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Abstract. Software developers participating in online communities benefit from quick
solutions to technology specific issues and, eventually, get better in troubleshooting
technology malfunctioning. In this work, we investigate whether developers who are
part of online communities for cryptography programming are getting better in using
cryptography with time. This is a crucial issue nowadays, when “real-world crypto”
is becoming a topic of serious investigation, not only academically but in security
management as a whole: cryptographic programming handled by non-specialists is
an important and often invisible source of vulnerabilities [RWC ]. We performed a
retrospective and longitudinal study, tracking developers’ answers about cryptography
programming in two online communities. We found that cryptography misuse is not
only common in online communities, but also recurrent in developer’s discussions,
suggesting that developers can learn how to use crypto APIs without actually learning
cryptography. In fact, we could not identify significant improvements in cryptography
learning in many daily tasks such as avoiding obsolete cryptography. We conclude
that the most active users of online communities for cryptography APIs are not learning
the tricky details of applied cryptography, a quite worrisome state of affairs.

Resumo. Desenvolvedores de software, participantes de comunidades on-line,
costumam se beneficiar de solucoes rdpidas para problemas tecnologicos e,
eventualmente, melhoram suas habilidades na resolucdo de problemas de mau
funcionamento da tecnologia. Neste trabalho, investigamos se desenvolvedores de
software criptogrdfico que participam de comunidades on-line se tornam melhores
no uso de criptografia com o tempo. Esse é um aspecto de seguranga crucial nos dias
de hoje, em que “real-world crypto” se tornou um tépico de interesse sério, ndo so
academicamente, mas no gerenciamento de segurangca como um todo: programagdo
criptogrdfica feita por ndo-especialistas é uma fonte frequente e muitas vezes invisivel
de vulnerabilidades [RWC |. Realizamos um estudo retrospectivo e longitudinal para
rastrear as respostas dos desenvolvedores sobre programagdo de criptografia em duas
comunidades on-line. Descobrimos que o uso indevido da criptografia é ndo apenas
comum em comunidades on-line, mas também é recorrente nas discussoes, sugerindo
que os desenvolvedores aprendem a usar as APIs criptogrdficas sem realmente
aprender criptografia. Ndo conseguimos identificar melhora alguma na percepcdo
e aprendizado de vulnerabilidades criptogrdficas, mesmo em tarefas simples como a
de evitar o uso de criptografia obsoleta. Concluimos, assim, que os usudrios ativos nas
comunidades on-line para APlIs criptogrdficas ndo tem evoluido no seu aprendizado dos
detalhes e armadilhas do uso da criptograpfia, um estado de coisas muito preocupante.
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1. Introduction

Software developers are regular users of security mechanisms (e.g., security APIs, protocols, and
tools), but are, by no means, security experts. They, however, do make security decisions that
have a huge impact on end-user and system security. Developers are also frequent users of online
communities for programming. The agility in problem solving provided by many question-and-
answer communities brings benefits to ordinary programmers lacking knowledge in specific topics,
such as secure coding. In this work, we investigate whether developers participating in online
communities for cryptography programming are getting better in using cryptography with time.
Also, we investigate whether cryptography misuse is persistent in posts of specific developers.

Cryptography misuse is a programming bad practice frequently found in misuse cases of
cryptographic software, ultimately leading to vulnerabilities, but also associated to design flaws
and insecure architectural choices [Braga and Dahab 2016]. Improvement in cryptography
knowledge can be evidenced by a time series showing a steady decrease in the number of
cryptography misuses. Also, persistence of a specific cryptography misuse can be illustrated
by the repetition by developers of the same misuse over and over.

We tracked users (i.e. developers) of two online communities for programming,
along with their questions and answers, from posts in a data set provided by a previous
study [Braga and Dahab 2016]. We recorded the occurrence of known cryptography misuses
for selected developers over a period of five years. We then computed statistics of cryptography
misuse associated to specific moments in time for each tracked developer.

We found that the use of weak cryptography (e.g., broken algorithms or misconfigured
implementations of standards) is not only common in online communities, but also recurrent
in developers’ discussions, suggesting that they learn how to use crypto APIs without actually
learning cryptography. We also found that the lack of knowledge in cryptography is a recurrent
source of coding bugs in API usage and does not depend on how long developers use cryptography
APIs. We observed that platform issues dominate design concerns and obfuscate many complex
cryptography misuses, which go unnoticed by developers in long lifespans. In summary, we
conclude that users of online communities are not actually learning cryptography, despite their
immediate gains in solving current programming issues related to cryptographic APIs.

This study is longitudinal, i.e., it performed repeated observations of the same developers over
a period of time. Also, it is retrospective because it looks back in time using existing data. As
far as we know, this is the first such study of cryptography misuse in online communities. The
main contributions of this work are the following: (i) a method for clustering developers’ posts
from their asynchronous lifespans in online communities; (i7) a longitudinal study of selected
developers of two communities, showing similarities and differences of these communities
concerning how developers misuse cryptography; (iii) evidence that cryptography misuse is
persistent across communities and developer lifespans; and (iv) evidence that developers learn
how to use cryptography APIs without learning cryptography.

This text is organized as follows. Section 2 analyses related work and Section 3 details our
research method. Section 4 explains our results and findings, while Section 5 details two users’
lifespans. Section 6 discusses our findings and Section 7 shows our conclusions.

2. Related Work

[Fahl et al. 2012] investigated the SSL/TLS protocol usage in Android apps from Google Play
and discovered security threats posed by misuses of that protocol. [Egele et al. 2013] were among
the first to perform large-scale experiments in Google Play App Store to measure cryptographic
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misuse in Android with the standard Crypto API. Their main contribution was a broad view of
the prevalence of misused cryptographic functionality in Android apps. These two pioneering
works were followed by others on related topics (e.g., [Lazar et al. 2014, Shuai et al. 2014,
Georgiev et al. 2012, Chatzikonstantinou et al. 2015]).

[Wang and Godfrey 2013] were among the first to analyze API-related posts from a
questions-and-answers (Q&A) website for mobile app development. They discovered repetitive
scenarios with obstacles in API usage to developers, not specifically related to security. In a recent
work [Wang et al. 2015], they investigated methods and proposed a methodology to distill and
rank Q&A posts with API-related issues that would be valuable to API designers.

[Nadi et al. 2016] performed an empirical investigation into the obstacles developers face while
using the Java cryptography APIs and the programming tasks they perform (e.g., authenticate
users, store login data, establish secure connections, and encrypt data). By triangulating data
from Stack Overflow posts, GitHub repositories, and developers’ surveys, they found that
developers find it difficult to use cryptographic algorithms correctly, despite being confident
with cryptography concepts. They also found that cryptographic APIs are generally perceived
as too low-level and not task-oriented.

[Acar et al. 2016b, Acar et al. 2016a] systematically analyzed the impact to code security of
information resources commonly used by developers. They surveyed app developers who have
published in the Google Play market, conducted a lab study with Android developers, analyzed 139
Stack Overflow threads accessed by developers during the lab study, and statically analyzed a ran-
dom sample of Google Play apps. They concluded that real-world developers use Q&A communi-
ties as a major resource for solving programming problems, including security problems, suggesting
that those online communities help developers to arrive at functional solutions more quickly than
other resources. However, because online communities contain many insecure answers, developers
who rely on this resource are likely to create less secure code. Also, access to quick solutions via a
Q&A community may also inhibit developers’ security thinking or reduce their focus on security.

[Braga and Dahab 2016] performed a transversal study to analyze how developers misuse
cryptography in two online communities: Oracle Java Cryptography (OJC) and Google Android
Developers (GAD). That work showed not only the most frequent cryptography misuses (e.g.,
weak cryptography, coding bugs, etc.), but also relationships among misuses through strong
associations of double or triple misuses that appear together with non-negligible probabilities.

Most of the above-mentioned studies focus on the same online community or app store, with
little variation. Also, none of these works study the behavior of frequent users over time, in order
to examine whether developers are getting better in using cryptography with time.

3. Methodology

We analyzed data collected by a previous study [Braga and Dahab 2016] and observed that
repeated measures were made for some developers. This fact motivated us to perform a
retrospective, longitudinal study to analyze developers’ behavior from a series of observations
already made about them. This study is longitudinal because it performed repeated observations
of the same developers (and their posts) over a period of time. Also, it is retrospective because
it looks back in time using existing data.

Roughly speaking, our method segments the set of posts (collected for specific developers
with determined lifespans) into a predefined number of clusters. When ordered chronologically,
these clusters determine the phases a developer is supposed to pass for learning cryptography.
These phases are then analyzed for the occurrence of cryptography misuses which are well-known
in secure software development and secure coding.
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The following subsections detail our methodology in four topics: classification of cryptography
misuse, selection of communities and posts, selection of developers to evaluate, and method
for clustering posts from a developer’s lifespan.

3.1. Classification of Cryptography Misuse

The original study [Braga and Dahab 2016] introduced a classification of cryptography misuses in
order to capture how software developers actually misuse cryptography in practice. The classifica-
tion has nine categories: Weak Cryptography (WC), Bad Randomness (BR), Coding and Implemen-
tation Bugs (CIB), Program Design Flaws (PDF), Improper Certificate Validation (ICV), Public-
Key Cryptography (PKC) issues, Poor Key Management (PKM), Cryptography Architecture Issues
(CAI), and IV/Nonce Management (IVM) issues. Table 1 details categories in descriptive subsets.

The classification collected cryptography misuse from various sources, including software secu-
rity books (e.g., [Viega and McGraw 2001, Howard and LeBlanc 2003, Chess and West 2007,
Howard et al. 2009, Howard and Lipner 2006, Shostack 2014]), studies on cryptography misuse
(e.g, [Lazaretal. 2014, Chatzikonstantinou et al. 2015, Egele et al. 2013, Shuai et al. 2014,
Braga and Dahab 2015, Georgiev et al. 2012, Fahl et al. 2012]), newly discovered misuses
(e.g., [Alashwali 2013, Bos et al. 2014, Mart and Hern 2013, Adrian et al. 2015]), and industry
initiatives for software security (e.g., [Safecode 2011, OWASP , CYBSI 2014]). Table 1 shows
the grouping of misuse categories, misuse main categories, and subsets.

Cryptography misuses are not all equally difficult to avoid [Braga and Dahab 2016]: some
are easier to find and correct than others, depending on the involved complexity to identify and
fix misuses. There are three complexity groupings for the nine misuse categories (in Table 1):

1. Low complexity misuses are related to coding activities and issues in APIs, and could be
easily found by simple code reviews and skilled developers (supported by tools). This group
includes Weak Crypto (WC), Coding Bugs (CIB), and Bad Randomness (BR).

2. Medium complexity misuses are related to flaws in program design affecting a few programs
and may be difficult to identify due to feature distribution across programs. This group includes
Improper Certificate Validation (ICV) issues, Program Design Flaws (PDF), and Public-Key
Crypto (PKC) issues.

3. High complexity is related to flaws in system design and architecture, and requires
understanding of system architecture to analyze underlying cryptosystems. This group includes
Poor Key Management (PKM), IV and Nonce Management (IVM) issues, and Crypto
Architecture Issues (CAI).

3.2. Selection of Communities and Posts

The original study [Braga and Dahab 2016] selected two programming communities possibly
supported by experts in applied cryptography: Oracle Java Cryptography (OJC) [OJC ], a
forum aimed at programming with Java Cryptographic Architecture (JCA), and Google Android
Developers (GAD) [GAD ], a forum for Android programming.

The reasons to choose these two communities follows. Both OJC and GAD share the same
Java-based API for the Java Cryptographic Architecture (JCA) [Oracle ], thus limiting the
knowledge required by a code reviewer to four aspects: Java programming, JCA, Android security,
and applied cryptography. Also, JCA offers a stable and generic API, which has been used for
a long time by a large number of developers for both server-side applications and mobile devices.
Furthermore, JCA was adopted by the Android platform as its main API for cryptographic
services. These two communities together reach a large number of ordinary developers, most
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Table 1. Classification of cryptography misuse from a developer’s viewpoint.

Low complexity Medium complexity High complexity
Cat. | Misuse subtype Cat. | Misuse subtype Cat. | Misuse subtype
-Risky/broken crypto -Insec. default behavior -CBC w/ non-random IV
-Proprietary crypto -Insecure key handling -CTR with static counter
WC | -Determin. symm. enc. PDF | -Streamcipher:insec. use IVM | -Hard-coded or const. IV
-Risky/broken hash -Insecure combo encr./auth -Reused nonce in encrypt.
-Risky/broken MAC -Insecure combo encr./hash
-Custom implement. -Side-channel attacks
-Wrong configs for PBE -No validation of certs -Short/improper key size
-Common coding errors -Broken SSL/TLS channel -Hard-coded/const. keys
CIB | -Buggy IV generation ICV | -Incomplete cert. valid. PKM | -Hard-coded PBE passw.
-Null cryptography -Improper valid. host/user -Streamcipher:reused key
-Leak/Print of keys -Wildcards certs -Use of expired keys
-Self-signed certs -Key distrib. issues
-Use of Statistic PRNG -Determ. encryp. RSA -Crypto agility issues
-Predictible seeds -Insec. padding RSA enc. -API misunderstanding
-Low-entropy seeds -Weak configs RSA enc. -Multiple access points
BR | -Static, fixed seeds PKC | -Insec. padding RSA sign. || CAI | -Randomness issues
-Reused seeds -Weak RSA sign. -PKI and CA issues
-Weak ECDSA sign
-Key agr.: DH/ECDH
-ECC: insecure curves

of them are supposed to be non experts in cryptography. These assumptions may not hold for
specialized communities with other APIs, such as openssl [OpenSSL ] or bouncy castle [BC ].

Collected posts comprised a time period of five years, from January 2011 to December 2015.
Posts were listed by date (newest first) and manually saved as PDF files.

OJC was the most active community, with the most posts in the selected time period. GAD is
very active in general, but showed less activity for cryptographic matters. For OJC, 310 posts were
collected, and the 155 most viewed were selected for further analysis (50% of total). In GAD, a
pre-analysis showed that specific keywords, such as “encryption”, “hash” and “sign”, were covered
by the more general keywords “cryptography” and “encryption”, which were used to select posts.
For GAD, 170 posts were collected and the 100 most viewed were selected for analysis.

The manual inspection with code review was the method to analyze each single post. Posts
were inspected by a cryptography expert with the skills mentioned above. Each post was inspected
for occurrences of misuse. Many posts were discarded for not being related to cryptography
programming, showing only discussions about threats or attacks. After discarding, OJC data
set was reduced to 140 posts and GAD achieved 71 posts.

A few topics related to environment and platform specific issues were identified: configuration
and installation issues, key storage and recovery issues, bug found or reported, tool misuse or misun-
derstanding, interoperation issues (e.g., platforms, versions, etc.), and hardware integration issues.

3.3. Selection of Developers to Evaluate

We found that most developers just ask one question to the community and never return. On
the other hand, a few developers answered most questions. This fact made it possible to track
users’ answers and determine whether they had learned cryptography with time. These developers
not only failed in giving good answers to questions related to cryptography; sometimes, they
also omitted information that could prevent cryptography misuse.

In OJC, we counted 43 distinct developers who answered at least one question. Only 8 of these
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developers answered 3 or more questions, corresponding to 74.5% of all answers. One developer
asked 11 questions, totalling 9 evaluated developers in OJC. In GAD, we counted 97 distinct devel-
opers who answered at least one question. Only 14 of them answered 4 or more questions, corre-
sponding to 52% of all answers. One developer asked 6 questions, totalling 15 evaluated developers
in GAD. In summary, this study was conducted for two cohorts: one for a cryptography-specific
forum (OJC) with 11 subjects and the other for a general-purpose forum (GAD) with 15 subjects.

The average lifespan for OJC developers was about 22 months with a standard deviation of
around 9 months. The average lifespan for GAD developers was about 20 months with a standard
deviation around 11 months. Table 2 shows lifespans and number of posts for both OJC and
GAD. OJC developers are identified by J# and GAD developers are identified by G#.

Table 2. Selected developers, their lifespans (in months) and number of posts.

0OJC Developers GAD Developers
OJC# | Lifespan | # of posts | GAD# | Lifespan | # of posts || GAD# | Lifespan | # of posts
J#l 84 7 Gi#l 144 6 G#10 8.1 6
J#2 30.5 14 Gi#2 22.5 6 G#11 10.9 4
J#3 26.4 33 G#3 25.1 6 G#12 172 4
J#4 19.9 6 G#4 17.1 5 G#13 7.3 4
J#S 27.1 13 G#5 36.0 8 Gi#14 7.1 5
J#o 29.6 36 G#6 223 11 G#15 11.9 5
J#7 31.1 11 G#7 28.8 13 - - -
J#H8 8.3 5 G#8 454 29 - - -
J#9 16.1 3 G#9 239 11 - - -

3.4. Method for Clustering Developer’s Lifespan

In online communities, interaction among users has a chronological order, but does not have
to follow simultaneous events for synchronization of activities. For instance, a developer can
show a very active participation for a few months and never return, while another can have a
consistent participation for a couple of years.

We noticed that users participate in communities within different lifespans, diverse in length
(duration) and number of posts. A user’s lifespan is counted from the first to the last participation
found in the period of study. In order to capture developers’ distinct lifespans within the studied
time period, we adopted a simple clustering technique to split the activity in each developer’s
lifespan (e.g., all posts for a user) into a defined number of clusters, as described next.

Clustering is a technique for combining observed objects into groups, segments, or
clusters [Murthy 2015]. Its goal is to partition the observations into groups (“clusters”) so that the
differences among elements assigned to the same cluster tend to be smaller than among elements
in different clusters [Friedman et al. 2009].

Clustering results need to be tied to specific semantic interpretations and applica-
tions [Murthy 2015]. Therefore, it is important to utilize expert knowledge to identify
clusters [Murthy 2015]. We observed a natural fit between clustering methods and the life cycle
presented next.

We devised a method to normalize lifespans and compare them. Our method consists in
associating a life cycle to a lifespan. A life cycle is a qualitative sequence of phases. Lifespans
use absolute time scales and are quantitative, while life cycles are relative and subjective, being
qualitative in nature. A life cycle is divided into five phases according to the progress the user
in evaluation is supposed to have had in his lifespan. The appropriate number of phases was
apparent from prior knowledge about the data set. The five phases are the following:
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an entrant or newbie is a new member or an inexperienced newcomer;

a beginner or novice is starting to learn crypto and taking part in communities;
an accustomed fellow is a regular user involved in the same activities of others;
an expert has knowledge or skills in cryptography gained over a period of time;
a veteran has long experience in cryptography and is considered knowledgeable.

ARl S e

This is an optimistic life cycle because it supposes developers improve their skills in
cryptography with time. In fact, this is a strong assumption that may not hold for most developers.

The general idea of our clustering method is to apply a divisive clustering technique in order
to distribute posts through five phases according to that user lifespan. The segmentation starts with
all posts in one cluster (the whole lifespan) and iteratively splits existing clusters into two smaller
clusters, until it satisfies a termination condition, e.g. the desired number of clusters. Roughly
speaking, the lifespan is the bigger cluster, which we divide in five slices (life-cycle phases) in
three iterations of the clustering method.

The distribution of posts through phases (i.e. cluster assignments, e.g. the assignment of posts
to clusters) were refined by repeatedly attempting subdivision, and keeping the best resulting splits.
In our method, a short lifespan lasts less than one year and a long lifespan lasts more than one year.
We managed to distribute posts uniformly whenever it is possible, according to the following rules:

1. when there were less than five posts in the lifespan, we managed to put two at the ends and,
optionally, two (or one) near the middle;

2. posts within the same month (a small time lapse) were put in the same phase (cluster);

3. when there was a large time lapse (bigger than 1 or 2 months in short lifespans or bigger than
4 to 6 months in long lifespans) between two consecutive posts, we adopted this gap as a
phase separator (split point).

In general, divisive clustering methods, as the one we adopted, encounter difficulties regarding
the selection of split points, leading to low-quality clusters [Murthy 2015]. We achieved a
balanced distribution in general and a similar amount of posts into clusters, for both communities,
with slightly more posts found at middle phases (Novice, Fellow, and Expert), and fewer posts
found in first and last phases (Entrant and Veteran). Figure 1 shows the distribution of posts
throughout the five phases for OJC and GAD.
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Figure 1. Distribution of posts through life cycle phases.
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4. Results and Findings

This section analyses results for both communities in two distinct measures: misuse count and
misuse density. Also, misuse density is analyzed in the context of the complexity groupings in
Table 1. Before, we show general statistics about cryptography misuse in Table 3, that uses data
from [Braga and Dahab 2016].

Table 3. Crypto misuse in online communities, from [Braga and Dahab 2016].
Communities

Categories of Cryptography Misuse

OJC | GAD
Weak Cryptography (WC) 26% | 21%
Coding and Implementation Bugs (CIB) | 17% | 17%
Bad Randomness (BR) 0% 1%
Program Design Flaws (PDF) 6% 8%

Improper Certificate Validation (ICV) 4% 3%
Public-Key Cryptography (PKC) issues | 16% | 10%

Poor Key Management (PKM) 11% 4%
IV/Nonce Management (IVM) issues 5% 6%
Crypto Architecture Issues (CAI) 20% 1%
Platform Specific Issues (PSI) 60% | 32%

The occurrence of cryptography misuse for each community is summarized in Table 3, which
shows that weak cryptography (WC) is the most common misuse in both OJC and GAD. Also,
both communities suffer negative influence from platform-specific issues (PSI). Besides specific
issues, OJC suffers the most influence from weak cryptography (WC, 26%), architectural issues
(CALI 20%), coding bugs (CIB, 17%), public-key issues (PKC, 16%), and poor key management
(PKM, 11%). These numbers are due to API misuse, lack of knowledge in applied cryptography,
and complexity of JCA.

GAD suffers most from weak cryptography (WC, 21%), coding bugs (CIB, 17%), and
public-key issues (PKC, 10%). These numbers are due to API misuse and lack of knowledge
in cryptography programming. Despite preserving the Java API, Android has its own architecture
for enabling cryptographic libraries, which simplifies installation and configuration, but brings
new interoperational issues. Also, misuse of Pseudo-Random Number Generators (PRNGs) was
barely mentioned in both communities, suggesting that developers have no doubts about simple
uses of Java’s SecureRandom APIL.

4.1. Cryptography Misuse Count per Life Cycle Phase

Figure 2 shows misuse counts for OJC (left) and GAD (right), for all misuse categories, distributed
along the five phases of developer’s life cycle. These communities have distinct behavior.

In OJC (left), developers start with a shy participation with relatively few misuses in Entrant
phase. It is possible to observe that Novice is the phase with most misuses, with a notable presence
of categories CAI, PKC, and WC. Also, OJC developers seem to be improving their skills in
cryptography, because the total count of misuses gradually decreases from Novice to Veteran phase.
However, the numbers for simple misuses (e.g., WC and CIB) are relatively stable (not decreasing),
suggesting that simple misuses are recurrent and developers are not getting better at them. PKM
and PKC are common issues in early phases (Novice and Fellow), with higher values, suggesting
that developers are improving in these categories. Also, the number of CAI issues decreases from
Novice to Veteran, suggesting that knowledge about Java’s crypto API increases with time.

In GAD (right side), developers start in the Entrant phase with an expressive participation,
having most misuses in WC and CIB. The notable decrease in crypto misuse for Novice and
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Figure 2. Crypto misuse counts for life cycle phases: OJC (left) and GAD (right).

Fellow phases suggests developers have a fast learning curve for those misuses less influenced
by platform specific issues. However, in the Expert and Veteran phases the number of misuses
increases again due to the influence of platform issues associated to sophisticate and complex
misuses (e.g., PDF, PKC, ICV, and IVM). Four misuse categories (WC, CIB, PKC, and IVM)
are recurrent in all phases, suggesting Android’s diversity of hardware and software makes it
difficult to learn cryptography not only for simple misuses, but also for complex misuses.

4.2. Cryptography Misuse Density per Life Cycle Phase

In order to measure crypto misuse density, we adapted the traditional metric for issue density per
unit of size, which is also named defect density [Pandian 2003], bug density [Hutcheson 2003],
and fault density [Bourque and Fairley 2014]. In order to measure how developers misuse
cryptography, we counted the number of misuses that have been detected in posts for a developer
and normalized this measure by the total number of posts for the developer in question, obtaining
a value for misuse density. A straightforward analysis on misuse density over time was used to
evidence a learning curve for developers as well as to show misuse reduction (or growing) as a trend.

Figure 3 shows the misuse density for OJC throughout the life cycle in two charts. On the
left, crypto misuse per post (c.m.p.p) is compared to platform issues per post (p.i.p.p). In this
chart, it is possible to observe that misuse density is relatively stable over time, despite a gradual
reduction in density for platform issues. The chart on the right shows misuse density for low-,
medium- and high-complexity misuses. In this chart, it is possible to observe that density of
simple misuses (WC, CIB, and BR) increases over time, while density of moderate (PDF, PKC,
and ICV) misuses has a small decrease, and density for high-complexity misuses (CAI, PKM,
and IVM) shows a gradual decrease.

This behavior suggests that simple misuses are recurrent in OJC and do not depend on the
actual knowledge of Java’s crypto APIL. On the other hand, medium-complexity misuses are the
most influenced by platform issues, closely following p.i.p.p behavior. Then, complex misuses
(related to system design and architecture) decreases over time, suggesting a gradual improvement
in developer’s knowledge about Java’s crypto API.

Similarly, Figure 4 shows the misuse density for GAD throughout the life cycle in two charts.
On the left, it is possible to observe that misuse density increases over time (the opposite behavior
of OJC), despite a relatively stable density of platform issues. The chart on the right shows that
density for complex misuses is relatively stable, while density for low- and medium-complexity
misuses grows over time. In fact, GAD developers start with a high density for simple misuses and,
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Figure 4. Misuse density in GAD compared to issue density and complexity groups.

after a sharp drop, this density gradually grows. This behavior suggests that Android developers
are not getting better in cryptography over time.

5. Two Life Cycles in Detail

This section details the life cycles of two developers. The objective is to illustrate with real cases the
recurrence of crypto misuse in developers’ lifespans. We selected two users with more posts and
longer lifespans, being good representatives of their communities: J#6 from OJC with a lifespan of
29.6 months and 36 posts, and G#8 from GAD with a lifespan of 45.4 months and 29 posts. These
developers not only failed to give good answers, but sometimes omitted information that could pre-
vent crypto misuse. Also, we could not identify improved cryptography skills for these developers.

5.1. Life Cycle for a Java Developer (J#6)

In the entrant phase, J#6 contributed to posts related to incompatible crypto providers, buggy
hardware modules, cross-platform verification of certificates, and cross-language (e.g., from
C++ to Java) encryption. Misuses were associated to hard-coded keys and IVs, wrong ciphertext
encoding, weak cryptography with custom implementations, short keys, misconfigured RSA,
and deterministic encryption with RSA.

In the novice phase, J#6 experienced misuses associated to deterministic symmetric encryption
(AES/ECB), broken cryptography (DES), proprietary cryptography with custom key agreement,
and coding errors. Other misuses were associated to unsafe defaults, insecure padding for RSA,
deterministic encryption or short keys for RSA, and issues for DH and ECC. Complex misuses
were associated to insufficient length and key distribution issues, as well as IV misconfiguration
and design flaws in cryptographic architecture.

In the fellow phase, J#6 contributed to posts related to fails in TLS authentication, RSA
encryption, digital signature verification, and proprietary encryption. Misuses were associated
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to buggy PKI software, proprietary cryptography, risky cryptography (3DES in ECB), coding
errors in insecure key handling, insecure padding or inadequate key length for RSA.

In the expert phase, J#6 still talked about coding errors when using AES with password-based
encryption, hard-coded I'Vs and deterministic encryption, misunderstanding digital certification,
deterministic signatures with RSA, and insecure key derivation. Platform issues led to
misunderstand of PKI functions. Other misuses were associated to flawed IV generation, broken
hash function, unsafe default, insecure padding for RSA, non-random or constant Vs, and reuse
of keys with stream ciphers.

In the veteran phase, J#6 could not give correct answers to posts related to MAC with broken
hash (e.g., MD5), encoding of keys, issues in key generation, and misconfigured PKI software.
Other misuses were associated to public-key issues (insecure padding for RSA, and misconfigured
DH), unsafe defaults, improper certificate validation (non-validated hostname and self-signed
certificates), coding errors disabling cryptography, and deterministic symmetric encryption.

5.2. Life Cycle for an Android Developer (G#8)

In the entrant phase, G#8 was involved in several discussions about password-based encryption,
errors when decrypting data from strings, use of SHA1 to generate keys from passwords, use
of AES in CBC mode to encrypt files, and Android’s full encryption. Misuses were related to
broken encryption and hashes, misconfigured PBE, insecure deterministic encryption, ciphertext
encoding errors, custom implementation of PBE, and constant I'Vs.

In the novice phase, G#8 was involved in posts related to buggy implementations of ECC in
SSLv2 and signature verification on crypto libraries, proprietary implementation of SSL, and use of
RSA encryption. Several misuses were associated to insecure padding and deterministic encryption
for RSA, custom implementation of SSL, and attempts to use buggy implementations of ECC.

In the fellow phase, G#8 discussed cryptography adopted by Google Drive, errors when
using the wrap method for protection of keys with PBE in specific versions of Android, and
cross-platform verification of signatures (Java and dotNET). Misuses involved misconfigured PBE
with small parameters, use of risky hashes and broken encryption, errors in ciphertext encodings,
and insecure padding and deterministic encryption for RSA.

In the expert phase, G#8 was involved in discussions about several errors related to bad
padding in encryption with AES, parsing keys from certificates for RSA encryption, and backward
incompatibility of encryption algorithms in Android. Misuses associated to improper certificate
validation, insecure defaults, deterministic encryption with RSA, non-random or constant IVs,
and misconfigured PBE.

In the veteran phase, G#8 was involved in posts related to cryptography issues in Android,
such as storage and recovery of keys from the device’s keystore, cross-version decryption of files,
and encoding ciphertext as integers. Misuses were associated to improper certificate validation
with self-signed root certificates, misconfigured PBE with small parameters, insecure defaults
for AES, non-random IVs, and ciphertext encoding errors.

6. Discussion

We are aware that our analysis have to be put in context and is restricted to the main subject
of the two communities evaluated. That said, we tried to generalize our conclusions.

For developers, as much as for end-users, security is a secondary concern. Developers usually
have priorities (e.g., functional correctness, time to market, maintainability, economics, compliance
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with other corporate policies) that often appear to conflict with security. Frequently, developers
look for quick, but insecure solutions and online communities favor this behavior.

Ideally, developers should not be forced to learn cryptography in order to correctly use
cryptographic APIs, specially for simple use cases. However, in practice, crypto APIs are unable to
foster their correct use without domain knowledge obtained from elsewhere but online communities.

Java has a stable API, with a very predictable behavior, favoring developers with enough time
to understand its particularities. In general, developers improve their skills in misuse categories
affected by platform issues, but this does not happen for simple misuses. On the other hand,
Android uses the same crypto API of the Java platform, but this fact alone is not enough to
promote a positive learning curve for cryptography. Many issues related to diversity of both
hardware and software negatively affect how developers learn cryptography in Android.

Java cryptographic architecture presents issues with installation and configuration that divert
developers from actual tasks of cryptographic programming. Also, specific issues showed up
when integrating Java programs to cryptographic hardware or communicating with applications
in other platforms. These troublesome issues frequently obfuscate crypto misuses in the same
code. For instance, in Java, a worst-case scenario occurs when developers write buggy code for
encrypting data and use weak cryptography by accidentally adopting insecure defaults.

Android solved many issues faced by Java developers, but brought to daily troubleshooting
several interoperation issues due to the diversity of both hardware and software in that platform.
Developers, confused by these issues, are distracted from actual cryptographic pitfalls. For
instance, developers suffering from interoperation issues among devices used weak cryptography
to protect stored passwords, and derived keys directly from password hashes.

Developers learn how to make APIs work, but this does not mean cryptography was used
correctly. In fact, coding bugs are persistent issues when using general-purpose (function-based)
crypto APIs to implement application-specific use cases, because developers are forced to make
insecure choices without actually understanding the whole situation. This suggests developers
would benefit from high-level cryptographic frameworks (oriented toward use cases) or task-based
APIs that could avoid simple misuses and insecure design decisions.

The overabundance of complex options for security leads to disengagement when confronted
by other concerns. We have noticed that complex architectures distract developers from actual
cryptographic misuse and contribute to perpetuate issues in cryptographic programming. For
instance, one curious reason developers gave to use homemade code for cryptographic algorithms
is to avoid dependencies to external libraries.

Finally, we did not see in developers’ lifespans any posts concerned with the insecure
combination of encryption and authentication, padding-oracle attacks, or selection of insecure
elliptic curves. This suggests that these developers never learned about design flaws for
authenticated encryption, side-channel attacks or obsolete implementations for elliptic curve
cryptography. Another remarkable absence in lifespans was the concern with weak parameters
in public-key cryptography (e.g., RSA, DH), suggesting that developers always take for granted
the quality of parameters generated by tools.

7. Concluding Remarks

Ordinary software developers are used to obtain quick solutions to daily problems from fellows
in online communities. Those communities associated to cryptographic programming are good
for finding solutions to platform-specific issues (e.g., implementation bugs, incompatible hardware,
and misconfigured software) as well as to clarify obscured aspects of API usage. On the other
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hand, developers willing to learn cryptography from online communities, if lucky, receive only
shallow advice and usually do not have a positive learning curve over time. Our study shows that
cryptography misuse is perpetuated in online communities and frequently reappear in recurrent
issues, because these communities favor quick, but insecure solutions and even active developers
(of those communities) take security as a secondary concern.

We believe this longitudinal study effectively contributes to better understanding how
cryptography is handled by ordinary developers of two online communities, bringing to light
their attitudes and priorities concerning cryptography-based security over time. It is paramount
to improve APISs to increase usability and to foster best practices. Also, there are opportunities
for future work in behavioral experiments of cryptographic programming, surveys with actual
developers, as well as replication studies focusing on other communities and crypto APIs.
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