
XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

154 © 2017 Sociedade Brasileira de Computação

3. An operational costs analysis of similarity digest search strategies using approxi-
mate matching tools
Vitor Hugo Galhardo Moia, Marco Aurélio Amaral HenriquesAn operational costs analysis of similarity digest search

strategies using approximate matching tools
Vitor Hugo Galhardo Moia, Marco Aurélio Amaral Henriques

1School of Electrical and Computer Engineering (FEEC)
University of Campinas (UNICAMP)

Campinas, SP, Brasil 13083-852

[vhgmoia,marco]@dca.fee.unicamp.br

Abstract. Approximate matching functions are suitable tools for forensic in-
vestigators to detect similarity between two digital objects. With the rapid in-
crease in data storage capacity, these functions appear as candidates to perform
Known File Filtering (KFF) efficiently, separating relevant from irrelevant in-
formation. However, comparing sets of approximate matching digests can be
overwhelming, since the usual approach is by brute force (all-against-all). In
this paper, we evaluate some strategies to better perform KFF using approxi-
mate matching tools. A detailed analysis of their operational costs when per-
forming over large data sets is done. Our results show significant improvements
over brute force and how the strategies scale for different database sizes.

1. Introduction
With the vast amount of data available nowadays, stored in a variety of different devices
(computers, smartphones, tablets, etc.), forensic examiners face a new challenge: Process
all these data in a relatively short time. Even ordinary investigations are becoming a
problem since users tend to acquire multiple devices with high storage capabilities. The
increased usage of cloud storage services is also an issue. Now, users have more space to
store content and, in most cases, data is replicated among all devices (redundancy). Also,
data is increasing in size due to high-resolution picture and videos, more sophisticated
software and operating systems etc., requiring more time to be processed.

One of the methods used to handle this huge amount of data efficiently is the
Known File Filter (KFF), a way to separate relevant from irrelevant information by the use
of white or black lists of reference data. Forensic investigators can either eliminate data
from the analysis, such as operating system files, known software, and other inoffensive
objects (white list), or separate information that is considered illegal or suspicious (black
list). In both cases, the examiner holds databases of known interest objects which are used
in the filtering processes [Breitinger and Baier 2012].

Cryptographic hash functions (SHA-1, SHA-2, etc.) appear as suitable candidates
to perform the KFF in a very efficient manner. To cooperate with forensic experts, NIST
(National Institute of Standards and Technology) provided a white list database (NSRL
- National Software Reference Library [NIST 2016]) in the form of hashes that can be
used to perform this filtering process. However, some limitations arise with the use of
such functions. By design, hashes of two objects with the same content will be the same;
but changing a single bit in one of the objects, make its hash completely different. This
way, only binary answers are provided with hashes: The objects are identical or not. This



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

155 © 2017 Sociedade Brasileira de Computação

An operational costs analysis of similarity digest search
strategies using approximate matching tools

Vitor Hugo Galhardo Moia, Marco Aurélio Amaral Henriques

1School of Electrical and Computer Engineering (FEEC)
University of Campinas (UNICAMP)

Campinas, SP, Brasil 13083-852

[vhgmoia,marco]@dca.fee.unicamp.br

Abstract. Approximate matching functions are suitable tools for forensic in-
vestigators to detect similarity between two digital objects. With the rapid in-
crease in data storage capacity, these functions appear as candidates to perform
Known File Filtering (KFF) efficiently, separating relevant from irrelevant in-
formation. However, comparing sets of approximate matching digests can be
overwhelming, since the usual approach is by brute force (all-against-all). In
this paper, we evaluate some strategies to better perform KFF using approxi-
mate matching tools. A detailed analysis of their operational costs when per-
forming over large data sets is done. Our results show significant improvements
over brute force and how the strategies scale for different database sizes.

1. Introduction
With the vast amount of data available nowadays, stored in a variety of different devices
(computers, smartphones, tablets, etc.), forensic examiners face a new challenge: Process
all these data in a relatively short time. Even ordinary investigations are becoming a
problem since users tend to acquire multiple devices with high storage capabilities. The
increased usage of cloud storage services is also an issue. Now, users have more space to
store content and, in most cases, data is replicated among all devices (redundancy). Also,
data is increasing in size due to high-resolution picture and videos, more sophisticated
software and operating systems etc., requiring more time to be processed.

One of the methods used to handle this huge amount of data efficiently is the
Known File Filter (KFF), a way to separate relevant from irrelevant information by the use
of white or black lists of reference data. Forensic investigators can either eliminate data
from the analysis, such as operating system files, known software, and other inoffensive
objects (white list), or separate information that is considered illegal or suspicious (black
list). In both cases, the examiner holds databases of known interest objects which are used
in the filtering processes [Breitinger and Baier 2012].

Cryptographic hash functions (SHA-1, SHA-2, etc.) appear as suitable candidates
to perform the KFF in a very efficient manner. To cooperate with forensic experts, NIST
(National Institute of Standards and Technology) provided a white list database (NSRL
- National Software Reference Library [NIST 2016]) in the form of hashes that can be
used to perform this filtering process. However, some limitations arise with the use of
such functions. By design, hashes of two objects with the same content will be the same;
but changing a single bit in one of the objects, make its hash completely different. This
way, only binary answers are provided with hashes: The objects are identical or not. This

limitation force examiners to keep databases with hashes of every possible version of the
interest object, since attackers could make random changes on objects to bypass detection.
Also, some objects get new versions as software or operating systems are updated, and
keeping track of each object changing is an impossible task.

To mitigate the limitations presented above, researchers have come up with new
functions capable of detecting similarity between objects, called approximate matching
or similarity hashes. They have the same idea of cryptographic hashes: The creation of
small and compact representations for data (digest). Using a generation function, digests
are created in a way that similar objects will produce similar representations, and by the
utilization of a particular digest comparison function, a score related to the amount of the
content shared between the corresponding objects is produced.

The downside of using approximate matching functions are the high costs asso-
ciated with both processes: Digest generation and comparison. This fact becomes evi-
dent when comparing them to cryptographic hashes, although they have distinctive goals.
However, hashes are the baseline, and new approximate matching functions always try to
achieve similar time costs as traditional hashes.

Investigations involving the use approximate matching functions to perform KFF
are very time-consuming. In the first stage, called preparation phase, digests are created
and stored for every object in the reference list of interest objects. Then, in the operational
phase, the target system under analysis has digests created for each object in this media
and compared to the reference list. In case a certain pre-defined threshold is achieved, a
match is found, and the corresponding object is separated for further analysis. However,
the major bottleneck on this task is not the digest generation process, but the comparison
one. Usually, the latter is done by brute force, where every digest in the target system is
compared to every digest in the reference list. Since these two data sets tend to be very
large, the whole comparison process could take days or even weeks to be accomplished.

In this work, we evaluate alternatives to the expensive brute force approach.
These new methods referred as similarity digest search strategies, aim at perform-
ing digest lookups very efficiently for KFF. This paper extends the work done in
[Moia and Henriques 2017], where the authors performed the analysis of three different
strategies (F2S2, MRSH-NET, and BF-based Tree) regarding three main aspects: preci-
sion, memory requirement, and lookup complexity. We show how the same strategies
carry out the search and develop equations to estimate their operational costs, allowing a
more precise time comparison. Our results indicate that these strategies are a better choice
than the simple brute force, and can reduce significantly the time consumed in KFF in-
vestigations. We also show how they scale when performing over different data set sizes.
To the best of our knowledge, this is the first work to compare these strategies regarding
operational costs.

2. Approximate matching tools and similarity digest search
According to NIST [Breitinger et al. 2014b], approximate matching functions are de-
signed to identify the similarity between objects, in the level of resemblance (objects
that resemble each other) or containment (objects contained in other, e.g., images inside
a document). Also, these sort of functions can operate in three different levels when cre-
ating the digests: bytewise, syntactic or semantic [Breitinger et al. 2014b]. We restrict



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

156© 2017 Sociedade Brasileira de Computação

our research to only those functions working at the byte level since they are more time
efficient and do not depend on the object format; moreover, they do not try to interpret the
object either to consider any data structure.

Approximate matching tools usually have two primary functions: Digest gene-
ration and comparison. In the first one, a digest is created for an object as a small and
compact representation of it. Its size can be fixed or not, depending on the chosen tool.
For instance, ssdeep produces representations of at most 96 bytes (no metadata included),
while sdhash digests are proportional to the object size (≈ 2.6%). The second function of
such tools is intended to compare two objects, where the output is a confidence measure
about their similarity, usually in the scale of 0 (dissimilar) to 100 (very similar), but this
changes according to the tool.

The applications of approximate matching are vast, encompassing the detection of
new versions of documents, libraries or software, embedded objects, code reuse, malware
clustering, among others. A broader view on approximate matching tools can be found in
[Harichandran et al. 2016, Martı́nez et al. 2014].

The process of comparing two data sets of digests to find similar ones is referred
to similarity digest search. The forensics examiner needs to check if any of the objects
in the media under analysis is similar to any reference list object. Usually, this process
is done efficiently using ordinary databases, but in such cases, the search aims at finding
exact matches. Looking for objects that resemble each other or are contained one in
another is a much harder task, and cannot be done using traditional ways but only by the
simple brute force approach. The similarity detection is done by a particular function of
the approximate matching tool chosen, which needs to be taken into consideration in the
design of an efficient structure to store digests and allow similarity lookups. The strategies
evaluated in this paper (F2S2, MRSH-NET, and BF-based Tree) follow this idea and are
most specific for a particular kind of tool.

3. Strategies to perform known file filtering

The most time-consuming part of an investigation involving the KFF method and appro-
ximate matching functions is the comparison step, usually performed by the brute force
approach. However, to avoid this expensive solution to perform comparisons, researchers
came up with strategies to better find similar objects on large data sets. In this section, we
present some of these strategies and show how they perform the similarity digest search.

3.1. Brute force

The simple method of brute force consists in comparing all digests from the reference list
(usually pre-computed) with all digests generated for the target system. The best matching
for each object is selected in case the value returned by the comparison function is above a
certain threshold. The comparison using traditional hash functions (SHA-1, SHA-2, etc.)
is fast since it only requires to verify whether two fixed size strings (digests) are equal
or not. However, when using approximate matching tools, this operation becomes more
expensive. Checking the similarity of two digests, in this case, requires interpreting the
digests, using a special function designed for the chosen particular tool.



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

157 © 2017 Sociedade Brasileira de Computação

our research to only those functions working at the byte level since they are more time
efficient and do not depend on the object format; moreover, they do not try to interpret the
object either to consider any data structure.

Approximate matching tools usually have two primary functions: Digest gene-
ration and comparison. In the first one, a digest is created for an object as a small and
compact representation of it. Its size can be fixed or not, depending on the chosen tool.
For instance, ssdeep produces representations of at most 96 bytes (no metadata included),
while sdhash digests are proportional to the object size (≈ 2.6%). The second function of
such tools is intended to compare two objects, where the output is a confidence measure
about their similarity, usually in the scale of 0 (dissimilar) to 100 (very similar), but this
changes according to the tool.

The applications of approximate matching are vast, encompassing the detection of
new versions of documents, libraries or software, embedded objects, code reuse, malware
clustering, among others. A broader view on approximate matching tools can be found in
[Harichandran et al. 2016, Martı́nez et al. 2014].

The process of comparing two data sets of digests to find similar ones is referred
to similarity digest search. The forensics examiner needs to check if any of the objects
in the media under analysis is similar to any reference list object. Usually, this process
is done efficiently using ordinary databases, but in such cases, the search aims at finding
exact matches. Looking for objects that resemble each other or are contained one in
another is a much harder task, and cannot be done using traditional ways but only by the
simple brute force approach. The similarity detection is done by a particular function of
the approximate matching tool chosen, which needs to be taken into consideration in the
design of an efficient structure to store digests and allow similarity lookups. The strategies
evaluated in this paper (F2S2, MRSH-NET, and BF-based Tree) follow this idea and are
most specific for a particular kind of tool.

3. Strategies to perform known file filtering

The most time-consuming part of an investigation involving the KFF method and appro-
ximate matching functions is the comparison step, usually performed by the brute force
approach. However, to avoid this expensive solution to perform comparisons, researchers
came up with strategies to better find similar objects on large data sets. In this section, we
present some of these strategies and show how they perform the similarity digest search.

3.1. Brute force

The simple method of brute force consists in comparing all digests from the reference list
(usually pre-computed) with all digests generated for the target system. The best matching
for each object is selected in case the value returned by the comparison function is above a
certain threshold. The comparison using traditional hash functions (SHA-1, SHA-2, etc.)
is fast since it only requires to verify whether two fixed size strings (digests) are equal
or not. However, when using approximate matching tools, this operation becomes more
expensive. Checking the similarity of two digests, in this case, requires interpreting the
digests, using a special function designed for the chosen particular tool.

3.2. F2S2 strategy
The Fast Forensic Similarity Search (F2S2) strategy, proposed by Winter, C. et al.
[Winter et al. 2013], is an alternative to brute force when performing the KFF method.
This approach uses ssdeep as its approximate matching tool, but it is not limited to it.
It requires that similar objects produce similar digests, a requirement fulfilled by ssdeep
when looking at its comparison function: edit distance (number of operations to transform
one string into another). Roughly speaking, ssdeep divides the object input into variable
size pieces and codifies them into two digests of at most 96 base64 characters, in a way
that similar objects will produce similar digests when compared [Kornblum 2006].

F2S2 is an index strategy which uses n-grams (n consecutive bytes) extracted
from the digests and store them in a chained hash table. The n-grams are extracted using
a fixed window size that moves through the digest byte-to-byte. They are used as lookup
keys in the search for similarity, pointing out possible candidates for being similar to the
queried object. At the end of the search, a comparison using ssdeep is made to only those
objects sharing the same n-grams as the queried item. According to Winter’s experiments
[Winter et al. 2013], a speedup above 2000 times was achieved in comparison to the brute
force approach using ssdeep.

The hash table used by F2S2 is composed of a central array with buckets of vari-
able size, which means that more than one n-gram can be stored in each bucket (multiple
entries), in a chaining fashion. Each n-gram is made of two parts: e-key and bucket ad-
dress. The former identifies the sequence, while the latter is used to find the position in the
hash table where it will be stored by a mapping function. Also, an ID is assigned to each
digest meant to be inserted in the table and stored along with the n-gram in the bucket, as
a way of linking it with the digest and allowing later identification [Winter et al. 2013].

The first step before using F2S2 is to build the index structure. By using ssdeep,
the examiner creates digests for each reference list object and then inserts it in the index.
The first step of this process is to assign IDs to each digest, followed by the n-grams
extraction. Then, all n-grams are inserted in the hash table along with their corresponding
ID. Here, collisions in the hash table buckets are resolved by using a chaining technique,
where each bucket can store multiple n-grams, one followed by the other (linked list).

3.3. MRSH-NET: A Bloom filter approach
Another strategy for performing the KFF approach is the MRSH-NET, proposed by Brei-
tinger, F. et al. [Breitinger et al. 2014a]. The motivation behind this strategy is to improve
the lookup procedure of sdhash and other approximate matching tools which encode their
digests using Bloom filters (BF). The F2S2 strategy presented previously cannot work
with this sort of technology, since there is no effective way to index bloom filters.

The main idea of MRSH-NET is to create a single, huge bloom filter to re-
present all reference list objects instead of one or more BFs separately for each item.
However, due to the characteristics of BFs, MRSH-NET is limited to only membership
queries. It can answer if object A is contained in the set or not, but it can not point
out what is/are the one(s) sharing similarity with it. According to Breitinger, F. et al.
[Breitinger et al. 2014a], this could be enough for a blacklist case. However, we argue
that it could generate lots of false positives that could not be confirmed since the strategy
does not tell us which were the similar objects.



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

158© 2017 Sociedade Brasileira de Computação

To use MRSH-NET for KFF, the examiner needs to create the bloom filter
structure and then insert all reference list objects on it. This process is done by first
using the chosen approximate matching tool (sdhash in our work) to extract the features
from each object in the list and inserting them into the single, huge Bloom filter.

3.4. BF-based tree

A possible solution to overcome MRSH-NET limitation regarding membership queries
and yet to work with sdhash and related tools is presented by Breitinger, F. et al.
[Breitinger et al. 2014c]. This new similarity digest search strategy is based on the di-
vide and conquer paradigm, where a Bloom filter-based tree structure is used to store all
reference list objects, allowing similarity detection and also object identification. How-
ever, this approach only exists in theory and lacks a working prototype. Also, it de-
mands an enormous amount of memory to operate in comparison to other strategies
[Moia and Henriques 2017].

Holding a reference list of objects of interest S with i items, the examiner must
build the BF tree structure and fill it up with all the elements. For this purpose, a single
bloom filter is created as the root node, and all items are inserted into the filter, by first
using the chosen approximate matching tool to extract the object’s features and then in-
serting them in the filter. The next step involves dividing the set S in half, where each part
has its features extracted and added in new Bloom filters, child of the root node. These
two parts are broken in half again, and four new filters are created with the features of the
items belonging to each subset. Each filter is a child of the previous node. The process
repeats until the division of the set results in one object. Finally, the parameters FI (File
Identifier) and FIC (File Identifier Counter) are created at the end of the tree, as leaves.
The former variable is used to link the corresponding BF to a database containing the
digest of the item, while the latter is initially set to 0 (zero) and incremented when the
corresponding FI is traced in a lookup procedure.

Lookups are expected to be very fast using this strategy since only a subset of
nodes needs to be checked. The first step requires the feature extraction of the queried
item, followed by a lookup procedure which is done for each extracted feature, starting
from the root of the tree. In the case of a non-match in the root, we know for sure that
this feature is not in the tree structure and we can proceed to the next object in the target
system. Otherwise, the search continues through the rest of the tree until it reaches a leaf.
The FIC of the corresponding leaf is incremented. After comparing all features from the
queried item, the FI of the highest FIC is selected and compared to a threshold t, which
is the minimum number of consecutive features that need to be found in the filter. When
the value is higher than the threshold, the item is said to belong to the tree. Finally, a
comparison of the selected item and the queried one is done in the digest level, using the
chosen approximate matching tool with the purpose of verifying similarity. According to
Breitinger, F. et al. [Breitinger et al. 2014c], most of the comparisons yield a non-match,
especially for blacklist cases, leading the search to stop in the root node. They argue that
the number of bad or illegal objects are usually much smaller than the total number of
objects in the target system, making the BF-based tree strategy very time efficient.



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

159 © 2017 Sociedade Brasileira de Computação

To use MRSH-NET for KFF, the examiner needs to create the bloom filter
structure and then insert all reference list objects on it. This process is done by first
using the chosen approximate matching tool (sdhash in our work) to extract the features
from each object in the list and inserting them into the single, huge Bloom filter.

3.4. BF-based tree

A possible solution to overcome MRSH-NET limitation regarding membership queries
and yet to work with sdhash and related tools is presented by Breitinger, F. et al.
[Breitinger et al. 2014c]. This new similarity digest search strategy is based on the di-
vide and conquer paradigm, where a Bloom filter-based tree structure is used to store all
reference list objects, allowing similarity detection and also object identification. How-
ever, this approach only exists in theory and lacks a working prototype. Also, it de-
mands an enormous amount of memory to operate in comparison to other strategies
[Moia and Henriques 2017].

Holding a reference list of objects of interest S with i items, the examiner must
build the BF tree structure and fill it up with all the elements. For this purpose, a single
bloom filter is created as the root node, and all items are inserted into the filter, by first
using the chosen approximate matching tool to extract the object’s features and then in-
serting them in the filter. The next step involves dividing the set S in half, where each part
has its features extracted and added in new Bloom filters, child of the root node. These
two parts are broken in half again, and four new filters are created with the features of the
items belonging to each subset. Each filter is a child of the previous node. The process
repeats until the division of the set results in one object. Finally, the parameters FI (File
Identifier) and FIC (File Identifier Counter) are created at the end of the tree, as leaves.
The former variable is used to link the corresponding BF to a database containing the
digest of the item, while the latter is initially set to 0 (zero) and incremented when the
corresponding FI is traced in a lookup procedure.

Lookups are expected to be very fast using this strategy since only a subset of
nodes needs to be checked. The first step requires the feature extraction of the queried
item, followed by a lookup procedure which is done for each extracted feature, starting
from the root of the tree. In the case of a non-match in the root, we know for sure that
this feature is not in the tree structure and we can proceed to the next object in the target
system. Otherwise, the search continues through the rest of the tree until it reaches a leaf.
The FIC of the corresponding leaf is incremented. After comparing all features from the
queried item, the FI of the highest FIC is selected and compared to a threshold t, which
is the minimum number of consecutive features that need to be found in the filter. When
the value is higher than the threshold, the item is said to belong to the tree. Finally, a
comparison of the selected item and the queried one is done in the digest level, using the
chosen approximate matching tool with the purpose of verifying similarity. According to
Breitinger, F. et al. [Breitinger et al. 2014c], most of the comparisons yield a non-match,
especially for blacklist cases, leading the search to stop in the root node. They argue that
the number of bad or illegal objects are usually much smaller than the total number of
objects in the target system, making the BF-based tree strategy very time efficient.

4. Steps in a similarity digest search procedure

In this section, we evaluate the necessary steps in the operational phase of each strategy
and present equations that we developed to estimate the time needed for each of them.
We performed this analysis because most strategies do not have their source codes or a
compiled version available to calculate their costs and compare them.

4.1. Brute force

The procedure involving the brute force can be summarized in the following steps:

1. For each item in the target system, perform:
(a) digest generation;
(b) For each item in the reference list, perform:

i. digests comparison.
(c) Return the digest with higher value if above a threshold t.

The steps aforementioned are part of the operation phase of a simple brute force
approach. We can estimate the time to perform such task using Eq.1.

Top = i · (TdigCalc + (r · TcompFunc)) (1)

Here i is the number of objects in the target system, TdigCalc is the time for calculating a
single digest using the chosen approximate matching tool (ssdeep, sdhash, etc.) or hash
function (SHA-1, SHA-2, etc.), r the number of objects in the reference list and TcompFunc

is the time to compare two entries using the same tool.

Brute force can be used with any similarity tool. In our work, we chose ssdeep
[Kornblum 2006] and sdhash [Roussev 2010] to perform the brute force approach and
hence compare them with other strategies regarding time performance. We chose SHA-1
hash function as a benchmark since most approximate matching functions aim at achiev-
ing times close to it. We emphasize that SHA-1 vulnerabilities regarding collisions are
not an issue here, as this hash function is not being used with a security role. Even simpler
(and also compromised) functions as MD-5 would be useful here.

4.2. F2S2

Upon an investigation process where the forensic examiner wants to perform the KFF
approach in a target system, the following steps must be done using F2S2:

1. Load the index structure into main memory;
2. For each item in the target system, perform:

(a) ssdeep digest generation;
(b) n-gram extraction;
(c) n-gram lookup (L digests that share the same n-grams as the ones of the

queried item will be selected as candidates).
(d) ssdeep comparison of the queried item with the L selected digest.
(e) return the digests with value above a threshold t.



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

160© 2017 Sociedade Brasileira de Computação

To estimate the time to perform the operational phase of F2S2, we can use Eq.2.

Top = TindexLoad + i · (TgenSsdeep + TngramExtr + TngramLookup + (L · TcompSsdeep)), (2)

where TindexLoad represents the time to load the index into memory (step 1), i the number
of objects in the target system, TgenSsdeep the time to compute a single ssdeep digest (step
2.a), and TngramExtr the time to extract all n-grams from the corresponding object (step
2.b). TngramLookup refers to the time to perform a lookup procedure in the index (step 2.c),
calculated by Eq. 3. L represents the number of candidates sharing the same n-grams
as the queried item, returned by the lookup process, and TcompSsdeep denotes the time to
calculate the Edit Distance for two digests (ssdeep comparison function)(step 2.d).

To calculate the time to perform the lookup procedure, we can use Eq. 3.

TngramLookup = g · (ThashI + (TcompStrE · b)). (3)

Here g is the number of n-grams extracted from the digest (g = ldig − n+ 1, where ldig is
the digest size (bytes) and n the n-gram sequence size), ThashI the time to hash a string (n-
gram index), TcompStrE the time to compare two strings (n-gram e-key) and b the average
number of different n-grams in each bucket (section 5.2 shows how to compute it).

4.3. MRSH-NET
The operational process using MRSH-NET involves the following steps:

1. Load the Bloom filter into main memory;
2. For each item in the target system, perform:

(a) feature extraction (with sdhash), resulting in z features;
(b) z lookups.

To estimate the time to perform this task, we first need to calculate the number
of features (z) presented in the target system (average). To this end, we can use Eq. 4,
derived from Breitinger, F. et al [Breitinger et al. 2014c] statement: “sdhash maps 160
features into a Bloom filter for every approximately 10 KiB of input file”.

z = (µ · 220 · 160)/(10 · 210) = 214 · µ, (4)

where µ is the size of all objects in the reference list (MiB) and both factor, 220 and 210,
are used to change from MiB and KiB to bytes, respectively.

Then, we can use Eq. 5 to estimate the required time of MRSH-NET, as follows:

Top = TbfLoad + i · (TfeatureExtr + (z · TbfLookup)). (5)

where TbfLoad is the time to load the bloom filter data structure into memory (step 1), i the
number of objects in the target system, TfeatureExtr the time to extract the features from
an object (step 2.a), and z the number of features extracted from it (Eq. 4). The TbfLookup

is the time to perform a lookup procedure in the filter (step 2.b), calculated by eq. 6.

TbfLookup = ThashF + (k · TcompStrF ) (6)

Here ThashF denotes the time to hash each feature of β bytes and k the number of sub-
hashes. MRSH-NET inserts a feature in the bloom filter by first hashing it and breaking
the hash into k parts (sub-hashes). The resulting pieces are used to set the bloom filter.
TcompStrF is the time to compare two strings of F bytes each (feature size divided by k).



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

161 © 2017 Sociedade Brasileira de Computação

To estimate the time to perform the operational phase of F2S2, we can use Eq.2.

Top = TindexLoad + i · (TgenSsdeep + TngramExtr + TngramLookup + (L · TcompSsdeep)), (2)

where TindexLoad represents the time to load the index into memory (step 1), i the number
of objects in the target system, TgenSsdeep the time to compute a single ssdeep digest (step
2.a), and TngramExtr the time to extract all n-grams from the corresponding object (step
2.b). TngramLookup refers to the time to perform a lookup procedure in the index (step 2.c),
calculated by Eq. 3. L represents the number of candidates sharing the same n-grams
as the queried item, returned by the lookup process, and TcompSsdeep denotes the time to
calculate the Edit Distance for two digests (ssdeep comparison function)(step 2.d).

To calculate the time to perform the lookup procedure, we can use Eq. 3.

TngramLookup = g · (ThashI + (TcompStrE · b)). (3)

Here g is the number of n-grams extracted from the digest (g = ldig − n+ 1, where ldig is
the digest size (bytes) and n the n-gram sequence size), ThashI the time to hash a string (n-
gram index), TcompStrE the time to compare two strings (n-gram e-key) and b the average
number of different n-grams in each bucket (section 5.2 shows how to compute it).

4.3. MRSH-NET
The operational process using MRSH-NET involves the following steps:

1. Load the Bloom filter into main memory;
2. For each item in the target system, perform:

(a) feature extraction (with sdhash), resulting in z features;
(b) z lookups.

To estimate the time to perform this task, we first need to calculate the number
of features (z) presented in the target system (average). To this end, we can use Eq. 4,
derived from Breitinger, F. et al [Breitinger et al. 2014c] statement: “sdhash maps 160
features into a Bloom filter for every approximately 10 KiB of input file”.

z = (µ · 220 · 160)/(10 · 210) = 214 · µ, (4)

where µ is the size of all objects in the reference list (MiB) and both factor, 220 and 210,
are used to change from MiB and KiB to bytes, respectively.

Then, we can use Eq. 5 to estimate the required time of MRSH-NET, as follows:

Top = TbfLoad + i · (TfeatureExtr + (z · TbfLookup)). (5)

where TbfLoad is the time to load the bloom filter data structure into memory (step 1), i the
number of objects in the target system, TfeatureExtr the time to extract the features from
an object (step 2.a), and z the number of features extracted from it (Eq. 4). The TbfLookup

is the time to perform a lookup procedure in the filter (step 2.b), calculated by eq. 6.

TbfLookup = ThashF + (k · TcompStrF ) (6)

Here ThashF denotes the time to hash each feature of β bytes and k the number of sub-
hashes. MRSH-NET inserts a feature in the bloom filter by first hashing it and breaking
the hash into k parts (sub-hashes). The resulting pieces are used to set the bloom filter.
TcompStrF is the time to compare two strings of F bytes each (feature size divided by k).

4.4. BF-based tree
We can sum up the required steps using BF-based tree by the following ones:

1. Load the Bloom filter-based tree structure into main memory;
2. For each item in the target system, perform:

(a) feature extraction (with sdhash), resulting in z features;
(b) z lookups in the tree.
(c) If any object feature FIC is higher than the threshold t,

i. compare the corresponding FI digest with the queried one (with
sdhash).

To estimate the operational phase time of BF-based tree, we can use Eq.7.

Top = TbfTreeLoad + i · (TfeatureExtr + (z · (TbfLookup · h)) + TcompFunc). (7)

where TbfTreeLoad corresponds to the time to load the bloom filter-based tree structure into
memory (step 1), i is the number of objects in the target system, TfeatureExtr the time to
extract the features from a single object (2.a), z the number of features extracted from the
object (calculated by Eq. 4), and TbfLookup the time to lookup each feature in the tree (Eq.
6) (step 2.b). The h parameter denotes the number of steps required to reach an object
in the tree (see section 5.3), while TcompFunc is the time to compare two digests using the
chosen approximate matching tool (step 2.c).

5. Strategies operational costs
The similarity digest search strategies costs were estimated using the formulas devel-
oped in the previous section. We have designed pieces of code simulating the operations
required by the strategies and then measured the necessary time for performing them.
However, some parameters required a deeper analysis to understand their behavior and to
estimate their values. To this end, we created a database of real data objects to perform
the measures. In this section, we discuss details about this database, the singularities of
some particular parameters, and finally, our results.

In this work, the analysis is focused on one of the most important parameters in
forensics investigations: The database size. Other variations in the strategies parameters
to find their best-operating conditions will be addressed in future works.

5.1. Test database details
To better understand the behavior of some operations and then estimate their values more
precisely, we created a database from real data. This set encompasses over one million
objects extracted from two Linux operating systems (Elementary OS client - Ubuntu
16.04-based - and Ubuntu 16.04 server), Microsoft Windows 10 Home, and also from
personal data, which includes photos, documents, videos, applications, etc. Our database
has 1,256,356 objects, corresponding to about 233.32 GiB of data. There were several
typical applications installed in each operating systems, including Latex, LibreOffice,
Microsoft Office 2013, Foxit Reader, NetBeans IDE, Internet Explorer, Google Chrome,
Firefox, and default operating system applications. The type of the objects varies, includ-
ing pdf, jpg, png, bmp, txt, doc, docx, odf, mkv, avi, py, mp3, wma, html, jar, rar, c, bin,
among others. Since this work focus on the best performance of the approximate match-
ing tools in their best conditions and our experience shows that ssdeep do not produce
reliable results with large objects, we limited the object size in our database to 200 MiB.
Future works will address scenarios using larger objects.



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

162© 2017 Sociedade Brasileira de Computação

Figure 1. Different n-grams per bucket Figure 2. Number of different n-grams
per bucket (amplified): index 0 to 300.

5.2. The F2S2 case analysis: Using different database sizes

To estimate some parameters of the F2S2 strategy, we implemented a simplified version
of this approach, aiming to observe how data is spread over the hash table. Then, we
estimated the values of variables b (number of different n-grams per bucket) and L (num-
ber of objects sharing the same n-gram as the queried item), necessary to the calculus of
F2S2 operational phase. To this end, we generated ssdeep hashes for every object in our
database (encompassing all four data sets) and inserted them in the index structure. The
chosen hash table size was 224 (4 6-bit base64 characters from the n-gram).

After inserting all n-grams obtained from our database objects in the index
structure, a total of 75,549,716 n-grams were counted. However, 2,218,267 of 16,777,216
(13.22%) buckets were still empty, which means that lots of buckets contained multiple
entries. Fig 1 shows the distribution of the number of different n-grams per bucket (b),
while Fig. 2 is an amplified version of it, presenting only the b value for the 300 first
buckets. Estimating b can be done using Eq. 8, as follows:

b = dngrams/nbuckets, (8)

where dngrams is the number of different n-grams inserted in the hash table and nbuckets

the hash table size (number of buckets). The statistic information about the distribution
of b in the table follows: standard deviation = 5.22, median = 2, and mode = 2. To find
the average number of different n-grams in each bucket, we applied Eq. 8 for the data
inserted in the F2S2 structure, obtaining a result of 2.27. Although we may find a few
buckets with lots of n-grams, a significant portion of the table is empty and will lead to
empty buckets, as we can see by Fig. 2. There is a peak in one bucket with a significant
number of n-grams occurrences and others, but as expressed by the mode and median got
from the analysis, most buckets have two or fewer elements. This fact led us to choose
the average of the number of different n-grams as the b value (Eq. 8) since this seems the
better choice when comparing it to the other statistic components got from the analysis.

Concerning to the number of objects sharing the same n-gram L, we have used



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

163 © 2017 Sociedade Brasileira de Computação

Figure 1. Different n-grams per bucket Figure 2. Number of different n-grams
per bucket (amplified): index 0 to 300.

5.2. The F2S2 case analysis: Using different database sizes

To estimate some parameters of the F2S2 strategy, we implemented a simplified version
of this approach, aiming to observe how data is spread over the hash table. Then, we
estimated the values of variables b (number of different n-grams per bucket) and L (num-
ber of objects sharing the same n-gram as the queried item), necessary to the calculus of
F2S2 operational phase. To this end, we generated ssdeep hashes for every object in our
database (encompassing all four data sets) and inserted them in the index structure. The
chosen hash table size was 224 (4 6-bit base64 characters from the n-gram).

After inserting all n-grams obtained from our database objects in the index
structure, a total of 75,549,716 n-grams were counted. However, 2,218,267 of 16,777,216
(13.22%) buckets were still empty, which means that lots of buckets contained multiple
entries. Fig 1 shows the distribution of the number of different n-grams per bucket (b),
while Fig. 2 is an amplified version of it, presenting only the b value for the 300 first
buckets. Estimating b can be done using Eq. 8, as follows:

b = dngrams/nbuckets, (8)

where dngrams is the number of different n-grams inserted in the hash table and nbuckets

the hash table size (number of buckets). The statistic information about the distribution
of b in the table follows: standard deviation = 5.22, median = 2, and mode = 2. To find
the average number of different n-grams in each bucket, we applied Eq. 8 for the data
inserted in the F2S2 structure, obtaining a result of 2.27. Although we may find a few
buckets with lots of n-grams, a significant portion of the table is empty and will lead to
empty buckets, as we can see by Fig. 2. There is a peak in one bucket with a significant
number of n-grams occurrences and others, but as expressed by the mode and median got
from the analysis, most buckets have two or fewer elements. This fact led us to choose
the average of the number of different n-grams as the b value (Eq. 8) since this seems the
better choice when comparing it to the other statistic components got from the analysis.

Concerning to the number of objects sharing the same n-gram L, we have used

Eq. 9 to calculate this value.

L = nobj/dngrams. (9)

Here, the new variable nobj denotes the number of objects in our database. We cannot use
the average as we did in the previous case because digests may share multiple n-grams
and we are only interested in finding the number of different digests sharing at least one
n-gram with the queried item, not the number of similar n-grams. When we apply Eq. 9
to the data of the F2S2 hash table, we get a result of 0.033, which express our expectation
for the average number of different objects sharing the same n-gram.

The values calculated so far are concerning to our data set only. Other sets of
similar or different sizes may present different values for b and L since these parameters
depend exclusively on the data being handled, which could have a different n-gram dis-
tribution. To extend our results to other sets, one needs to compute the b and L values
for them. To this end, equations 8 and 9 can be applied. However, if by on hand we can
define our hash table size (nbuckets) and count the number of objects in our database (nobj)
quickly, on the other hand, it is hard to know the number of different n-grams (dngrams)
without inserting all ssdeep digests in the hash table and counting them.

To estimate the value of different n-grams (dngrams) for a data set with different
type and size, required to the calculus of the parameters b and L, we need to find an
expression that give us such value based on the total number of n-gram in this set. First,
we consider the different data sources that forms the database (Linux client, Linux server,
Windows 10, and personal data) to simulate different systems and get a more general idea
on how the n-grams are spread across them. Then, we insert each set separately in the
F2S2 index structure and count the number of different n-grams. We also use the data got
from our first analysis where the entire database (all former sets together) was inserted in
the structure since it can represent a different and larger set.

To find the expression that gives us the value of dngrams, we use regression analysis
techniques. This way, we can determine the relationship between the values of different
n-grams (unknown) and the total number of n-grams in the database (known). We chose
the least squares method to this end. Applying this technique to our results (Tab. 1), we
came up with the following expression:

dngrams = 2237231.04 + (0.4816 · nngrams), (10)

where nngrams is the number of n-grams of the database. We can obtain this number by
multiplying the number of objects for the average number of n-grams in a single digest.

Table 1. Number of different n-grams in each data source
Source Total number of n-grams Number of different n-grams
Linux client 22,937,595 12,828,701
Linux server 28,071,532 18,405,835
Microsoft Windows 11,376,395 7,357,119
Personal data 13,164,194 7,316,768
All sources 75,549,716 38,053,476

The expression above allows us to estimate the number of different n-grams in any
database size and hence calculate both b and L values.



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

164© 2017 Sociedade Brasileira de Computação

5.3. BF-based tree case analysis: Average steps in a search

Estimating the time needed for the BF-based tree strategy demands the knowledge of the
number of times we will need to go through the tree structure to identify a given element.
In a lookup procedure, there will be cases where the search stops in the root when the
given element is not present in the structure, but in others, we may have to go through the
entire structure to find it. Knowing the number of steps performed by element (h) will
allow us to estimate the operational cost of the BF-based tree strategy (Eq. 7). To this
end, one can develop an algorithm to count the average number of steps considering two
scenarios: when the input is present in the tree and when it is not. In the first case, we go
through the tree structure checking each node (bloom filter) for the presence of the given
object until we find it, stopping the procedure in a leaf. For the second one, the search
ends in the root tree, but there is also the possibility of occurring false positives, leading
the process to go through the tree until all nodes of any level return a negative result. In
the end, a weighted average between the number of steps found in each scenario and the
number of elements must be returned, where the percentage of the two events occur are
used as weight.

5.4. Parameters definitions and measurements

Using the proposed formulas we can estimate the costs for performing the searches with
different database sizes. The values adopted in our experiments are presented in Table 2.
We performed the tests using the following machine: Elementary OS 0.4.1 Loki 64-bit
(built on Ubuntu 16.04.2 LTS), i7-5500U CPU @2.40GHz processor, 8 GB of memory,
and NVIDIA GeForce 920M. We measured the time for each operation using the clock
library from the C language, except for ssdeep and sdhash times (generation and compari-
son functions) which were measured using the time command (sys + user times) available
on Linux distributions, since we used the compiled version of these tools. The times to
compute the ssdeep, sdhash, and SHA-1 (both hashes generation and comparison) were
calculated over the average object size, presented in the table. We repeated all expe-
riments 20 times and took the average, taking care of clearing the cache each time to
prevent previous results influencing new ones.

Before calculating the operational costs, we determined the strategies structure
size. To this end, we used the formulas and parameters presented in another work
[Moia and Henriques 2017], adapting only the database and average object sizes. We
measured the time to load an object of 1 GiB from disk to memory (buffer of sbuf bytes)
and adjusted this value according to the strategies structure size to simulate the loading.

5.5. Operational costs evaluation

We have measured the time for the three presented strategies (F2S2, MRSH-NET, and
BF-based Tree) and also for the brute force one when using SHA-1, ssdeep and sdhash.
In our experiments, we first considered the database presented in section 5.1 as our refer-
ence list and then measured the time for performing over it using different target system
sizes, varying them from 1 GiB to 10 TiB. It is important to mention that our database en-
compasses objects from different fonts gathered in a single set. Using the equations from
Section 3 along with the values of section 5.4, we can estimate the strategies operational
costs, shown in Fig. 3 (a).



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

165 © 2017 Sociedade Brasileira de Computação

5.3. BF-based tree case analysis: Average steps in a search

Estimating the time needed for the BF-based tree strategy demands the knowledge of the
number of times we will need to go through the tree structure to identify a given element.
In a lookup procedure, there will be cases where the search stops in the root when the
given element is not present in the structure, but in others, we may have to go through the
entire structure to find it. Knowing the number of steps performed by element (h) will
allow us to estimate the operational cost of the BF-based tree strategy (Eq. 7). To this
end, one can develop an algorithm to count the average number of steps considering two
scenarios: when the input is present in the tree and when it is not. In the first case, we go
through the tree structure checking each node (bloom filter) for the presence of the given
object until we find it, stopping the procedure in a leaf. For the second one, the search
ends in the root tree, but there is also the possibility of occurring false positives, leading
the process to go through the tree until all nodes of any level return a negative result. In
the end, a weighted average between the number of steps found in each scenario and the
number of elements must be returned, where the percentage of the two events occur are
used as weight.

5.4. Parameters definitions and measurements

Using the proposed formulas we can estimate the costs for performing the searches with
different database sizes. The values adopted in our experiments are presented in Table 2.
We performed the tests using the following machine: Elementary OS 0.4.1 Loki 64-bit
(built on Ubuntu 16.04.2 LTS), i7-5500U CPU @2.40GHz processor, 8 GB of memory,
and NVIDIA GeForce 920M. We measured the time for each operation using the clock
library from the C language, except for ssdeep and sdhash times (generation and compari-
son functions) which were measured using the time command (sys + user times) available
on Linux distributions, since we used the compiled version of these tools. The times to
compute the ssdeep, sdhash, and SHA-1 (both hashes generation and comparison) were
calculated over the average object size, presented in the table. We repeated all expe-
riments 20 times and took the average, taking care of clearing the cache each time to
prevent previous results influencing new ones.

Before calculating the operational costs, we determined the strategies structure
size. To this end, we used the formulas and parameters presented in another work
[Moia and Henriques 2017], adapting only the database and average object sizes. We
measured the time to load an object of 1 GiB from disk to memory (buffer of sbuf bytes)
and adjusted this value according to the strategies structure size to simulate the loading.

5.5. Operational costs evaluation

We have measured the time for the three presented strategies (F2S2, MRSH-NET, and
BF-based Tree) and also for the brute force one when using SHA-1, ssdeep and sdhash.
In our experiments, we first considered the database presented in section 5.1 as our refer-
ence list and then measured the time for performing over it using different target system
sizes, varying them from 1 GiB to 10 TiB. It is important to mention that our database en-
compasses objects from different fonts gathered in a single set. Using the equations from
Section 3 along with the values of section 5.4, we can estimate the strategies operational
costs, shown in Fig. 3 (a).

Table 2. Similarity digest search strategies experiments - Parameters

Parameter Description Value STD
sobj Average object size 195 (KiB) -
sstrategy Strategies’ structure size see section 5.4 -
sbuf Buffer size 4096 (bytes) -
Tread Time to read 1 GiB from disk to memory 429.7565 (ms) 8.1452 (ms)
TgenSH SHA-1 digest generation 0.6581 (ms) 0.0949 (ms)
TcompSH SHA-1 comparison function 0.0102 (ms) 0.0037 (ms)
sngram n-gram size 7 (bytes) -
sindex index size 4 (bytes) -
sekey e-key size 3 (bytes) -
TgenSS ssdeep digest generation 5.6000 (ms) 2.3324 (ms)
TcompSS ssdeep comparison function 1.0000 (ms) 1.7320 (ms)
TindexLoad Time to load the index structure sstrategy · Tread (ms) -
TngramExtr Time to extract n-grams from ssdeep digest 0.0207 (ms) 0.0062 (ms)
b N-grams in each bucket see section 5.2 -
L Candidates sharing the same n-gram see section 5.2 -
ThashI Time to hash sindex bytes 0.0813 (ms) 0.0115
TcompStrE Time to compare two strings (sekey bytes) 0.0010 (ms) 0.0001 (ms)
TgenSD sdhash digest generation 19.2000 (ms) 5.3066 (ms)
TcompSD sdhash comparison function 19.4000 (ms) 4.7791 (ms)
TbfLoad Time to load the Bloom filter structure sstrategy · Tread (ms) -
TfeatureExtr Time to extract features from an object 12.2975 (ms) 4.4667 (ms)
β Feature size 64 (bytes) -
ThashF Time to hash a feature of β bytes 0.0929 (ms) 0.0295 (ms)
TcompStrF Time to compare two strings (β bytes) 0.0010 (ms) 0.0001 (ms)
k Number of hash functions for the BF 5 -
TbfTreeLoad Time to load the BF tree structure sstrategy · Tread (ms) -
h Average steps in a lookup procedure see section 5.3 -
x Degree of the tree 2 -

According to our results, the strategies presented a linear grow as the target system
size increased. As expected, the brute force approach had the worst results, with sdhash as
the most expensive one, followed by ssdeep and SHA-1. The latter one had similar results
as the BF-based tree but was a bit more costly. The best strategy regarding the operational
time was F2S2, presenting, on average, a speedup of 1,933,723.39, 99,676.83, and 996.82
times compared to the brute force approaches sdhash, ssdeep, and SHA-1, respectively,
and 778.89 and 25.24 times better than BF-tree and MRSH-NET strategies, respectively.

Fig. 3 (b) shows how the strategies perform over a reference list size variation (10
GiB to 250 GiB) and using a fixed target system size database (1 TiB). We limited our
experiments to this particular range since it is the one covered by our data set. Estimating
the behavior of b and L parameters in the F2S2 equation for database sizes far beyond ours
could lead to wrong results once the data distribution in such cases could be very different.
For larger database sizes, additional studies are required to estimate these variables and
hence the strategies operational costs.



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

166© 2017 Sociedade Brasileira de Computação

Figure 3. Strategies operational costs:
(a) Target system size variation, considering a fixed size ref. list (233.32 GiB)
(b) Ref. list size variation, considering a fixed size target system (1 TiB)

Again, our results pointed out that sdhash brute force is the most time-consuming
approach and, on average, F2S2 is the best one. However, despite the linear behavior
of the brute force method, the other strategies presented a different time variation as the
reference list size increased. When performing queries over these new database sizes,
MRSH-NET showed constant time as expected due to the lookup procedure time be in-
dependent of the structure size. The time on the BF-based tree strategy was not constant
but increased slowly due to the tree structure getting larger as the reference list expanded
(number of elements grow), elevating the average number of steps in a lookup procedure
and hence the time to go through the tree. The F2S2 strategy time had a very small in-
crease due to the number of similar n-grams increase. For databases ranging from 10 GiB
to 250 GiB, the F2S2 time increase was only 1.24% of the initial value.

Our findings showed the prohibitive costs of the brute force method when per-
forming over large database sizes. For instance, an investigation of a 1 TiB target system
using a reference list of 233.32 GiB and sdhash brute force approach could take more
than 4 thousand years to be accomplished (around 6,917,958,887,350 comparisons be-
tween the data sets are necessary). The same search using the strategies MRSH-NET and
the BF-based tree could take only 70 and 2145 days, respectively. Using the ssdeep brute
force, the same process would require around 754 years, while F2S2 would only demand
no more than 20 hours. It is important to mention that this enormous amount of time is
due to the hardware used to perform the experiments. In a working station with powerful
hardware and using parallelism techniques, these times are expected to decrease, but the
relative differences found among the strategies will remain.

Another important fact to mention is that even though F2S2 presents higher
lookup complexity than MRSH-NET and BF-based tree [Moia and Henriques 2017], it
performed better in our experiments when comparing large data sets. As expected,
MRSH-NET was better than the BF-based tree.



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

167 © 2017 Sociedade Brasileira de Computação

Figure 3. Strategies operational costs:
(a) Target system size variation, considering a fixed size ref. list (233.32 GiB)
(b) Ref. list size variation, considering a fixed size target system (1 TiB)

Again, our results pointed out that sdhash brute force is the most time-consuming
approach and, on average, F2S2 is the best one. However, despite the linear behavior
of the brute force method, the other strategies presented a different time variation as the
reference list size increased. When performing queries over these new database sizes,
MRSH-NET showed constant time as expected due to the lookup procedure time be in-
dependent of the structure size. The time on the BF-based tree strategy was not constant
but increased slowly due to the tree structure getting larger as the reference list expanded
(number of elements grow), elevating the average number of steps in a lookup procedure
and hence the time to go through the tree. The F2S2 strategy time had a very small in-
crease due to the number of similar n-grams increase. For databases ranging from 10 GiB
to 250 GiB, the F2S2 time increase was only 1.24% of the initial value.

Our findings showed the prohibitive costs of the brute force method when per-
forming over large database sizes. For instance, an investigation of a 1 TiB target system
using a reference list of 233.32 GiB and sdhash brute force approach could take more
than 4 thousand years to be accomplished (around 6,917,958,887,350 comparisons be-
tween the data sets are necessary). The same search using the strategies MRSH-NET and
the BF-based tree could take only 70 and 2145 days, respectively. Using the ssdeep brute
force, the same process would require around 754 years, while F2S2 would only demand
no more than 20 hours. It is important to mention that this enormous amount of time is
due to the hardware used to perform the experiments. In a working station with powerful
hardware and using parallelism techniques, these times are expected to decrease, but the
relative differences found among the strategies will remain.

Another important fact to mention is that even though F2S2 presents higher
lookup complexity than MRSH-NET and BF-based tree [Moia and Henriques 2017], it
performed better in our experiments when comparing large data sets. As expected,
MRSH-NET was better than the BF-based tree.

6. Conclusion
Approximate matching functions appear as candidates to speedup the process of digital
forensic investigations and yet being accurate in the search for objects of interest in medias
with high capacity. However, traditional search procedures are based on the inefficient
brute force method, which is too time-consuming and even prohibitive for larger data
sets. In this paper, we evaluated similarity digest search strategies aiming at reducing this
overwhelming cost. A detailed analysis of the operational costs of these approaches was
presented, showing significant improvements over the simple brute force ones. Our results
point out how the strategies scale with different database sizes and show the ones that
performed best. Future studies encompass extending our analysis to other similarity digest
search strategies, along with the estimation of the preparation phase costs and variations
of the strategies parameters to find the best-operating conditions of each approach. We
also plan to find new methods to estimate the parameters b and L of F2S2 to scale with
any database size as well as developing a new strategy to overcome current limitations.

References
Breitinger, F. and Baier, H. (2012). Performance Issues About Context-Triggered Piece-

wise Hashing, pages 141–155. Springer Berlin Heidelberg, Berlin, Heidelberg.

Breitinger, F., Baier, H., and White, D. (2014a). On the database lookup problem of
approximate matching. Digital Investigation, 11:S1–S9.

Breitinger, F., Guttman, B., McCarrin, M., Roussev, V., and White, D. (2014b). Approxi-
mate matching: definition and terminology. NIST Special Publication, 800:168.

Breitinger, F., Rathgeb, C., and Baier, H. (2014c). An efficient similarity digests database
lookup-a logarithmic divide & conquer approach. The Journal of Digital Forensics,
Security and Law: JDFSL, 9(2):155.

Harichandran, V. S., Breitinger, F., and Baggili, I. (2016). Bytewise approximate match-
ing: The good, the bad, and the unknown. The Journal of Digital Forensics, Security
and Law: JDFSL, 11(2):59.

Kornblum, J. (2006). Identifying almost identical files using context triggered piecewise
hashing. Digital investigation, 3:91–97.

Martı́nez, V. G., Álvarez, F. H., and Encinas, L. H. (2014). State of the art in similarity
preserving hashing functions. In Proceedings of the International Conference on Secu-
rity and Management (SAM), page 1. The Steering Committee of The World Congress
in Computer Science, Computer Engineering and Applied Computing (WorldComp).

Moia, V. H. G. and Henriques, M. A. A. (2017). A comparative analysis about similarity
search strategies for digital forensics investigations. In XXXV Simpósio Brasileiro de
Telecomunicacões e Processamento de Sinais (SBrT 2017), São Pedro, Brazil.

NIST (2016). National software reference library. http://www.nsrl.nist.gov/.
Accessed 2016 Set 13.

Roussev, V. (2010). Data fingerprinting with similarity digests. In IFIP International
Conf. on Digital Forensics, pages 207–226. Springer.

Winter, C., Schneider, M., and Yannikos, Y. (2013). F2s2: Fast forensic similarity search
through indexing piecewise hash signatures. Digital Investigation, 10(4):361–371.


	3. An operational costs analysis of similarity digest search strategies using approximate matching tools
	Vitor Hugo Galhardo Moia, Marco Aurélio Amaral Henriques

