
XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

168 © 2017 Sociedade Brasileira de Computação

Sessão técnica 5 (ST5): Intrusão - detecção, prevenção e resposta
1. Flow-Based Intrusion Detection for SCADA networks using Supervised Learning
Gabriel Vasquez, Rodrigo S. Miani, Bruno B. ZarpelãoFlow-Based Intrusion Detection for SCADA networks using

Supervised Learning
Gabriel Vasquez1, Rodrigo S. Miani 2, Bruno B. Zarpelão1

1Computer Science Department - State University of Londrina (UEL)
Londrina, PR - Brazil

2School of Computer Science - Federal University of Uberlândia (UFU)
Uberlândia, MG - Brazil

gabriel@vasquez.com.br, miani@ufu.br, brunozarpelao@uel.br

Abstract. Recent attacks on industrial networks have brought the question of
their protection, given the importance of the equipment that they control. In
this paper, we address the application of Machine Learning (ML) algorithms to
build an Intrusion Detection System (IDS) for these networks. As network traffic
usually has much less malicious packets than normal ones, intrusion detection
problems have class imbalance as a key characteristic, which can be a chal-
lenge for ML algorithms. Therefore, we study the performance of nine different
ML algorithms in classifying IP flows of an industrial network, analyzing the
impact of class imbalance in the results. The algorithms were evaluated taking
as main metrics the F1-Score and Averaged Accuracy. Our experiments showed
that the three algorithms based on decision trees were superior to the others.
Particularly, the Decision Jungle algorithm outperformed all the others.

1. Introduction
Industrial control systems (ICS) are very common in large industries, as they monitor
and control many devices through constant polling. This is accomplished using SCADA
(Supervisory Control and Data Acquisition) systems, which usually communicate with
the various devices using Modbus Protocol. Recent attacks on these networks have
brought much attention to the industry about how to protect those networks [Loukas 2015]
[Piggin 2015].

An analysis of incidents in critical infrastructures and other industrial networks in
the period of 1982-2012 by Miller and Rowe [2012] shows that the number of attacks has
a tendency to rise over the years. Moreover, the main motivation behind those incidents
is to disrupt the services provided, hitting both industry and government infrastructures.
This shows that the risk of an attack on such networks is increasing continuously.

Piggin [2015] conducted a survey involving 599 companies in which he found that
52% were unaware that industrial networks had vulnerabilities. According to him, we can
consider that security in industrial networks is still in its early childhood, meaning that not
only their administrators are unconscious of the susceptibility of an attack, but also about
the risks that it represents. An example of a serious attack that hit industrial networks
was Stuxnet, a malware specifically developed to disrupt this kind of network. Its main
target was a Siemens controller used in Iran’s nuclear centrifuges, and the main goal was
to destroy the uranium-enriching centrifuges [Ntalampiras 2015], [Yusheng et al. 2017].

As ICS are gradually being connected to the Internet, the risks faced by these
networks tend to increase even more. Hence, we note that there is a great need for an



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

169 © 2017 Sociedade Brasileira de Computação

Flow-Based Intrusion Detection for SCADA networks using
Supervised Learning

Gabriel Vasquez1, Rodrigo S. Miani 2, Bruno B. Zarpelão1

1Computer Science Department - State University of Londrina (UEL)
Londrina, PR - Brazil

2School of Computer Science - Federal University of Uberlândia (UFU)
Uberlândia, MG - Brazil

gabriel@vasquez.com.br, miani@ufu.br, brunozarpelao@uel.br

Abstract. Recent attacks on industrial networks have brought the question of
their protection, given the importance of the equipment that they control. In
this paper, we address the application of Machine Learning (ML) algorithms to
build an Intrusion Detection System (IDS) for these networks. As network traffic
usually has much less malicious packets than normal ones, intrusion detection
problems have class imbalance as a key characteristic, which can be a chal-
lenge for ML algorithms. Therefore, we study the performance of nine different
ML algorithms in classifying IP flows of an industrial network, analyzing the
impact of class imbalance in the results. The algorithms were evaluated taking
as main metrics the F1-Score and Averaged Accuracy. Our experiments showed
that the three algorithms based on decision trees were superior to the others.
Particularly, the Decision Jungle algorithm outperformed all the others.

1. Introduction
Industrial control systems (ICS) are very common in large industries, as they monitor
and control many devices through constant polling. This is accomplished using SCADA
(Supervisory Control and Data Acquisition) systems, which usually communicate with
the various devices using Modbus Protocol. Recent attacks on these networks have
brought much attention to the industry about how to protect those networks [Loukas 2015]
[Piggin 2015].

An analysis of incidents in critical infrastructures and other industrial networks in
the period of 1982-2012 by Miller and Rowe [2012] shows that the number of attacks has
a tendency to rise over the years. Moreover, the main motivation behind those incidents
is to disrupt the services provided, hitting both industry and government infrastructures.
This shows that the risk of an attack on such networks is increasing continuously.

Piggin [2015] conducted a survey involving 599 companies in which he found that
52% were unaware that industrial networks had vulnerabilities. According to him, we can
consider that security in industrial networks is still in its early childhood, meaning that not
only their administrators are unconscious of the susceptibility of an attack, but also about
the risks that it represents. An example of a serious attack that hit industrial networks
was Stuxnet, a malware specifically developed to disrupt this kind of network. Its main
target was a Siemens controller used in Iran’s nuclear centrifuges, and the main goal was
to destroy the uranium-enriching centrifuges [Ntalampiras 2015], [Yusheng et al. 2017].

As ICS are gradually being connected to the Internet, the risks faced by these
networks tend to increase even more. Hence, we note that there is a great need for an

Intrusion Detection System (IDS) that can correctly detect attacks against these networks
with the lowest number of false positives possible. An anomaly-based IDS using Machine
Learning (ML) could provide satisfactory results to the network administrator as regular
ICS traffic is related to a limited number of requests and responses, making it clearly
different from malicious traffic.

In this paper, we propose that the protection of ICS could be partially accom-
plished by implementing an Anomaly-based IDS using ML algorithms. This IDS will
be responsible for collecting and analyzing the packets that travel through the SCADA
network. Therefore, we will gather and analyze Modbus/TCP traffic, aggregate it into IP
flows and use this data as an input to several ML algorithms to find the ones that have
the best results. We also will study the impacts of class imbalance, which is a common
issue in anomaly detection problems. The evaluation will be performed using a dataset
provided by Lemay and Fernandez [2016], which is publicly available.

The rest of this paper is organized as follows: Section 2 presents the related work.
Section 3 explains the proposed approach. Section 4 presents the dataset, the test envi-
ronment, the results and discusses the experiments. Lastly, Section 5 presents the conclu-
sions.

2. Related Work
In recent years, many methods have been proposed to aid intrusion detection in many
areas, some of them specifically on industrial networks. The intrusion detection usually
is divided into tree types: signature-based IDS, in which the detection of the malicious
traffic depends on previously created signatures for the malicious traffic; specification-
based IDS, in which the detection occurs from differences between the designed normal
states of the network and the operational states; and, anomaly-based IDS, in which the
detection of the malicious traffic occurs based on the deviations from the normal learned
behavior of the network.

In the work of Linda et al. [2009], the authors use two Neural Network algo-
rithms, namely the Error Back-propagation and the Levenberg-Marquardt, to analyze a
SCADA network traffic. In their approach, the 8 most relevant features are extracted
from the dataset according to a defined window size and merged with artificially gener-
ated intrusion traffic to compose the training dataset.

In the work of Junejo and Goh [2016] , the authors developed an anomaly-based
IDS to be used on the SWaT water purification testbed. In the work, the authors used
nine machine learning algorithms to classify the malicious traffic. Although the authors
reached low false positive rates, high precision and recall, the work did not focus on the
impacts of the class imbalance of the dataset generated or the benefits of grouping data
into flows.

In the work of Yang et al. [2013], it is presented a hybrid approach between
signature-based IDS and specification-based IDS for IEC 60870-5-104 networks. The
first part of the proposed IDS detects malicious attacks using a set of Snort rules devel-
oped by the authors. The second part of the IDS increases the detection capability of the
solution by detecting unknown attacks using the specifications of the expected behavior
of the entire system. The work of the authors did not present the source of the used dataset
or a comparison table to demonstrate that this approach provides relevant results. Also,
the definition of the specifications in the second part would require an expert to define the
normal states.



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

170© 2017 Sociedade Brasileira de Computação

Schuster et al. [2015] use One-Class Support Vector Machine (OCSVM) to de-
velop an anomaly based IDS. In their approach, they group each 3 packets from the same
origin in a vector. Then the authors employ SVM to discover the normal data distribu-
tion on a production ICS dataset in a Profibus network. The authors reach high precision,
recall and F-score using different kernels for the SVM.

In the work of Yusheng et al. [2017], the authors developed an IDS for ICS
using the ModBus/TCP Protocol. Their approach consists of two modules: rule extraction
and deep inspection. The first part dissects the ModBus TCP packet into three subparts,
namely network layer, transport layer and application layer. Then, the rule extraction
module creates normal and abnormal rules based on the correlation among those three
subparts. The deep inspection module is a resident module responsible for continually
correlating the classifications to determine whether the normal or abnormal rule current
applied is a false positive. It is not clear how the rules would be updated over time to
detect new attacks or if the rule extraction module could be susceptible to manipulation
on the sliding window process due to slow-rate attacks.

In this work, we choose a different approach than Linda et al. [2009] and Schuster
et al. [2015], grouping data into flows, which allows an overview of the stream that is
passing through the network, reducing the volume of data to be analyzed. We also choose
to use a publicly available dataset differently from Yusheng et al. [2017] and Yang et
al. [2013]. This allows the reproducibility of the attained results by future works in the
area. The imbalance between normal traffic and anomalous is addressed by this work
as well, analyzing the results with more suitable metrics than those used by Junejo and
Goh [2016]. At last, the usage of machine learning algorithms may be more efficient in
detecting unknown attacks since it does not require the development of signatures for new
each attack or the definition of the specifications of the workload as in Yang et al. [2013].

3. Proposed Approach

In this section, we present our approach to detect intrusions in Modbus/TCP SCADA
networks using a supervised classifier. Our approach is based on the hypothesis that
attacks against a Modbus/TCP SCADA network will cause a significant deviation from
normal traffic patterns. Therefore, using machine learning algorithms, we analyze those
patterns to detect those variations and notify the network administrator about ongoing
attacks.

The proposed system is divided into five parts: the Network Packets Gathering, the
Flow Generation, the Feature Creation, the Training, and the Supervised Classification.
An overview of the system is presented in Figure 1.

Figure 1. The proposed approach.

The first step of our approach is the Network Packets Gathering. It is respon-
sible for capturing the Modbus/TCP packets. Modbus/TCP [Swales et al. 1999] is the
connection-oriented version of traditional Modbus. Although there are other SCADA



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

171 © 2017 Sociedade Brasileira de Computação

Schuster et al. [2015] use One-Class Support Vector Machine (OCSVM) to de-
velop an anomaly based IDS. In their approach, they group each 3 packets from the same
origin in a vector. Then the authors employ SVM to discover the normal data distribu-
tion on a production ICS dataset in a Profibus network. The authors reach high precision,
recall and F-score using different kernels for the SVM.

In the work of Yusheng et al. [2017], the authors developed an IDS for ICS
using the ModBus/TCP Protocol. Their approach consists of two modules: rule extraction
and deep inspection. The first part dissects the ModBus TCP packet into three subparts,
namely network layer, transport layer and application layer. Then, the rule extraction
module creates normal and abnormal rules based on the correlation among those three
subparts. The deep inspection module is a resident module responsible for continually
correlating the classifications to determine whether the normal or abnormal rule current
applied is a false positive. It is not clear how the rules would be updated over time to
detect new attacks or if the rule extraction module could be susceptible to manipulation
on the sliding window process due to slow-rate attacks.

In this work, we choose a different approach than Linda et al. [2009] and Schuster
et al. [2015], grouping data into flows, which allows an overview of the stream that is
passing through the network, reducing the volume of data to be analyzed. We also choose
to use a publicly available dataset differently from Yusheng et al. [2017] and Yang et
al. [2013]. This allows the reproducibility of the attained results by future works in the
area. The imbalance between normal traffic and anomalous is addressed by this work
as well, analyzing the results with more suitable metrics than those used by Junejo and
Goh [2016]. At last, the usage of machine learning algorithms may be more efficient in
detecting unknown attacks since it does not require the development of signatures for new
each attack or the definition of the specifications of the workload as in Yang et al. [2013].

3. Proposed Approach

In this section, we present our approach to detect intrusions in Modbus/TCP SCADA
networks using a supervised classifier. Our approach is based on the hypothesis that
attacks against a Modbus/TCP SCADA network will cause a significant deviation from
normal traffic patterns. Therefore, using machine learning algorithms, we analyze those
patterns to detect those variations and notify the network administrator about ongoing
attacks.

The proposed system is divided into five parts: the Network Packets Gathering, the
Flow Generation, the Feature Creation, the Training, and the Supervised Classification.
An overview of the system is presented in Figure 1.

Figure 1. The proposed approach.

The first step of our approach is the Network Packets Gathering. It is respon-
sible for capturing the Modbus/TCP packets. Modbus/TCP [Swales et al. 1999] is the
connection-oriented version of traditional Modbus. Although there are other SCADA

protocols like DNP3, IEC-61850 and Profibus, our work is focused specifically on the
Modbus/TCP traffic.

The following data from each packet is extracted to compose the initial dataset: a
number to identify the packet, the timestamp, the source IP address, the source port, the
destination IP address, the destination port, the communication protocol, the length of the
packet, and the info field, which contains the information that allows the poll and control
of the Modbus devices.

In the second step of our approach, referred to as Flow Generation, the packet data
extracted in the first step is used to group the packets into IP flows according to the IP
Flow Information Export (IPFIX) Protocol [Claise et al. 2013]. IPFIX protocol specifies
that a IP flow is composed of packets with the same source and destinations addresses,
source and destination ports, and transport protocol. Besides, the IPFIX protocol suggests
a timeout window of 1800 seconds to consider a flow as inactive, which we adopted. The
main advantage of the IP flows is that they provide an overview of the network behavior,
showing the main statistics of the interactions among the network nodes, which can reveal
deviations from the normal behavior caused by attacks. In this work, we consider an IP
flow as malicious if any packet of this flow is related to a malicious activity.

The next step of our approach is the Feature Creation. In this step, features are
extracted from the IP flows generated in the previous step, creating data instances that will
be the input of the supervised classification algorithm. One of the main characteristics of
the traffic in SCADA networks is that it is very well established, showing recognizable
pattern in the communication among devices. That means that the polling transactions
between masters and slaves follow a very foreseeable schedule, and the packets that travel
in these networks usually have similar sizes. Based on these particularities, we believe
that IP flow features, namely average packet size, source and destination port numbers,
and packets per second may indicate that an IP flow is malicious. All the features and
their descriptions can be seen in Table 1.

In the Training step, a set of data instances labeled as malicious or legitimate is
provided to the machine learning algorithm so it can build a model to classify the future
data instances automatically.

In the last step, the Supervised Classification, the machine learning algorithm
trained in the previous step is employed to classify the instances produced by the Fea-
ture Creation step as malicious or legitimate. Since we are dealing with traffic patterns,
we believe that machine learning algorithms will deal with this type of traffic better than
signature-based detection systems, specially when dealing with unknown attacks.



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

172© 2017 Sociedade Brasileira de Computação

Table 1. Flow based dataset features.
Feature Description

source port Source Port, originally created on Flow Generation step, represents
the source transport port used on the traffic between two devices.

dest port Destination Port, originally created on Flow Generation step, represents
the destination transport used on the traffic between two devices.

prot
Transport Protocol, originally created on Flow Generation step,
represents the transport protocol used on the traffic between two
devices. It is expected to have only the ModBus/TCP inside.

num pack Number of Packets that compose the flow, created on the Feature
Generation step, represents the count of number of packets on a flow.

size pack Size of Packets, created on the Feature Generation step, represents the sum
of the size of all packets that compose the flow.

ppf Packets per flow, created on the Feature Generation step,
represents the count of all packets that compose the flow.

bpf Bytes per Flow, created on the Feature Generation step, represents the
ratio between size pack and flow duration.

avg size pack Average of packets size, created on the Feature Generation step, represents
the average size of the packets that compose the flow.

flow duration Flow Duration, created on the Feature Generation step, represents the
duration of the flow.

4. Evaluation

In this section of the paper, we use a publicly available dataset, created by
[Lemay and Fernandez 2016], to evaluate our approach. The evaluation was accom-
plished as follows. First, the dataset generated by Lemay and Fernandez [2016] was
used as input for the Flow Generation step. Then, the IP flows extracted in the previous
step were sent to the Feature Creation step. Finally, in the Supervised Classification step,
we employed nine machine learning algorithms on the extracted features.

This section provides, in the first place, a description of the dataset, its testbed,
and the methodology. Then, we present the evaluation metrics and the results using each
algorithm.

4.1. Dataset

The main reason that discourages companies from sharing their datasets with the scientific
community is the sensitivity of the data that travel on SCADA networks. Yussof et al.
[2014] discussed this issue in their work. Therefore, there are few datasets available
publicly, and the few that are available are generated in controlled environments or have
limitations on data confidentiality.

Aware of the limitations of the few datasets available, Lemay and Fernandez
[2016] developed in a controlled environment a labeled dataset for SCADA networks
using the Modbus protocol, making it public for studies and evaluations in intrusion de-
tection area. The dataset, which was used in this paper, includes about 6 hours of both
malicious and non-malicious traffic on a simulated industrial network. For further infor-
mation about the workload and the network, please check Lemay and Fernandez [2016].



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

173 © 2017 Sociedade Brasileira de Computação

Table 1. Flow based dataset features.
Feature Description

source port Source Port, originally created on Flow Generation step, represents
the source transport port used on the traffic between two devices.

dest port Destination Port, originally created on Flow Generation step, represents
the destination transport used on the traffic between two devices.

prot
Transport Protocol, originally created on Flow Generation step,
represents the transport protocol used on the traffic between two
devices. It is expected to have only the ModBus/TCP inside.

num pack Number of Packets that compose the flow, created on the Feature
Generation step, represents the count of number of packets on a flow.

size pack Size of Packets, created on the Feature Generation step, represents the sum
of the size of all packets that compose the flow.

ppf Packets per flow, created on the Feature Generation step,
represents the count of all packets that compose the flow.

bpf Bytes per Flow, created on the Feature Generation step, represents the
ratio between size pack and flow duration.

avg size pack Average of packets size, created on the Feature Generation step, represents
the average size of the packets that compose the flow.

flow duration Flow Duration, created on the Feature Generation step, represents the
duration of the flow.

4. Evaluation

In this section of the paper, we use a publicly available dataset, created by
[Lemay and Fernandez 2016], to evaluate our approach. The evaluation was accom-
plished as follows. First, the dataset generated by Lemay and Fernandez [2016] was
used as input for the Flow Generation step. Then, the IP flows extracted in the previous
step were sent to the Feature Creation step. Finally, in the Supervised Classification step,
we employed nine machine learning algorithms on the extracted features.

This section provides, in the first place, a description of the dataset, its testbed,
and the methodology. Then, we present the evaluation metrics and the results using each
algorithm.

4.1. Dataset

The main reason that discourages companies from sharing their datasets with the scientific
community is the sensitivity of the data that travel on SCADA networks. Yussof et al.
[2014] discussed this issue in their work. Therefore, there are few datasets available
publicly, and the few that are available are generated in controlled environments or have
limitations on data confidentiality.

Aware of the limitations of the few datasets available, Lemay and Fernandez
[2016] developed in a controlled environment a labeled dataset for SCADA networks
using the Modbus protocol, making it public for studies and evaluations in intrusion de-
tection area. The dataset, which was used in this paper, includes about 6 hours of both
malicious and non-malicious traffic on a simulated industrial network. For further infor-
mation about the workload and the network, please check Lemay and Fernandez [2016].

Although most of the traffic in the dataset is related to automated transactions
between masters and slaves, the few discrepancies in time patterns or packet size can rep-
resent a human interacting with the system or also, an attack. The dataset includes attacks
such as running a remote exploit, uploading files to the infected network, fingerprinting
attack, and sending an unauthorized command to a controller.

The pcap files provided by the original dataset were then processed by the
Network Gathering module, and finally aggregated into flows by the Flow Generation
Module. It is important to mention that only the dataset files with malicious activity were
used, meaning that only the files named Moving two files Modbus 6RTU.pcap,
Send a fake command Modbus 6RTU with operate.pcap,
CnC uploading exe modbus 6RTU with operate.pcap and 6RTU with operate.pcap
were imported. The description of each file can be seen in [Lemay and Fernandez 2016].

The results of the conversion of the original dataset to a flow-based dataset are
presented in Table 2.

Table 2. Original and flow-based datasets.
Original Dataset (packets) Flow-Based Dataset (flows)

Majority Class
(non malicious) 16362 5488

Minority Class
(malicious) 1405 38

Unbalance Ratio 11:1 144:1
Total 17767 5526

4.2. Test Environment and Methodology

In the Supervised Classification step, we tested nine two-class algorithms as follows:
Support Vector Machine, Locally Deep Support Vector Machine, Averaged Perceptron,
Neural Network, Logistic Regression, Bayes Point Machine, Boosted Decision Tree, De-
cision Forest, and Decision Jungle.

In this work, we aimed to use the most relevant algorithms from each classifiers
family. From the family of discriminative classifiers, we selected Support Vector Ma-
chine (SVM), Locally Deep Support Vector Machine (LD-SVM), Averaged Perceptron
and Neural Network. From the family of decision tree classifiers, we picked Boosted De-
cision Tree, Decision Forest, and Decision Jungle. At last, from the statistical classifiers
family, Logistic Regression and Bayes Point Machine were chosen.

Support Vector Machine (SVM) and Locally Deep Support Vector Machine (LD-
SVM) are ML algorithms that aim to predict the correct class by building a multidimen-
sional vector, in which each instance of the dataset is classified. The goal is to obtain
the largest margin of separation of the hyper-plane between classes. The main difference
between the regular SVM and the LD-SVM is that the last one uses a different kernel that
works better on large datasets.

Averaged Perceptron and Neural Network are ML algorithms that belong to the
Neural Network family. Averaged Perceptron is the simplest type of Neural Network al-
gorithm and uses a single neuron. It linearly classifies data using an activation function,
in which the weighted data is used as input. The Neural Network algorithm is the gen-



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

174© 2017 Sociedade Brasileira de Computação

eralization of Averaged Perceptron, which, instead of using a single neuron, has a set of
neurons interconnected in a directed, weighted, and acyclic graph.

Logistic Regression is an ML algorithm that predicts the statistical probability of
a sample belonging to a class using a logistic distribution of the samples. Bayes Point
Machine is also a ML algorithm, which uses a Bayesian linear approach to classify data.

Boosted Decision Tree, Decision Forest, and Decision Jungle are ML algorithms
based on decision tree classification. The Boosted Decision Tree is an ensemble learning
method, in which each tree corrects the errors of its predecessor, and the prediction is
made by evaluating the entire ensemble. Decision Forest, also known as Random Deci-
sion Forest, is an ensemble algorithm that classifies data by randomly constructing mul-
tiple decision trees and voting in whichever provides the closest probability of correct
label. Decision Jungle is considered an extension of Decision Forest, which instead of
using one path to every node, uses directed acyclic graphs to allow multiple paths from
the root to each leaf.

The classifier module and all algorithms were implemented on Microsoft Azure
Machine Learning Studio [Microsoft 2017]. Microsoft Azure Machine Learning Studio is
a cloud predictive analytic tool that allows the implementation of many machine learning
models and executes them in parallel. We executed all the algorithms using their default
parameters. The algorithms tested and their defaults parameters can be seen in Table 3.

Table 3. Algorithm parameters.

Algorithm Parameters

Support Vector Machine

Create trainer mode: Single Parameter
Number of iterations: 1
Lambda: 0.001
Normalize features: True
Project to the unit-sphere: False
Allow unknown categorical levels: True

Locally-Deep Support
Vector Machine

Create trainer mode: Single Parameter
Depth of the tree: 3
Lambda W: 0.1
Lambda Theta: 0.01
Lambda Theta Prime: 0.01
Sigmoid sharpness: 1.0
Number of iterations: 15000
Feature normalizer: Min-Max normalizer
Allow unknown categorical levels: True

Averaged Perceptron

Create trainer mode: Single Parameter
Learning rate: 1.0
Maximum number of iterations: 10
Allow unknown categorical levels: True



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

175 © 2017 Sociedade Brasileira de Computação

eralization of Averaged Perceptron, which, instead of using a single neuron, has a set of
neurons interconnected in a directed, weighted, and acyclic graph.

Logistic Regression is an ML algorithm that predicts the statistical probability of
a sample belonging to a class using a logistic distribution of the samples. Bayes Point
Machine is also a ML algorithm, which uses a Bayesian linear approach to classify data.

Boosted Decision Tree, Decision Forest, and Decision Jungle are ML algorithms
based on decision tree classification. The Boosted Decision Tree is an ensemble learning
method, in which each tree corrects the errors of its predecessor, and the prediction is
made by evaluating the entire ensemble. Decision Forest, also known as Random Deci-
sion Forest, is an ensemble algorithm that classifies data by randomly constructing mul-
tiple decision trees and voting in whichever provides the closest probability of correct
label. Decision Jungle is considered an extension of Decision Forest, which instead of
using one path to every node, uses directed acyclic graphs to allow multiple paths from
the root to each leaf.

The classifier module and all algorithms were implemented on Microsoft Azure
Machine Learning Studio [Microsoft 2017]. Microsoft Azure Machine Learning Studio is
a cloud predictive analytic tool that allows the implementation of many machine learning
models and executes them in parallel. We executed all the algorithms using their default
parameters. The algorithms tested and their defaults parameters can be seen in Table 3.

Table 3. Algorithm parameters.

Algorithm Parameters

Support Vector Machine

Create trainer mode: Single Parameter
Number of iterations: 1
Lambda: 0.001
Normalize features: True
Project to the unit-sphere: False
Allow unknown categorical levels: True

Locally-Deep Support
Vector Machine

Create trainer mode: Single Parameter
Depth of the tree: 3
Lambda W: 0.1
Lambda Theta: 0.01
Lambda Theta Prime: 0.01
Sigmoid sharpness: 1.0
Number of iterations: 15000
Feature normalizer: Min-Max normalizer
Allow unknown categorical levels: True

Averaged Perceptron

Create trainer mode: Single Parameter
Learning rate: 1.0
Maximum number of iterations: 10
Allow unknown categorical levels: True

Neural Network

Create trainer mode: Single Parameter
Hidden layer specification: Fully-connected case
Number of hidden nodes: 100
Learning rate: 0.1
Number of learning iterations: 100
The initial learning weights: 0.1
The momentum: 0
The type of normalizer: Min-Max normalizer
Shuffle examples: True
Allow unknown categorical levels: True

Logistic Regression

Create trainer mode: Single Parameter
Optimization tolerance: 10−7

L1 regularization weight: 1
L2 regularization weight: 1
Memory size for L-BFGS: 20
Allow unknown categorical levels: True

Bayes Point Machine
Number of training iterations: 30
Include bias: True
Allow unknown values in categorical features: True

Boosted Decision Tree

Create trainer mode: Single Parameter
Maximum number of leaves per tree: 20
Minimum number of samples per leaf node: 10
Learning rate: 0.2
Number of trees constructed: 100
Allow unknown categorical levels: True

Decision Forest

Resampling method: Bagging
Create trainer mode: Single Parameter
Number of decision trees: 8
Maximum depth of the decision trees: 32
Number of random splits per node: 128
Minimum number of samples per leaf node: 1
Allow unknown values for categorical features: True

Decision Jungle

Resampling method: Bagging
Create trainer mode: Single Parameter
Number of decision DAGs: 8
Maximum depth of the decision DAGs: 32
Maximum width of the decision DAGs: 128
Number of optimization steps per decision DAG layer:
2048
Allow unknown values for categorical features: True

To evaluate the different algorithms, we used the hold-out approach. According
to the hold-out approach, the dataset was randomly divided into two subsets. The first
subset was called training set. It contained 60% of the original data and was used to build
the predictive model. The second subset was called test set. It contained the remaining
40% of the original data and was used to test and measure the performance of the model
on unseen inputs.



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

176© 2017 Sociedade Brasileira de Computação

In addition to the hold-out approach, we also applied a downsampling on the ma-
jority class of the training set. Downsampling is a technique that removes some data from
a given dataset randomly. The objective of this technique is to balance the classes on the
training set. According to He and Ma [2013], some ML algorithms perform better on
anomaly detection when the imbalance between classes is reduced. Therefore, we tested
each algorithm reducing the imbalance as presented in Table 4, where the values 1%, 2%,
3%, 4% and 5% mean the reduction rate in the training dataset regarding the 100% value.
For example, a reduction to 5% will reduce from 3293 to 132 samples. Also, we made
the same tests without the downsampling to compare results.

When detecting malicious traffic, we usually deal with imbalanced classes, since
most of the traffic is non-malicious rather than malicious. In the original dataset, handled
in the Network Gathering step, we dealt with an 11:1 ratio between malicious and non-
malicious packets. After the aggregation into a flow based dataset, this ratio increased to
144:1 between malicious and non-malicious flows, rising the importance of studying the
impact of downsampling on the overall results.

Table 4. Downsampling values and imbalance ratio
Training Dataset Test Dataset Total1% 2% 3% 4% 5% 100%

Non-malicious
flows 33 66 99 132 165 3293 2195 5488

Malicious
flows 23 23 23 23 23 23 15 38

Ratio 1:1 3:1 4:1 5:1 7:1 143:1 146:1 144:1

4.3. Evaluation Metrics and Results
He and Ma [2013] recommend the use of F1-Score and Averaged Accuracy as the main
metrics to evaluate the performance of any ML algorithm with an imbalanced dataset. We
also added Accuracy for further reference. According to He and Ma [2013], a dataset is
considered imbalanced if the imbalance between classes has a higher ratio than 10:1. In
our case, the total ratio is 144:1, as previously presented in Table 2. In the training set, the
downsampling technique reduced that imbalance from 144:1 up to a 1:1 ratio, although it
represents heavy losses in information due to the random characteristic of the technique.
According to the authors, the biggest problem of class imbalance is the increase of error
rate as the imbalance increases, which impacts directly on the ability to learn the minority
class, biasing the major class. That means that not every algorithm will perform within
an acceptable level in this situation. The evaluation metrics, their formulas, scores, and a
brief description are presented next.

1. F1 Score = 2 Precision∗Recall
Precision+Recall

= 2TP
2TP+FP+FN

It measures the harmonic mean of Precision and Recall. Precision stands for the
ratio between correct predictions (TP) and the number of all correct (TP) and
incorrect predictions (FP). Recall stands for the ratio between correct predictions
(TP) and the number of all correct predictions (TP + FN). F1 Score is represented
as a continuous number between 0 and 1, being 1 as the best value and 0 the worst.

2. Averaged Accuracy = Recall+Specifity
2

= TP
2TP+2FN

+ TN
2TN+2FP

It measures the balanced accuracy, balancing the scores between Recall and Speci-
fity. Specifity stands for the ratio between correct predictions on the majority class



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

177 © 2017 Sociedade Brasileira de Computação

In addition to the hold-out approach, we also applied a downsampling on the ma-
jority class of the training set. Downsampling is a technique that removes some data from
a given dataset randomly. The objective of this technique is to balance the classes on the
training set. According to He and Ma [2013], some ML algorithms perform better on
anomaly detection when the imbalance between classes is reduced. Therefore, we tested
each algorithm reducing the imbalance as presented in Table 4, where the values 1%, 2%,
3%, 4% and 5% mean the reduction rate in the training dataset regarding the 100% value.
For example, a reduction to 5% will reduce from 3293 to 132 samples. Also, we made
the same tests without the downsampling to compare results.

When detecting malicious traffic, we usually deal with imbalanced classes, since
most of the traffic is non-malicious rather than malicious. In the original dataset, handled
in the Network Gathering step, we dealt with an 11:1 ratio between malicious and non-
malicious packets. After the aggregation into a flow based dataset, this ratio increased to
144:1 between malicious and non-malicious flows, rising the importance of studying the
impact of downsampling on the overall results.

Table 4. Downsampling values and imbalance ratio
Training Dataset Test Dataset Total1% 2% 3% 4% 5% 100%

Non-malicious
flows 33 66 99 132 165 3293 2195 5488

Malicious
flows 23 23 23 23 23 23 15 38

Ratio 1:1 3:1 4:1 5:1 7:1 143:1 146:1 144:1

4.3. Evaluation Metrics and Results
He and Ma [2013] recommend the use of F1-Score and Averaged Accuracy as the main
metrics to evaluate the performance of any ML algorithm with an imbalanced dataset. We
also added Accuracy for further reference. According to He and Ma [2013], a dataset is
considered imbalanced if the imbalance between classes has a higher ratio than 10:1. In
our case, the total ratio is 144:1, as previously presented in Table 2. In the training set, the
downsampling technique reduced that imbalance from 144:1 up to a 1:1 ratio, although it
represents heavy losses in information due to the random characteristic of the technique.
According to the authors, the biggest problem of class imbalance is the increase of error
rate as the imbalance increases, which impacts directly on the ability to learn the minority
class, biasing the major class. That means that not every algorithm will perform within
an acceptable level in this situation. The evaluation metrics, their formulas, scores, and a
brief description are presented next.

1. F1 Score = 2 Precision∗Recall
Precision+Recall

= 2TP
2TP+FP+FN

It measures the harmonic mean of Precision and Recall. Precision stands for the
ratio between correct predictions (TP) and the number of all correct (TP) and
incorrect predictions (FP). Recall stands for the ratio between correct predictions
(TP) and the number of all correct predictions (TP + FN). F1 Score is represented
as a continuous number between 0 and 1, being 1 as the best value and 0 the worst.

2. Averaged Accuracy = Recall+Specifity
2

= TP
2TP+2FN

+ TN
2TN+2FP

It measures the balanced accuracy, balancing the scores between Recall and Speci-
fity. Specifity stands for the ratio between correct predictions on the majority class

(TN) and the number of all correct predictions on the majority class (TN + FP).
Averaged Accuracy is represented as a continuous number between 0 and 1, being
1 as the best value and 0 the worst.

3. Accuracy = TP+TN
TP+FN+FP+TN

It measures the closest an implemented model correctly predicts all cases. It is
represented as a continuous number between 0 and 1, being 1 as the best value
and 0 the worst

TP, TN, FP, and FN stand for true positives, true negatives, false positives and
false negatives respectively.

On the execution of each classification technique, we ran each algorithm ten times
for each downsampling value and also for the non-downsampled training dataset. After
each execution, each one of the nine algorithms generated 100 values corresponding to
the thresholds evaluated. After all executions, we collected 54000 values as results and
their averages are presented in Table 5, where the corresponding downsampling ratios are
presented between brackets.

Table 5. Results for evaluation metrics regarding the nine algorithms

F1-Score Average
Accuracy Accuracy

Support Vector
Machine

0.1278
(5%)

0.5877
(2%)

0.9934
(100%)

Locally Deep Support
Vector Machine

0.7523
(100%)

0.9489
(5%)

0.9970
(100%)

Averaged Perceptron 0.4455
(5%)

0.8114
(1%)

0.9942
(100%)

Neural Network 0.5399
100%

0.8597
(3; 4%)

0.9935
(100%)

Logistic Regression 0.4416
(100%)

0.8744
(3; 4%)

0.9946
(100%)

Bayes Point Machine 0.7730
(100%)

0.9518
(100%)

0.9970
(100%)

Boosted Decision Tree 0.8467
(100%)

0.9684
(4; 5; 100%)

0.9977
(100%)

Decision Forest 0.8026
(100%)

0.9694
(100%)

0.9972
(100%)

Decision Jungle 0.8508
(100%)

0.9690
(4; 100%)

0.9979
(100%)

Analyzing the results presented in Table 5, the five best algorithms were Decision
Jungle, Boosted Decision Tree, Decision Forest, Bayes Point Machine and Locally Deep
Support Vector Machine. Further discussion on those results will be carried out in the
Discussion subsection.

Another two evaluators were also implemented to compare the results of the five
best algorithms. The first, presented in Figure 2, is the Receiver Operating Characteristic
(ROC) curve, allowing to visually see the variation of the True Positive Rate versus the
False Positive Rate. The second evaluator is presented in Figure 3, showing the trade-off
between Precision and Recall.



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

178© 2017 Sociedade Brasileira de Computação

In Figure 2, we present the ROC curve for the five best algorithms, each of them
showing their best results without the use of the downsampling technique. In those graphs,
we can see that Decision Jungle and Decision Forest have the highest and almost identical
performance, followed by Bayes Point Machine.

Figure 2. ROC Curve

In Figure 3, we present the Precision-Recall curve for the five best algorithms,
each of them showing their best results without the use of the downsampling technique.
In those graphs, we can see that Decision Jungle has the highest performance followed by
Boosted Tree.

4.4. Discussion
The results presented in Table 5, and the results shown in Figure 2 and Figure 3 allow us
to reach some conclusions to be discussed in this section.

First, based on F1-Score and Average Accuracy presented in Table 5, we can
conclude that all three Decision Tree algorithms outperformed the other ones, presenting
the best of all F1-Score over 80% and Average Accuracy over 96%. The only other two
algorithms that showed similar, although inferior, results are Bayes Point Machine and
Locally Deep Support Vector Machine.

Second, analyzing the overall results presented in Table 5, we conclude that the
downsampling technique applied on the training dataset did not provide significant aid to
the best-scored algorithms. In fact, the downsampling helped only the Averaged Percep-
tron and the Support Vector Machine, but not enough to make them relevant toward the
construction of an IDS.

Figure 2 shows the ROC curve of the five best algorithms selected through the
results presented in Table 5. The ROC curve allowed us to compare the trade-off between



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

179 © 2017 Sociedade Brasileira de Computação

In Figure 2, we present the ROC curve for the five best algorithms, each of them
showing their best results without the use of the downsampling technique. In those graphs,
we can see that Decision Jungle and Decision Forest have the highest and almost identical
performance, followed by Bayes Point Machine.

Figure 2. ROC Curve

In Figure 3, we present the Precision-Recall curve for the five best algorithms,
each of them showing their best results without the use of the downsampling technique.
In those graphs, we can see that Decision Jungle has the highest performance followed by
Boosted Tree.

4.4. Discussion
The results presented in Table 5, and the results shown in Figure 2 and Figure 3 allow us
to reach some conclusions to be discussed in this section.

First, based on F1-Score and Average Accuracy presented in Table 5, we can
conclude that all three Decision Tree algorithms outperformed the other ones, presenting
the best of all F1-Score over 80% and Average Accuracy over 96%. The only other two
algorithms that showed similar, although inferior, results are Bayes Point Machine and
Locally Deep Support Vector Machine.

Second, analyzing the overall results presented in Table 5, we conclude that the
downsampling technique applied on the training dataset did not provide significant aid to
the best-scored algorithms. In fact, the downsampling helped only the Averaged Percep-
tron and the Support Vector Machine, but not enough to make them relevant toward the
construction of an IDS.

Figure 2 shows the ROC curve of the five best algorithms selected through the
results presented in Table 5. The ROC curve allowed us to compare the trade-off between

Figure 3. The Precision Recall Curve

the True Positive Rate (TPR) and the False Positive Rate (FPR) of the algorithms. In
ROC curves, the better results are in the upper left corner, where the TPR is closer to 1
and the FPR is closer to 0. In Figure 2, we could see that the algorithms Decision Jungle
and Decision Forest sustained a higher performance through all the threshold variation
when compared to the other algorithms. These two algorithms reached, for the most of
the graph, the desired top left corner. On the other hand, Boosted Decision Tree could not
sustain similar results. Here, it is noteworthy that Bayes Point Machine did not outperform
the two best algorithms, but had an overall good performance. Locally Deep SVM had
the worst results on this evaluator.

Figure 3 shows the Precision-Recall Curve of the same five best algorithms se-
lected through the results presented in Table 5. The Precision-Recall Curve is a type of
curve that visually shows the quality of the results of any given classifier. A classifier
with high recall but low precision will detect the most of the attacks, but will generate
many false positives. A classifier with low recall but high precision will generate few
false positives, but will miss many attacks. The desired output is reached on the upper
right corner, where there is a high Precision with a high Recall.

In the presented results, we could see that the Decision Jungle algorithm presented
higher overall results than any other one. The next best result was reached by Boosted
Tree algorithm. Here, we could also see that although Decision Forest presented high
results in Table 5 and in the ROC Curve, it did not have a good precision-recall trade-off.
All other algorithms did not perform well enough on this evaluation.

After analyzing the results, we observed that the Decision Jungle algorithm pre-
sented the highest scores in Table 5 and an overall good performance in the ROC Curve
and Precision/Recall Curve. Therefore, we pointed out it as the best solution among the



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

180© 2017 Sociedade Brasileira de Computação

algorithms we evaluated.

We believe that there are two main reasons for the good performance of Decision
Jungle. The first one is the ensemble learning. It employs multiple learning models,
leveraging the classification power of multiple base learners, such as decision trees, to
improve the classification performance over traditional algorithms.

In the case of Decision Jungle [Shotton et al. 2013], multiple decision trees are
connected using directed acyclic graphs, allowing multiple paths from the root to each
leaf. That type of connection among nodes allowed a higher degree of merging between
leafs, reducing the complexity of the classifier and the number of misclassifications. For
Modbus/TCP traffic, this approach presented a significant leverage in comparison with
other non-ensemble algorithms.

The second reason that helped the Decision Jungle to be the best among the others
is its awareness of class imbalance. That awareness is due to ensemble model. In our
aggregation, in Flow Generation step, we ended with a class imbalance of 144:1. That
imbalance could have impacted the poor results of some algorithms like SVM or Percep-
tron, but it did not impact more advanced models like the Decision Tree family algorithms.
We believe that this is directly related to the ensemble model. We also noticed that the
downsampling had no benefit on the Decision Jungle algorithm, since its best results were
reached with no downsampling.

5. Conclusion
In this paper, we evaluated the performance of nine different ML algorithms in classifying
IP flows of an SCADA ModBus/TCP network, analyzing the impact of class imbalance
in the results. Those algorithms may be the core of the detection engine of an Intrusion
Detection System (IDS). The role of an IDS is to monitor the network, collecting data to
notify the administrators.

In a SCADA ModBus/TCP network, the traffic presented is different from a reg-
ular TCP/IP network. The ModBus/TCP network is a restricted network, where the addi-
tion of a new device is rare. The traffic is standardized and predictable between masters
and slaves due the polling process. This characteristic allowed us to arrange similar pack-
ets into IP flows. In the flows, we also compute the average packet size, count number
of packets and the flow duration. The predictability in the SCADA traffic also allowed
us to establish a communication pattern that could be analyzed using a machine learning
supervised classifier.

The analysis of the results of the studied algorithms showed us that the Decision
Jungle presented the best scores for the metrics results (F1 Score and Average Accuracy)
and the overall performance in the ROC Curve and Precision/Recall Curve. The second
best performance was reached by Boosted Tree algorithm, presenting a good score for the
evaluation metrics, almost the same performance that Decision Jungle in the ROC Curve
and a standard performance in the Precision/Recall Curve. We believe that those results
were accomplished due to the ensemble model in the construction of those algorithms,
allowing them to outperform all other simpler algorithms.

As future work, we intend to extend this work by using semi-supervised ML al-
gorithms. That will allow us to reduce the dependency of the labeled data in the dataset.
We also intend to use differents settings on Microsoft Azure parameters to improve the
detection rate of all algorithms.



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

181 © 2017 Sociedade Brasileira de Computação

algorithms we evaluated.

We believe that there are two main reasons for the good performance of Decision
Jungle. The first one is the ensemble learning. It employs multiple learning models,
leveraging the classification power of multiple base learners, such as decision trees, to
improve the classification performance over traditional algorithms.

In the case of Decision Jungle [Shotton et al. 2013], multiple decision trees are
connected using directed acyclic graphs, allowing multiple paths from the root to each
leaf. That type of connection among nodes allowed a higher degree of merging between
leafs, reducing the complexity of the classifier and the number of misclassifications. For
Modbus/TCP traffic, this approach presented a significant leverage in comparison with
other non-ensemble algorithms.

The second reason that helped the Decision Jungle to be the best among the others
is its awareness of class imbalance. That awareness is due to ensemble model. In our
aggregation, in Flow Generation step, we ended with a class imbalance of 144:1. That
imbalance could have impacted the poor results of some algorithms like SVM or Percep-
tron, but it did not impact more advanced models like the Decision Tree family algorithms.
We believe that this is directly related to the ensemble model. We also noticed that the
downsampling had no benefit on the Decision Jungle algorithm, since its best results were
reached with no downsampling.

5. Conclusion
In this paper, we evaluated the performance of nine different ML algorithms in classifying
IP flows of an SCADA ModBus/TCP network, analyzing the impact of class imbalance
in the results. Those algorithms may be the core of the detection engine of an Intrusion
Detection System (IDS). The role of an IDS is to monitor the network, collecting data to
notify the administrators.

In a SCADA ModBus/TCP network, the traffic presented is different from a reg-
ular TCP/IP network. The ModBus/TCP network is a restricted network, where the addi-
tion of a new device is rare. The traffic is standardized and predictable between masters
and slaves due the polling process. This characteristic allowed us to arrange similar pack-
ets into IP flows. In the flows, we also compute the average packet size, count number
of packets and the flow duration. The predictability in the SCADA traffic also allowed
us to establish a communication pattern that could be analyzed using a machine learning
supervised classifier.

The analysis of the results of the studied algorithms showed us that the Decision
Jungle presented the best scores for the metrics results (F1 Score and Average Accuracy)
and the overall performance in the ROC Curve and Precision/Recall Curve. The second
best performance was reached by Boosted Tree algorithm, presenting a good score for the
evaluation metrics, almost the same performance that Decision Jungle in the ROC Curve
and a standard performance in the Precision/Recall Curve. We believe that those results
were accomplished due to the ensemble model in the construction of those algorithms,
allowing them to outperform all other simpler algorithms.

As future work, we intend to extend this work by using semi-supervised ML al-
gorithms. That will allow us to reduce the dependency of the labeled data in the dataset.
We also intend to use differents settings on Microsoft Azure parameters to improve the
detection rate of all algorithms.

References
Claise, B., Trammell, B., and Aitken, P. (2013). Specification of the IP Flow Information

Export (IPFIX) Protocol for the exchange of flow information (2013).

He, H. and Ma, Y. (2013). Imbalanced learning: foundations, algorithms, and applica-
tions. John Wiley & Sons.

Junejo, K. N. and Goh, J. (2016). Behaviour-based attack detection and classification
in cyber physical systems using machine learning. In Proceedings of the 2nd ACM
International Workshop on Cyber-Physical System Security, pages 34–43. ACM.

Lemay, A. and Fernandez, J. M. (2016). Providing SCADA network data sets for intrusion
detection research. 9th USENIX Workshop on Cyber Security Experimentation and Test
(CSET ’16), pages 1–8.

Linda, O., Vollmer, T., and Manic, M. (2009). Neural network based intrusion detection
system for critical infrastructures. In Neural Networks, 2009. IJCNN 2009. Interna-
tional Joint Conference on, pages 1827–1834. IEEE.

Loukas, G. (2015). Cyber-physical attacks: A growing invisible threat. Butterworth-
Heinemann.

Microsoft (2017). How to choose algorithms for Microsoft Azure machine learning.

Miller, B. and Rowe, D. (2012). A survey SCADA of and critical infrastructure incidents.
In Proceedings of the 1st Annual conference on Research in information technology,
pages 51–56. ACM.

Ntalampiras, S. (2015). Detection of integrity attacks in cyber-physical critical infras-
tructures using ensemble modeling. IEEE Transactions on Industrial Informatics,
11(1):104–111.

Piggin, R. (2015). Are industrial control systems ready for the cloud? International
Journal of Critical Infrastructure Protection, 9(C):38–40.

Schuster, F., Paul, A., Rietz, R., and König, H. (2015). Potentials of using one-class SVM
for detecting protocol-specific anomalies in industrial networks. In Computational
Intelligence, 2015 IEEE Symposium Series on, pages 83–90. IEEE.

Shotton, J., Sharp, T., Kohli, P., Nowozin, S., Winn, J., and Criminisi, A. (2013). Decision
jungles: Compact and rich models for classification. In Proc. NIPS.

Swales, A. et al. (1999). Open ModBus/TCP specification. Schneider Electric, 29.

Yang, Y., McLaughlin, K., Littler, T., Sezer, S., Pranggono, B., and Wang, H. (2013).
Intrusion detection system for IEC 60870-5-104 based SCADA networks. In Power
and Energy Society General Meeting (PES), 2013 IEEE, pages 1–5. IEEE.

Yusheng, W., Kefeng, F., Yingxu, L., Zenghui, L., Ruikang, Z., Xiangzhen, Y., and Lin,
L. (2017). Intrusion detection of industrial control system based on Modbus TCP
protocol. In Autonomous Decentralized System (ISADS), 2017 IEEE 13th International
Symposium on, pages 156–162. IEEE.

Yussof, S., Rusli, M. E., Yusoff, Y., Ismail, R., and Ghapar, A. A. (2014). Financial
impacts of smart meter security and privacy breach. In Information Technology and
Multimedia (ICIMU), 2014 International Conference on, pages 11–14. IEEE.


	Sessão técnica 5 (ST5): Intrusão - detecção, prevenção e resposta
	1. Flow-Based Intrusion Detection for SCADA networks using Supervised Learning
	Gabriel Vasquez, Rodrigo S. Miani, Bruno B. Zarpelão

