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Abstract. Malicious programs are persistent threats to computer systems, and their
damages extend from financial losses to critical infrastructure attacks. Malware analysis
aims to provide useful information to be used for forensic procedures and countermeasures
development. To thwart that, attackers make use of anti-analysis techniques that prevent or
difficult their malware from being analyzed. These techniques rely on instruction side-effects
and that system’s structure checks are inspection-aware. Thus, detecting evasion attempts
is an important step of any successful investigative procedure. In this paper, we present
a broad overview of what anti-analysis techniques are being used in malware and how
they work, as well as their detection counterparts, i.e., the anti-anti-analysis techniques that
may be used by forensic investigators to defeat evasive malware. We also evaluated over
one hundred thousand samples in the search of the presence of anti-analysis technique and
summarized the obtained information to present an evasion-aware malware threat scenario.

1. Introduction
Malicious software, also known as malware, is a piece of software with malicious purposes. Malware
actions can vary from data exfiltration to persistent monitoring, causing damages to both private and
public institution, either on image or financial aspects. According to CERT statistics [Cert.br 2015],
malware samples may account by more than 50% of total reported incidents.

Given this scenario, analysts are required to analyze malicious samples in order to provide either
defensive procedures or mechanisms to prevent/mitigate the infection, as well as to perform forensic
procedures on already compromised systems. The set of techniques used for such kind of inspection
is known as malware analysis. Analysis procedures can be classified into static, where there is no need
to run the code, and dynamic, where code runs on controlled environment [Sikorski and Honig 2012].
The scope of this work is limited to static procedures, since they are the first line of detection against
evasive malware.

Considering malware analysis capabilities and peculiarities, criminals started to protect their artifacts
from being analyzed, equipping them with so-called anti-analysis (or anti-forensics) techniques. This
way, their infection could last longer since they could make their samples stealth. Recent studies, such
as [Branco et al. 2012], present scenarios in which 50% of samples contain at least one anti-analysis
technique, and this number has been growing constantly.

In order to keep systems protected from such new armored threats, we need to understand how these
anti-analysis techniques work so as to develop ways to effectively detect evasive samples before
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they can act. This is called anti-anti-analysis. In this paper, we present the modus operandi behind
such kind of techniques, as well as possible detection methods in details. We evaluated the developed
solution against over a hundred thousand samples, benign and malicious, which allowed us to build
an evasive scenario panorama. We also compared evasive techniques used on different contexts
(distinct countries), which can help analysts to be ahead of the next coming threats.

This work is organized as follows: Section 2 introduces basic concepts related to anti-analysis
techniques and discusses related work and tools aimed at detecting anti-analysis techniques; Section 3
describes an study of how distinct evasion techniques work, and presents our detection framework;
Section 4 shows the results obtained from applying our solution to distinct datasets; finally, Section 5
presents concluding remarks and future work.

2. Background and Related Work

In this section, we present the concepts related to anti-analysis and their detection counterparts as
well as introduce the current state-of-the-art solutions.

2.1. Anti-analysis

The main idea of anti-analysis techniques is to raise the bar of counteraction methods. It can be done
in many ways, e.g., leveraging theoretical hard-to-compute constructions. In this Section, we provide
an overview of such anti-analysis techniques.

One common approach is to fingerprint the analysis environment. Known analysis solutions expose
regular patterns, such as fixed IP addresses, host names, and serial numbers. Evasive samples can
detect those patterns and suspend their execution [Yokoyama et al. 2016]. This type of approach
was successfully used against Cuckoo [Ferrand 2015] and Ether [Pék et al. 2011] sandboxes.

Another approach is to evade analysis by detecting execution side effects of virtual machines and
emulators, which has been the most used environment for malware analysis. Those systems may
exhibit a differing behavior when compared to their bare-metal counterparts, such as instructions
not being atomic [Willems et al. 2012]. Currently, there are automated ways of detecting these side
effects [Paleari et al. 2009]. Virtual Machines can also be detected by the changes that hypervisors
perform on system internals (e.g., table relocations). Many tables, such as the Interrupt Descriptor
Table (IDT), have their addresses changed on VMs when compared to bare-metal systems. These
addresses can then be used as an indicator of a virtualized environment [Ferrie 2007].

There also approaches based not on evading the analysis itself, but on hardening the post-infection
reverse engineering procedure. One noticeable technique is the anti-disassembly, a way of coding
where junk data is inserted among legitimate code to fool the disassembler tool. Another variation
of anti-disassembly techniques is to use opaque constants [Kruegel et al. 2007], constructions that
cannot be solved without runtime information. Static attempts to guess resulting values of these
expressions tend to lead to the path explosion problem [Xiao et al. 2010].

Finally, there are samples that make use of time measurement for analysis detection, since any
monitoring technique imposes significant overheads [Lindorfer et al. 2011]. Although some solutions
try to mitigate this problem by faking time measures, either on system APIs [Singh 2014], or on
the hardware timestamp counter [Hexacorn 2014], the problem is unsolvable in practice, since an
advanced attacker can make use of an external NTP server over encrypted connections.
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A notable example of anti-analysis tool is pafish [Pafish 2012], which consists of a series of mod-
ules that implement many of mentioned detection techniques, such as virtual machines detection and
environment fingerprints. The tool’s intention is to be used as verifier for any attempt of transparent
solution, as well as to allow for a better understanding of practical malware evasion techniques.

2.2. Anti-Anti-Analysis

As well as the general analysis techniques, the anti-anti-analysis ones may also be classified as static
or dynamic approaches. Static approaches can be applied in the form of pattern matching detectors
of known anti-analysis constructions, for instance, address verification and locations. However, due to
its known limitations, some constructions can only be solved during runtime, which is accomplished
when they run inside dynamic environments.

Dynamic solutions, in a general way, are based on faking answers for known anti-analysis checks,
such as in COBRA [Vasudevan and Yerraballi 2006]. These approaches, however, turn into an
arms-race, since new anti-analysis techniques are often released and these systems need to be updated.
To minimize the impact of this issue, transparent analysis systems have been proposed, such as
Ether [Dinaburg et al. 2008] and MAVMM [Nguyen et al. 2009]. These systems, however, impose
high overheads and development costs.

In the following sections, we review the anti-anti-analysis techniques for the above presented
anti-analysis classes and present static detectors for these techniques. We left dynamic detectors for
future work, since they are not part of this work’s scope.

2.3. State-of-the-art of anti-anti-analysis

Our work is related to many detection solutions. Two noticeable ones are pyew [Pyew 2012]
and peframe [Peframe 2014], which aim to detect the evasive technique itself, and not whether a
tool/system/environment may be evaded or not. They work by statically looking for known shellcodes
and library imports related to analysis evasion. In this work, we have expanded theses detectors in
order to provider a broader coverage.

In addition to the aforementioned tools, our work relates to the one presented by [Branco et al. 2012],
which implemented several anti-anti-analysis detectors and analyzed evasive samples. In this work, we
have implemented both the anti-analysis techniques as well as the presented static detectors, applying
them against our distinct datasets, and enriching their analysis with the discussion of the working flow
of the mentioned techniques. We also proceed in the same way regarding the work by [Ferrie 2008].

At the time we were writing this article, we have noticed a related work implementing similar
techniques [Oleg 2016]. Such work, however, is limited to implementation issues whereas we present
a comprehensive discussion and results evaluation.

Other related approaches, although more complex, are those which rely on using intermediate
representations (IR) [Smith et al. 2014] or interleaving instructions [Saleh et al. 2014], cases not
covered by this work. This work also does not cover obfuscation techniques based on encryption.
This issue was addressed by other work, such as [Calvet et al. 2012].

3. Anti-Analysis Techniques and Detection
In this section, we summarize the anti-analysis techniques, their operation, and how they
can be detected. The techniques were originally described in the previously presented

3
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works [Branco et al. 2012, Ferrie 2008, Pyew 2012, Peframe 2014, Pafish 2012, Oleg 2016] and are
here classified according to their purpose: anti-disassembly, anti-debugging, and virtual machine de-
tection. The complete discussion of each trick is presented on the appendix1, due to space constraints.

3.1. Anti-disassembly

To understand how disassembly can turn into a hard task, we first introduce how current disassemblers
work. After that, we present known tricks to detect evasion.

In general, disassemblers can be classified into linear sweep and recursive traver-
sal approaches [Schwarz et al. 2002]. In the former, the disassembly process starts at the first byte
of a given section and proceeds sequentially. The major limitation of this approach is that any data
embedded in the code is interpreted as an instruction, leading to a wrong final disassembled code.

The latter approach takes into account the control flow of the program being disassembled, following
the possible paths from the entry point, which solves part of problems presented by the linear
approach, such as identifying jmp-preceeded data as code. The major assumption of this approach
is that it is possible to identify all successors of a given branch, which is not always true, since any
fail on identifying the instruction size can lead to incorrect paths and instructions.

3.1.1. Tricks

Table 1 shows a summary of anti-disassembly techniques and their detection methods2.

Table 1. Anti-disassembly techniques and their detection methods.
Technique Description Detection

PUSH POP
MATH

PUSH and POP a value
on/from the stack
instead of using a direct MOV

Detect a sequence of
PUSH and POP
on/from a register.

PUSH RET
PUSH a value on the stack and RET
to it instead of the ordinary return.

Detect a sequence of
PUSH and RET

LDR address
resolving

Get loaded library directly
from the PEB instead of
using a function call

Check memory access referring
the PEB offset.

Stealth API
import

Manually resolving library imports
instead of directly importing them.

Check for a sequence of
access/compares of PEBs offsets.

NOP sequence
Breaks pattern matching by
implanting NO-OPerations

Detect a sequence of NOPs
within a given window

Fake Conditional Create an always-taken branch Check for branch-succeeded
instructions which set branch flags

Control Flow Changing control flow within
an instruction block

Check for the PUSH-RET
instruction sequence

Garbage Bytes Hide data as instruction code Check for branch-preceded data

1 https://github.com/marcusbotacin/Anti.Analysis/tree/master/Whitepaper 2 De-
scribed by Branco et al. 2012
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3.2. Anti-Debug

In order to understand how anti-debug techniques work, we firstly introduce the basic idea of
most tricks: using direct memory checks instead of function calls. Secondly, we present the tricks
themselves.

3.2.1. Known API x Direct call

Most O.S. provide support for debugging checks. Windows, for instance, provides the IsDebug-
gerPresent API [Microsoft 2016]. Most anti-debug tricks, however, do not rely on these APIs,
but perform direct calls instead. The main reason behind such decision is that APIs can be easily
hooked by analysts, thus faking their responses. Internal structures, in turn, such as the process
environment block (PEB) [Microsoft 2017c], are much harder to fake — some changes can even
break system parts.

3.2.2. Tricks

Table 2 presents a summary of anti-debug techniques and their detection counterparts345.

Table 2. Anti-debug techniques and their detection methods.
Technique Description Detection
Known Debug API Call a debug-check API Check for API imports

Debugger Fingerprint
Check the presence of known
debugger strings

Check known strings
inside the binary

NtGlobalFlag Check for flags inside the
PEB structure

Check for access on
the PEB offset

IsDebuggerPresent Check the debugger flag
on the PEB structure

Check access to PEB on
the debugger flag offset

Hook Detection
Verify whether a function
entry point is a JMP instruction

Check for a CMP instruction
having JMP opcode as an argument

Heap Flags Check for heap flags on the PEB check for heap checks
involving PEB offsets

Hardware Breakpoint
Check whether hardware
breakpoint registers are not empty

Check for access
involving the debugger context

SS Register
Insert a check when
interruptions are disabled Check for SS register’s POPs

Software Breakpoint Check for the INT3 instruction Check for CMP with INT3
SizeOfImage Change code image field Check for PEB changes.

3.3. Anti-VM

A summary of anti-analysis tricks used by attackers to identify and evade virtualized environments
is shown in Table 367.
3 API check implemented by Pyew and Peframe 4 SizeOfImage implemented by Ferrie 2008 5 Other techniques
implemented by Branco et al. 2012 6 VM fingerprint implemented by Pafish 7 Other techniques by Branco et al. 2012
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Table 3. Anti-vm techniques and their detection methods.
Technique Description Detection

VM Fingerprint Check for known strings,
such as serial numbers

Check for known strings
inside the binary

CPUID Check Check CPU vendor
Check for known CPU
vendor strings

Invalid Opcodes Launch hypervisor-specific
instructions

Check for specific instructions
on the binary

System Table Checks Compare IDT values Look for checks involving IDT
HyperCall Detection Platform specific feature Look for specific instructions

3.4. Detection Framework

Given the presented detection mechanisms, we have implemented them by using a series of Python
scripts8. They work by iterating over libopcodes-disassembled instructions, and performing
a pattern matching on these, according the trick we are looking for. Our pipeline is able to provide
the information whether a given technique was found on a binary or not, the number of occurrences
per binary, and the section the trick was found.

Unlike Branco et al. 2012 approach, which considered the RET instruction as a code block delimiter,
we have implemented a variable-size window delimiter to evaluate whether the tricks may have been
implemented by making use of multi-block constructions.

4. Results
In this section, we present the results of applying our set of detectors to distinct datasets and discuss
how anti-analysis tricks have been applied in practice.

4.1. Binary sections

Here we show the binary section influence on the trick detection. In order to perform this evaluation,
we considered a dataset of 70 thousand worldwide crawled samples.

Figure 1 shows the detection distribution along the binary sections. It is worth to notice that the usual
instruction section (text) is only the 5th more prevalent section. The presence of other sections
can be due to samples moving their tricks to distinct sections in order to not be detected by anti-virus
(AV). This fact can only be exactly determined through dynamic analysis. The presence of some
section such as .aspack, for instance, is due to the presence of a packer to obfuscate the code.

Figure 2 shows that the tricks contained in the .text section correspond to half of the total tricks de-
tected. The most prevalent techniques, such as PushPop and PushRet, are the most simple ones.

4.2. Packer influence

In the last section, we could see that sections related to packer obfuscation were identified. In
this section, we discuss the packer influence on trick detection. The first noticeable situation is
that the tricks detected on packed samples are not equally distributed among sections, as shown
in Figure 3. We can observe that the C++ compiler and the PIMP packer exhibit tricks on the
.rsrc section, whereas the UPX packer presents tricks on distinct sections. A similar situation
8 https://github.com/marcusbotacin/Anti.Analysis
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Figure 1. Tricks by section.
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happens when considering the detected tricks, as shown in Figure 4. The C++ compiler and the
PIMP packer presents similar rates of tricks while the UPX packer presents distinct tricks. Finally,
in order to evaluate the packer influence on trick detection, we unpacked all samples for which there
are known unpackers (6 thousand samples), thus obtaining the results shown in Figure 5. We could
confirm our expectations that the majority of the tricks are present on the packer, not on the original
code. This fact is mostly due to the usage of malware kit generators.
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Figure 4. Tricks detected on distinct
packers.

4.3. Malware and Goodware
Some of the presented tricks are widely used, so they can be found either on benign programs (good-
ware) and malicious ones. To verify whether the detection of those aforementioned tricks could be used
as a malicious program indicator, we compared the trick incidence on both program classes, as shown
in Figure 6. We performed our tests using as a benign dataset the binaries and DLLs from a clean Win-
dows installation (binaries from the System32 directory). We can observe that some general tricks
(CPU identification) can also be found on system DLLs, but these are not present on the binaries. This
fact is explained by the Windows architecture, which relies on DLLs for userland-kernel communica-
tion. This indicates that we need to employ distinct approaches when developing heuristics for executa-
bles and DLLs. We aim to extend this evaluation for general binaries, despite system ones, however,
it is hard to ensure internet-downloaded binaries are not trojanized in any way, thus biasing the results.
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Figure 5. Packer influence on trick detection.
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Figure 6. Tricks detection on malware and goodware.

4.4. Distinct Scenarios

The tricks prevalence differs across distinct datasets. In order to provide a view on how these
differences affect user in practice, we compared the worldwide crawled dataset9 to a dataset of
30 thousand Brazilian collected samples10. Figure 7 shows the results of comparing the datasets
using the PEframe tool. We can observe that the Brazilian dataset presented higher detection rates
for the VmCheck and the VirtualBox tricks and lower for the others. These rates are quite
surprisingly, given the previous research results regarding the Brazilian scenario [Botacin et al. 2015].
When performing the same checks using our developed tricks, as shown on Figure 8, we show that
the Brazilian scenario presents lower trick rates than the worldwide one. This differences can be
explained by the fact that the knowledge behind the tricks detected by the PEframe are more spreaded,
since they are simpler. More advanced tricks, such as some of those we have presented in this work,

9 From http://malshare.com/ 10 The same as in Botacin et al. 2015
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are only present on a broader scenario, i.e., the worldwide dataset.
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4.5. Improving tricks and their detection
In this section, we present ways the tricks can be enhanced and how to detect them.

4.5.1. Trick splitting

A way of evading the trick detection is to split it across distinct blocks. Although we cannot check
such usage in practice without dynamic analysis, we can look for signs of splitted-tricks by changing
the detection window, as show on Figure 9. The initial value is the RET window, on which we
traverse the block until this instruction is found. We considered the detection rate of this window
as a ground-truth, thus presenting the 100% detected value. The other values are fixed-size number
of instructions which will be traversed, thus increasing the detection rate. We observed a maximum
increase of 0.65%.

4.5.2. Instruction dis-alignment

Another possible way of evading tricks detection is by using unaligned instructions, so the
disassembler is not able to present the correct opcode. Although we could only check the effective
usage of such approach on a dynamic system, we can look for static signs of such usage. In order
to do so, we have implemented some detectors using YARA11 rules and running them on the binary
bytes. The tests results are shown in the Table 4. We have considered 300 random samples, being the
Aligned considered as ground-truth. We can observe the Unaligned results are significantly
higher, indicating it is a viable way of hidding code.

4.5.3. Compiler-based tricks

Another way of hidding the trick is to compile the code using instructions unsupported by AVs
and other tools or indirect constructions. The ROP itself malware [Poulios et al. 2015], for instance,
11 https://virustotal.github.io/yara/

9
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Figure 9. Evaluating block window effect on trick detection.

Table 4. Evaluating the occurrence of misaligned tricks.
Trick Aligned Unaligned
CPU 182 287
FakeJMP 63 203

suggested turning a malware sample into a ROP12 payload, approach which was implemented by
the Ropinjector tool [Poulios 2015]. The SSexy tool [Bremer 2012] compiles the code using SSE13

instructions. The Movfuscator [domas 2015] does the same using XOR ones. Finally, the
work [Barngert 2013] compiles a code to run using only MMU instructions14. In order to verify such
approaches in practice, we submitted some known shellcodes from ExploitDB compiled using the
ROPInjector solution, being the results reported in the Table 5. We can notice that the AV were not
able to detect the payloads when compiled using the tool.

Table 5. Compilation-based evasion.
ShellCode 115 216 317 418 519

Unarmored 4/57 15/58 9/57 7/68 9/53
ROPInjector 0/57 0/57 0/54 0/54 0/53

4.6. General AV detection

The results from the previous section suggests that AV are not able to handle some tricks. Problems
on AV emulators were also described on other work [Nasi 2014]. We submitted to VirusTotal some
shellcodes armored with our tricks, being the results shown in the Table 6. We can notice that the
AVs do not presented the same efficiency to handle armored and unarmored tricks.

12 Return Oriented Programming 13 Streaming SIMD Extensions 14 Memory Management Unit

10
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Table 6. Evaluating AV Evasion: unarmored and trick-armored samples.
Shellcode SC1 SC2 SC3
Technique W/o Trick W/ Trick W/o Trick W/ Trick W/o Trick W/ Trick
Fakejmp

10/58
6/57

20/58
17/58

15/58
10/57

PushRet 7/57 17/58 10/58
NOP 6/57 17/57 10/58

4.7. Discussion

We have presented anti-analysis tricks and ways of detecting them. We also presented some insights
on how they can be enhanced as well their detector. The major limitation relies on the fact that the ef-
fectiveness of such approach can only be measured using dynamic analysis, which is a straightforward
future work. Additionally, we aim to implement some kind of rule-based remediation [Lee et al. 2013].
More details about this solution’s limitations are presented in the appendix.

5. Conclusion

In this work, we have studied anti-analysis techniques, their effect on malware analysis, and
theoretical limitations. We also developed static detectors able to identify known evasive constructions
on binaries. We have tested these detectors against multiple datasets and observed that there are
significant differences between the Brazilian scenario compared to the global one.

The list of tricks presented in this paper is not exhaustive, since attackers keep testing, and
consequently developing new ways of evading analysis and detecting environments. Hence, our future
work consists on implementing new detectors, as they have been discovered, as well as evaluating
distinct datasets, in order to identify other trends about malware.
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