

b
(0)
i + b

(1)
i =

∑

j∈S(0)
i

a
(0)
j +

∑

j∈S(1)
i

a
(1)
j =

∑
j∈Si

a
(0)
j +

∑
j∈Si

a
(1)
σ(j). (39)

Since both sums are over the same index, we may write

b
(0)
i + b

(1)
i =

∑
j∈Si

(a
(0)
j + a

(1)
σ(j)) =

∑
j∈Si

aj ≡ bi (mod M). (40)

Therefore, V always accepts the proof, provided that P is honest and both follow the
protocol. �

Theorem 4.2 (Soundness) The protocol is sound.

Proof: we must show that a dishonest prover P ′ is caught with high probability. In fact,
after receiving the set A0, a smart cheater could choose m subsets S(0)

i and compute

b
(0)
i ≡

∑

j∈S(0)
i

a
(0)
j , (41)

for i = 1, · · · ,m. At this point, the integers b(1)i are already determined, but the cheater
may conveniently choose n/2 integers whose sum is, say, b(1)1 , and other n/2 integers
whose sum is b(1)2 . It determines the set A1 along with the subsets S(1)

1 and S(1)
2 . In order

to determine the subsets S(1)
i for i > 2, he must solve m − 2 instances of the subset sum

problem over A1, hence we assume that he is not capable of doing so. Nevertheless, at
each iteration, the dishonest prover has two possibilities of being successful at cheating:

1. the verifier chooses the bit 0 at step 5, which happens with probability 1/2;
2. the verifier chooses the bit 1 and one of the integers 1 or 2 at step 5, which happens

with probability 1/m,

which gives him a probability 1/2+1/m of successfully cheating. In order to deceive the
verifier, the cheater must be successful in all iterations, which will happen with probability
at most (

m+ 2

2m

)m

. (42)

Since we are assuming that this is a negligible amount, the cheating prover is caught with
high probability. �

Theorem 4.3 (Zero Knowledge) The protocol is zero knowledge.

Proof: intuitively, everything that V sees looks random. Hence, he is able to generate
by himself everything that he receives from P , which means that he may simulate his
interaction with P as follows:

1. He chooses A0 =
{
a
(0)
1 , · · · , a(0)n

}
⊂ ZM from the uniform distribution.

2. The set A1 is just a random set, because A and the permutation σ are unknown.
Thus, V simply chooses another random subset

A1 =
{
a
(1)
1 , · · · , a(1)n

}
⊂ ZM . (43)

3. V generates a random string w ∈ {0, 1}m, chooses a random subset Si ⊂ In with
exactly n/2 elements, for all i = 1, · · · ,m, and computes

b
(wi)
i ≡

∑
j∈Si

a
(wi)
j (mod M). (44)

Next, he computes b(wi⊕1)
i such that

bi ≡ b
(0)
i + b

(1)
i (mod M). (45)

4. V has simulated the pairs (b(0)i , b
(1)
i), for i = 1, · · · ,m.

XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

26© 2017 Sociedade Brasileira de Computação

5. V chooses a random integer 1 ≤ k ≤ m and picks the bit wk from the random
string generated at step 3.

6. V simulates the disclosure of the subset Sk.
7. In fact, by construction, we have

∑
j∈Sk

a
(wk)
j ≡ b

(wk)
k (mod M) (46)

and |Sk| = n/2.

Note that, after his interaction with P , V knows that each element of A is the sum
of an element of A0 with some element of A1. However, because he does not know the
permutation σ chosen by P , the desired solution is among n! possibilities. Assuming that
(27) holds, this knowledge provides him with no better method than brute force to find
the solution. Thus, in practice, the protocol conveys no extra knowledge for the verifier.

5. Security and Performance Analysis

We have seen that, at each round of the protocol, a dishonest prover successfully cheats
with probability 1/2 + 1/m. Hence, in order to achieve acceptable levels of security, the
number of iterations must be sufficiently large. For instance, if m = 256, then after 256
rounds a dishonest prover can be caught with probability 1− 2−253.

As for the memory space requirements, the prover must store n(m + logM) bits
of secret information, corresponding to the set A, which can be represented with nlogM
bits, and the subsets Si for i = 1, · · · ,m, which can be represented as m strings of n bits.
The only public information is the set B, which requires mlogM bits.

During a single round of the protocol, 2logM(m+n)+n+33 bits are transmitted
(the subsets A0 and A1, the pairs (b

(0)
i , b

(1)
i) the bit w and the number k, interpreted as

a 32-bit integer, and the subset S(w)
k). The prover must also temporarily store 2mn bits

corresponding to the subsets S(0)
i and S

(1)
i , for i = 1, · · · ,m.

The parameters M = 1024, n = 256 and m = 256 yield roughly 8.5kB of
memory space to store the secret key, 16kB to store temporary information and 1.3kB of
transmitted data per round.

6. Final Remarks and Conclusions

We presented a zero-knowledge proof for a special case of the hidden subset sum problem,
which can be applied to cryptographic protocols such as authentication systems. The
protocol is an adaptation of a zero-knowledge proof for the subset sum problem. The
proposal is still not optimal in terms of key sizes and memory requirements, and further
research is highly encouraged. Possible optimizations, based on compact representations
and variants which require fewer rounds, are part of ongoing research.

Acknowledgements

We would like to thank the anonymous referees for their helpful comments and sugges-
tions.

XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

27 © 2017 Sociedade Brasileira de Computação

5. V chooses a random integer 1 ≤ k ≤ m and picks the bit wk from the random
string generated at step 3.

6. V simulates the disclosure of the subset Sk.
7. In fact, by construction, we have

∑
j∈Sk

a
(wk)
j ≡ b

(wk)
k (mod M) (46)

and |Sk| = n/2.

Note that, after his interaction with P , V knows that each element of A is the sum
of an element of A0 with some element of A1. However, because he does not know the
permutation σ chosen by P , the desired solution is among n! possibilities. Assuming that
(27) holds, this knowledge provides him with no better method than brute force to find
the solution. Thus, in practice, the protocol conveys no extra knowledge for the verifier.

5. Security and Performance Analysis

We have seen that, at each round of the protocol, a dishonest prover successfully cheats
with probability 1/2 + 1/m. Hence, in order to achieve acceptable levels of security, the
number of iterations must be sufficiently large. For instance, if m = 256, then after 256
rounds a dishonest prover can be caught with probability 1− 2−253.

As for the memory space requirements, the prover must store n(m + logM) bits
of secret information, corresponding to the set A, which can be represented with nlogM
bits, and the subsets Si for i = 1, · · · ,m, which can be represented as m strings of n bits.
The only public information is the set B, which requires mlogM bits.

During a single round of the protocol, 2logM(m+n)+n+33 bits are transmitted
(the subsets A0 and A1, the pairs (b

(0)
i , b

(1)
i) the bit w and the number k, interpreted as

a 32-bit integer, and the subset S(w)
k). The prover must also temporarily store 2mn bits

corresponding to the subsets S(0)
i and S

(1)
i , for i = 1, · · · ,m.

The parameters M = 1024, n = 256 and m = 256 yield roughly 8.5kB of
memory space to store the secret key, 16kB to store temporary information and 1.3kB of
transmitted data per round.

6. Final Remarks and Conclusions

We presented a zero-knowledge proof for a special case of the hidden subset sum problem,
which can be applied to cryptographic protocols such as authentication systems. The
protocol is an adaptation of a zero-knowledge proof for the subset sum problem. The
proposal is still not optimal in terms of key sizes and memory requirements, and further
research is highly encouraged. Possible optimizations, based on compact representations
and variants which require fewer rounds, are part of ongoing research.

Acknowledgements

We would like to thank the anonymous referees for their helpful comments and sugges-
tions.

References
Blocki, J. (2009). Direct zero-knowledge proofs. Senior Research Thesis, B.S. in Com-

puter Science, Carnegie Mellon University.

Boyko, V., Peinado, M., and Venkatesan, R. (1998). Speeding up discrete log and factor-
ing based schemes via precomputations. In Advances in Cryptology - Eurocrypt ’98,
volume 1403 of Lecture Notes in Computer Science, pages 221–235.

Chor, B. and Rivest, R. L. (1988). A knapsack-type public key cryptosystem based on
arithmetic in finite fields. IEEE Transactions on Information Theory, 34(5):901–909.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001). Introduction to
Algorithms. MIT Press and McGraw-Hill, 2nd edition.

Coster, M. J., Joux, A., LaMacchia, B. A., Odlyzko, A. M., Schnorr, C.-P., and Stern,
J. (1992). Improved low-density subset sum algorithms. Computational Complexity,
2(2):111–128.

El Gamal, T. (1985). A public key cryptosystem and a signature scheme based on discrete
logarithms. In Proceedings of CRYPTO 84 on Advances in Cryptology, pages 10–18,
New York, NY, USA. Springer-Verlag New York, Inc.

Goldwasser, S., Micali, S., and Rackoff, C. (1985). The knowledge complexity of inter-
active proof-systems. In Proceedings of the Seventeenth Annual ACM Symposium on
Theory of Computing, STOC ’85, pages 291–304, New York, NY, USA. ACM.

Lagarias, J. C. and Odlyzko, A. M. (1985). Solving low-density subset sum problems. J.
Assoc. Comp. Mach., 32(1):229–246.

Lenstra, A. K., Lenstra Jr, H. W., and Lovász, L. (1982). Factoring polynomials with
rational coefficients. Mathematische Annalen, 261(4):515–534.

Merkle, R. C. and Hellman, M. E. (1978). Hiding information and signatures in trapdoor
knapsacks. IEEE Transactions on Information Theory, 24:525–534.

Nguyen, P. and Stern, J. (1999). The Hardness of the Hidden Subset Sum Problem and Its
Cryptographic Implications, pages 31–46. Springer Berlin Heidelberg, Berlin, Heidel-
berg.

NIST (1994). FIPS publication 186: Digital signature standard.

Quisquater, Jean-Jacques, G. L. C. and Berson, T. A. (1990). How to explain zero-
knowledge protocols to your children. In Advances in Cryptology, CRYPTO ’89:
Proceedings, pages 628–631. ACM.

Schnorr, C. P. (1994). Block reduced lattice bases and successive minima. Combinatorics,
Probability and Computing, 3:507–522.

T. Okamoto, K. T. and Uchiyama, S. (2000). Quantum public-key cryptosystems. In
Advances in Cryptology: Proceedings of CRYPTO 2000 (M. Bellare, ed.), Lecture
Notes in Computer Science, pages 147–165, New York. Springer-Verlag.

	2. A Zero-Knowledge Proof for the Hidden Subset Sum Problem
	Charles F. de Barros

