
XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

334 © 2017 Sociedade Brasileira de Computação

Sessão técnica 9 (ST9): Controle de Acesso, Autenticação, Biometria, Confiança e 
Gerenciamento de Identidade
1. Privacy-aware web authentication protocol with recovery and revocation
Lucas Boppre Niehues, Ricardo CustódioPrivacy-aware web authentication protocol

with recovery and revocation
Lucas Boppre Niehues1, Ricardo Custódio1

1Departamento de Informática e Estatı́stica – Universidade Federal de Santa Catarina
Florianópolis – SC – Brazil

lucasboppre@gmail.com, ricardo.custodio@ufsc.br

Abstract. Password-based authentication is the de facto standard for web ser-
vices, usually linked to email addresses for account recovery. However, this
scheme has several serious known drawbacks. We present a simple pseudonym
authentication scheme for users to register and authenticate to online services,
by using cryptographic key pairs stored in a mobile device. In contrast to other
similar schemes, our proposal requires minimal user interaction, allows for easy
account recovery and revocation, and requires no trusted third-party. We cre-
ated a prototype to evaluate the proposal and concluded that it is viable and has
good security, privacy, and usability properties.

Resumo. Autenticação baseada em senha é a mais utilizada para serviços web,
comumente associada a endereços de email para recuperação das credenciais.
Porém, este esquema apresenta várias desvantagens de segurança e privaci-
dade. É apresentado um simples esquema de autenticação pseudônima para
serviços online, através de chaves criptográficas assimétricas armazenadas em
dispositivo móvel. Em comparação com outros esquemas similares, nossa pro-
posta demanda mı́nima interação do usuário, permite recuperação e revogação
simples das contas, e não exige nenhuma terceira-parte. É criado um protótipo
para avaliar a proposta e concluı́mos que ela é viável e tem boas propriedades
de segurança, privacidade e usabilidade.

1. Introduction
User authentication on the web is a hard problem. It is under competing pressures
for usability and security, especially when facing user errors and sophisticated at-
tacks. The de facto standard for general web authentication is the combination of user-
name and password, usually linked to an email address for password recovery pur-
poses [Bonneau et al. 2012].

However, much has been said about the problems of password
schemes [Bonneau and Preibusch 2010, Yan et al. 2012]. For example, users have trou-
ble creating and remembering random, high-entropy unique passwords [Bonneau 2012].
Coupled with the difficulty of implementing secure password schemes on the service
side, these issues multiply the severity of data breaches.

Numerous alternative authentication schemes have been pro-
posed [Borchert and Günther 2013, Lindemann et al. 2014, Xu et al. 2015]. Although
these schemes bring advantages, they usually make sacrifices to security, usability, or
privacy. For instance, OpenID and Facebook Login both depend on trusted third parties.



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

335 © 2017 Sociedade Brasileira de Computação

Privacy-aware web authentication protocol
with recovery and revocation

Lucas Boppre Niehues1, Ricardo Custódio1

1Departamento de Informática e Estatı́stica – Universidade Federal de Santa Catarina
Florianópolis – SC – Brazil

lucasboppre@gmail.com, ricardo.custodio@ufsc.br

Abstract. Password-based authentication is the de facto standard for web ser-
vices, usually linked to email addresses for account recovery. However, this
scheme has several serious known drawbacks. We present a simple pseudonym
authentication scheme for users to register and authenticate to online services,
by using cryptographic key pairs stored in a mobile device. In contrast to other
similar schemes, our proposal requires minimal user interaction, allows for easy
account recovery and revocation, and requires no trusted third-party. We cre-
ated a prototype to evaluate the proposal and concluded that it is viable and has
good security, privacy, and usability properties.

Resumo. Autenticação baseada em senha é a mais utilizada para serviços web,
comumente associada a endereços de email para recuperação das credenciais.
Porém, este esquema apresenta várias desvantagens de segurança e privaci-
dade. É apresentado um simples esquema de autenticação pseudônima para
serviços online, através de chaves criptográficas assimétricas armazenadas em
dispositivo móvel. Em comparação com outros esquemas similares, nossa pro-
posta demanda mı́nima interação do usuário, permite recuperação e revogação
simples das contas, e não exige nenhuma terceira-parte. É criado um protótipo
para avaliar a proposta e concluı́mos que ela é viável e tem boas propriedades
de segurança, privacidade e usabilidade.

1. Introduction
User authentication on the web is a hard problem. It is under competing pressures
for usability and security, especially when facing user errors and sophisticated at-
tacks. The de facto standard for general web authentication is the combination of user-
name and password, usually linked to an email address for password recovery pur-
poses [Bonneau et al. 2012].

However, much has been said about the problems of password
schemes [Bonneau and Preibusch 2010, Yan et al. 2012]. For example, users have trou-
ble creating and remembering random, high-entropy unique passwords [Bonneau 2012].
Coupled with the difficulty of implementing secure password schemes on the service
side, these issues multiply the severity of data breaches.

Numerous alternative authentication schemes have been pro-
posed [Borchert and Günther 2013, Lindemann et al. 2014, Xu et al. 2015]. Although
these schemes bring advantages, they usually make sacrifices to security, usability, or
privacy. For instance, OpenID and Facebook Login both depend on trusted third parties.

A popular proposal to solve these problems of web authentication is
SQRL [Gibson 2016, van Dijk 2014]. However, this scheme has a disaster recovery pro-
tocol that is too complex, and the use of deterministic key pairs creates some security
concerns.

To remedy these issues we propose a new web authentication protocol with no
trusted third parties and no values to memorize, and includes the possibility of account
recovery and revocation. Our proposal relies on a mobile device carried by the user to
store cryptographic keys for each registered service. This scheme has good security prop-
erties and does not require the service to keep any secrets, and neither requires the user to
type any name, code or password.

Authentication schemes can also imply privacy concerns. This has been clearly
evidenced by the Ashley Madison data breach [Mansfield-Devine 2015], where users
were identified by email addresses. Ideally, an authentication scheme should identify
users in that service without linking to accounts in different services. We call this prop-
erty ”pseudonymity” and implement it in our proposed scheme.

This article is organized as follows. The protocol proposed is presented in Sec-
tion 2. We describe in detail the entire protocol life cycle, considering setup, data storage,
the authentication process itself, and disaster recovery (namely account recovery and re-
vocation). In Section 3, we show some scenarios of possible attacks to the proposed
protocol. Section 4 compares it to password schemes and to SQRL, which is the closest
alternative in literature. Section 5 contains an analysis in terms of strengths and weak-
nesses of the proposed protocol. We present our conclusions in Section 6.

2. Proposed protocol
This section presents the new privacy aware web authentication protocol. The stages of
the protocol life cycle are described, such as setup, data storage, login, the recovery of
user data in the event of a disaster, and the revocation, if desired, of the user account in a
given service.

The proposed authentication protocol requires minimal user interaction, allows
for easy account recovery and revocation, requires no trusted third-party, and implements
pseudonymity properties. This is achieved by creating a unique identifier and crypto-
graphic key pair each time the user registers on a new service, plus a disaster recovery
key for account recovery and revocation.

The scheme is designed to have three computer systems communicating: the
user’s mobile device, the web browser to be authenticated, and the web server hosted
by the service. Figure 1 shows the components of the proposed protocol and the corre-
sponding flow of data involved in its execution.

The server authenticates the browser by sending a challenge to be signed by a
corresponding private key stored in the mobile device. The offline safe site stores data for
recovery and revocation.

2.1. Setup

The first step is to install the mobile application that implements the protocol. When
first run, the application generates an asymmetric key pair, referred as master keys, and



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

336© 2017 Sociedade Brasileira de Computação

Browser

Mobile
device

Offline
safe site

Server
QR code
(camera)

Page request
(internet connection)

Auth. API
(internet connection)Master keys

(out of band)

User Side Service Side

Figure 1. Authentication components.

requests the user to back it up in an offline safe site.

The public key is used to generate user ID, and encrypt the disaster recovery data.
The private key is highly sensitive and used only during recovery and revocation. There-
fore it is removed from the device once it is backed up.

We label the private key as disaster recovery key and the public key as online
master key. We note that the online master key should be kept secret despite being the
”public” half of the key pair, though it is less sensitive than the private key.

Once the master key pair is created and backed up, the user is ready to register on a
service. The protocol steps are shown in Figure 2. For simplicity, we specify this and the
following protocols at a high level, without including the exact choice of cryptographic
primitives or the message encoding.

Registration protocol

Mobile device Browser Server
visit website

generate QR code

domain, QR code

QR code
(domain)

generate user ID

generate service key pair

generate revocation code

compute revocation code hash

create disaster recovery data

discard revocation code

user ID, public key, disaster recovery data, revocation code hash
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

store user tuple

registration successful
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

store service key pair

Figure 2. Registration protocol.

The protocol starts with the user visiting the service’s page, which displays a QR



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

337 © 2017 Sociedade Brasileira de Computação

Browser

Mobile
device

Offline
safe site

Server
QR code
(camera)

Page request
(internet connection)

Auth. API
(internet connection)Master keys

(out of band)

User Side Service Side

Figure 1. Authentication components.

requests the user to back it up in an offline safe site.

The public key is used to generate user ID, and encrypt the disaster recovery data.
The private key is highly sensitive and used only during recovery and revocation. There-
fore it is removed from the device once it is backed up.

We label the private key as disaster recovery key and the public key as online
master key. We note that the online master key should be kept secret despite being the
”public” half of the key pair, though it is less sensitive than the private key.

Once the master key pair is created and backed up, the user is ready to register on a
service. The protocol steps are shown in Figure 2. For simplicity, we specify this and the
following protocols at a high level, without including the exact choice of cryptographic
primitives or the message encoding.

Registration protocol

Mobile device Browser Server
visit website

generate QR code

domain, QR code

QR code
(domain)

generate user ID

generate service key pair

generate revocation code

compute revocation code hash

create disaster recovery data

discard revocation code

user ID, public key, disaster recovery data, revocation code hash
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

store user tuple

registration successful
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

store service key pair

Figure 2. Registration protocol.

The protocol starts with the user visiting the service’s page, which displays a QR

code embedding the service domain name. The mobile device then scans the QR code,
acquiring the domain name used to uniquely identify the service. The mobile device then
generates the following set of credentials using the online master key and the service’s
domain name:

User ID: identifies the user on a service. The ID is the hash of the online mas-
ter key concatenated with the service domain name, that is: user ID =
hash(online master key ‖ domain).

Revocation code: a large random number, to be presented to the service when revoking a
key pair. Stored encrypted inside the disaster recovery data. This value is created
during the registration process but subsequently discarded, requiring the use of
the disaster recovery key to recover it. Its hash is stored in the server to verify
revocations.

Service key pair: the asymmetric key pair to be used when authenticating to the service.
A copy of the key pair is stored encrypted inside the disaster recovery data.

Disaster Recovery Data: It is the service key pair together with the revocation code en-
crypted with the online master key.

The user then sends the following set of credentials to the server: 〈 user ID, disas-
ter recovery data, service public key, and revocation code hash 〉. The mobile device only
needs to keep the domain and service private key.

Before accepting the registration, the server must verify if the user ID is actu-
ally new. The server must not allow a user to register over another user, or replace the
credentials stored.

2.2. Storage

Our proposed authentication scheme involves four different components as shown in Fig-
ure 3.

Online Master Key

*Disaster Recovery Key

Table of Domain × Key pair

Mobile Device

Table of Domain × Session

Browser

Online Master Key

Disaster Recovery Key

Offline Safe Site

User Side

Table of Session × User

Table of Users

Server

Service Side

Figure 3. Components of the authentication scheme and the data stored.

The user side has three components: browser, offline safe site, and mobile device.
The browser possesses a session id cookie for each domain. The offline safe site contains
the master key pair (the disaster recovery key and a copy of the online master key).

The mobile device stores the online master key. The online master key is used
to generate the user ID based on the domain, and to encrypt the disaster recovery data



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

338© 2017 Sociedade Brasileira de Computação

during registration. The online master key should be kept secret to avoid other people
registering themselves with it in new services, preventing the original user from using the
same id.

The mobile device also stores the table of credentials, which maps the domain
of each service to the corresponding key pair. This table is used during login, using the
private key to perform a proof-of-possession protocol. Optionally, it may contain a list
of the sessions authenticated by this device, useful to spot attacks and allowing remote
log-out.

During revocation and recovery, the mobile device also contains the disaster re-
covery key. Due to its sensitiveness, this key should be discarded from the mobile device
after use, and kept only in the offline safe site.

The service contains only one component, the web server. To authenticate users
it must keep two tables: users and sessions. The session table associates hashed session
ids with user IDs. This indicates which users are logged-in, and their active sessions
(possibly more than one). The session id is sent to the browser as cookie upon its first
visit, and discarded from the server afterwards. Note that an attacker with knowledge of a
session id can impersonate the corresponding user during that session, which is why only
the cryptographic hash of the session id is stored.

The table of users maps user IDs to their public key, disaster recovery data and
revocation code hash. The mobile device supplies all four values during registration, and
is subject to change during a revocation. None of these values are secret.

2.3. Login
The login protocol allows the user to authenticate a browser by scanning a QR code using
their mobile device camera. Figure 4 shows the messages exchanged during a successful
authentication.

The protocol starts when the user points an unauthenticated web browser to the
service’s website. The server creates a new session id, and responds the browser by
sending the session id as a cookie, along with a QR code. The QR code embeds the
service domain and a hash of the session id. It is necessary to hash the session id to avoid
onlookers from stealing this value.

When scanning the QR code with their mobile device, the user must confirm the
service domain. This confirmation prompt is required to protect the user from Man-in-
the-Middle attacks. Suppose the user visited the website for a social network, but this
service is malicious and wants access to the user’s bank service. The malicious server can
connect to the bank, posing as a client, and get a QR code for logging in the bank. When
the user’s browser visits the malicious social network server, it is tricked into displaying
the QR code for the bank login, instead of the expected social network QR code. If the
mobile device continues with this protocol they will be authenticating the bank session
under the malicious server’s control. By manually confirming the domain contained in
the QR code the user can be sure only the expected service key pair will be used, and no
unintended authentications happen.

Once the app has scanned the session id hash and confirmed the domain from
the QR code, it fetches the corresponding private key from its local storage. The pri-



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

339 © 2017 Sociedade Brasileira de Computação

during registration. The online master key should be kept secret to avoid other people
registering themselves with it in new services, preventing the original user from using the
same id.

The mobile device also stores the table of credentials, which maps the domain
of each service to the corresponding key pair. This table is used during login, using the
private key to perform a proof-of-possession protocol. Optionally, it may contain a list
of the sessions authenticated by this device, useful to spot attacks and allowing remote
log-out.

During revocation and recovery, the mobile device also contains the disaster re-
covery key. Due to its sensitiveness, this key should be discarded from the mobile device
after use, and kept only in the offline safe site.

The service contains only one component, the web server. To authenticate users
it must keep two tables: users and sessions. The session table associates hashed session
ids with user IDs. This indicates which users are logged-in, and their active sessions
(possibly more than one). The session id is sent to the browser as cookie upon its first
visit, and discarded from the server afterwards. Note that an attacker with knowledge of a
session id can impersonate the corresponding user during that session, which is why only
the cryptographic hash of the session id is stored.

The table of users maps user IDs to their public key, disaster recovery data and
revocation code hash. The mobile device supplies all four values during registration, and
is subject to change during a revocation. None of these values are secret.

2.3. Login
The login protocol allows the user to authenticate a browser by scanning a QR code using
their mobile device camera. Figure 4 shows the messages exchanged during a successful
authentication.

The protocol starts when the user points an unauthenticated web browser to the
service’s website. The server creates a new session id, and responds the browser by
sending the session id as a cookie, along with a QR code. The QR code embeds the
service domain and a hash of the session id. It is necessary to hash the session id to avoid
onlookers from stealing this value.

When scanning the QR code with their mobile device, the user must confirm the
service domain. This confirmation prompt is required to protect the user from Man-in-
the-Middle attacks. Suppose the user visited the website for a social network, but this
service is malicious and wants access to the user’s bank service. The malicious server can
connect to the bank, posing as a client, and get a QR code for logging in the bank. When
the user’s browser visits the malicious social network server, it is tricked into displaying
the QR code for the bank login, instead of the expected social network QR code. If the
mobile device continues with this protocol they will be authenticating the bank session
under the malicious server’s control. By manually confirming the domain contained in
the QR code the user can be sure only the expected service key pair will be used, and no
unintended authentications happen.

Once the app has scanned the session id hash and confirmed the domain from
the QR code, it fetches the corresponding private key from its local storage. The pri-

vate key then signs the session id hash, and the user ID is derived by hashing the on-
line master key concatenated with the domain. The mobile device then sends the triple
〈user ID, session id hash, signature〉 directly to the server, via Wi-Fi or cellular network,
through a TLS channel [Dierks and Rescorla 2008].

The server consults its table of users, indexed by the user ID, and retrieves the
public key associated. The public key is used to verify the session id hash signature. If the
signature is valid, then it represents the user wishes to allow the session (controlled by the
browser) to access their data on this service. The server responds with a confirmation and
stores the association 〈session id hash, user ID〉 in the table of sessions. The browser’s
session is then considered authenticated.

The login may fail if the user ID is not found or if the signature does not match. In
this case, the server response to the mobile device indicates the failure, to be displayed to
the user. After a successful authentication, the browser will contain a shared secret with
the server (session id), the server will have an association between the shared secret and
the user (sessions table), and the signature provides unambiguous intent to authenticate
that session.

Authenticate browser using mobile device

Mobile device Browser Server
visit website

generate session id

create QR code
session id, QR code

(domain, session id hash)
QR code

(domain, session id hash)
user confirms domain

load private key

sign session id hash

user ID, session id hash, signed session id hash
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

fetch public key

verify signature

login successful

login successful
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 4. Login protocol.

2.4. Recovery
The authentication protocol depends on data stored in the mobile device. If this data is
lost (memory wipe, device destruction or loss) the user must somehow recover access to
the services. The recovery process is two step: first, the master key pair must be loaded,
then the service key pairs must be recovered from each service. Figure 5 is a diagram of
the process.

The master key pair was stored in the offline safe site, set up by the user during
the initial enrollment. The user must retrieve this key pair and load the keys in the mobile
device. The app can be used to scan a QR code of the keys, or allow the user to type their
encoded forms.



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

340© 2017 Sociedade Brasileira de Computação

Once the online master key and the disaster recovery key (both temporarily loaded
into the device) are available, the user inputs the domains of the services they want to
recover. For each service the mobile device will generate the user ID by hashing the online
master key concatenated with the domain, then send a request asking for the disaster
recovery data associated with this user ID. This value is unique and encrypted, so no
authentication is required.

Recall that the disaster recovery data contains the service key pair encrypted with
the online master key, to be decrypted only by the offline master key. Since the disaster
recovery key is available in the device at the moment, the service key pair is recovered.

During this process, the disaster recovery key is kept loaded in the device. The app
must clearly indicate to the user that it’s on a recovery state, and that it should be exited
as soon as possible. Exiting the recovery state means discarding the disaster recovery key,
which brings all components to the same state as before the data was lost.

Recovery process

Mobile device Server
load master key pair

get domain from user input

generate user ID

user ID

get disaster recovery data for user ID

disaster recovery data

decrypt service key pair

Figure 5. Recovery process.

2.5. Revocation

If the service private keys are compromised instead of lost, the user must revoke them.
The revocation process is very similar to a recovery followed by a registration. Figure 6
shows the steps required. Due to the similarity of the processes, the steps in common are
discussed more superficially.

The revocation process starts with the user loading the disaster recovery key in the
mobile device and inputting the service domain (if more than one, just repeat the process).
The mobile device requests the disaster recovery data from the server, and extracts the
revocation code that was encrypted in it. Up to this point, the process is analogous to a
recovery. While the mobile device waits for the disaster recovery data, it also generates
the new service key pair, similarly to a registration.

To complete the revocation, the mobile device sends the following tuple to the
server: 〈 user ID, new public key, new disaster recovery data, new revocation code
hash, old revocation code 〉 (i.e. the same tuple as registration, plus the exposed revo-
cation code). The server can verify the old revocation code by hashing it and comparing
to the revocation code hash stored during registration. If they are the same then the pub-
lic key, disaster recovery data, and revocation code hash are replaced by the new values
received. Additionally, any active session is closed.



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

341 © 2017 Sociedade Brasileira de Computação

Once the online master key and the disaster recovery key (both temporarily loaded
into the device) are available, the user inputs the domains of the services they want to
recover. For each service the mobile device will generate the user ID by hashing the online
master key concatenated with the domain, then send a request asking for the disaster
recovery data associated with this user ID. This value is unique and encrypted, so no
authentication is required.

Recall that the disaster recovery data contains the service key pair encrypted with
the online master key, to be decrypted only by the offline master key. Since the disaster
recovery key is available in the device at the moment, the service key pair is recovered.

During this process, the disaster recovery key is kept loaded in the device. The app
must clearly indicate to the user that it’s on a recovery state, and that it should be exited
as soon as possible. Exiting the recovery state means discarding the disaster recovery key,
which brings all components to the same state as before the data was lost.

Recovery process

Mobile device Server
load master key pair

get domain from user input

generate user ID

user ID

get disaster recovery data for user ID

disaster recovery data

decrypt service key pair

Figure 5. Recovery process.

2.5. Revocation

If the service private keys are compromised instead of lost, the user must revoke them.
The revocation process is very similar to a recovery followed by a registration. Figure 6
shows the steps required. Due to the similarity of the processes, the steps in common are
discussed more superficially.

The revocation process starts with the user loading the disaster recovery key in the
mobile device and inputting the service domain (if more than one, just repeat the process).
The mobile device requests the disaster recovery data from the server, and extracts the
revocation code that was encrypted in it. Up to this point, the process is analogous to a
recovery. While the mobile device waits for the disaster recovery data, it also generates
the new service key pair, similarly to a registration.

To complete the revocation, the mobile device sends the following tuple to the
server: 〈 user ID, new public key, new disaster recovery data, new revocation code
hash, old revocation code 〉 (i.e. the same tuple as registration, plus the exposed revo-
cation code). The server can verify the old revocation code by hashing it and comparing
to the revocation code hash stored during registration. If they are the same then the pub-
lic key, disaster recovery data, and revocation code hash are replaced by the new values
received. Additionally, any active session is closed.

At this point, the mobile device has a new set of key pairs, and the server values
have been updated. The revocation is complete and the disaster recovery key is discarded.
The security of this process is based on the security of the disaster recovery key, which is
why it must be stored in an offline safe site.

It is also possible that the online master key is compromised, since it is always
present in the mobile device. This key is only used to generate user IDs and disaster
recovery data, neither of which allows the attacker to impersonate the user. However,
the ability to generate user IDs for services allows the attacker to register themselves on
new services, with the same user ID that the legitimate user would have, and a set of
credentials that the legitimate user will not be able to revoke. This attack blocks the user
from using this new service.

The online master key can be replaced by performing the revocation process and,
when the mobile device sends the new credentials, including a ”new user ID” generated
from a new master key pair. The server would effectively replace all fields for that user
(user ID, public key, disaster recovery data, revocation code hash), but since the old revo-
cation code is verified this is a valid process.

The only key compromise not recoverable is the compromise of the disaster re-
covery key. In this case, the attacker is able to recover the private key for all services,
or revoke them and lock the legitimate user out. This is an unfortunate consequence, but
unavoidable for authentication schemes; there is always some ultimate trust. The protocol
has been designed to only use the disaster recovery key during emergencies (recovery and
revocation), and to not require constant backups of new keys. This enables the disaster
recovery key to be kept in a more secure location that is harder to access.

Revocation process for compromised service key pair

Mobile device Server
load master key pair

get domain from user input

generate user ID

user ID

get disaster recovery data

disaster recovery data

decrypt old revocation code

generate new revocation code

generate new service key pair

generate new disaster recovery data

discard new revocation code
user ID, new public key, new disaster recovery data

new revocation code hash, old revocation code
store service key pair

verify old revocation code

replace old user tuple

Figure 6. Revocation process to replace credentials.

3. Attack scenarios
Cryptographic schemes are designed with an attacker model in mind, and our proposal is
no different. Broadly speaking there are three computer systems (mobile device, browser,



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

342© 2017 Sociedade Brasileira de Computação

server) plus two environmental factors (network and physical environment of the user).
Different assumptions are made for each.

The mobile device is assumed to be secure, but the scheme should have some
resilience to physical theft and software compromise. This means that in case one of
these events happens, then some security properties may be lost but only temporarily.
For example, physical theft may allow the attacker to extract the private keys from the
device, and authenticate on the corresponding servers. However, the user is still capable
of revoking those keys and taking control back.

The browser is only assumed secure enough to be trusted with one session. Since
the user will be using the browser to interact with the service, this assumption must,
unfortunately, always be present. Still, the browser is not able to identify the user on
unrelated services, or open new sessions by itself in the future.

The server is assumed to be completely untrustworthy for authentication purposes.
It may pretend to belong to a different service, forward authentication attempts to steal
sessions on a different service, try to identify the user (link accounts), or any other behav-
ior. Additionally, a database leak should not allow attackers to impersonate or identify
users.

The network is assumed to also be untrustworthy. The authentication scheme
relies on TLS to ensure confidentiality, integrity, and authenticity of the server (domain
name matching), even under active attackers. Similarly, the environment around the user
is also considered untrustworthy. The scheme should uphold its security properties even
if all user interactions are seen by the attacker (e.g. video surveillance recording key
presses). Active attacks on the physical environment are not considered, and left as an
exercise for spy thrillers.

4. Comparing with other authentication protocols
In this section we compare our proposal to two other authentication protocols: username
and password, which is the de facto standard for most of the web; and SQRL, which is
the closest protocol to our proposal.

4.1. Username and password
The most common authentication scheme on the web is the username and password
combo [Bonneau et al. 2012]. This method requires the user to provide a name, uniquely
identifying his account, and a memorized secret to authenticate him. Common additions
include registering an email to recover lost passwords, and using the possession of a cer-
tain mobile device.

Password authentication schemes have usability problems. For example, account
creation is an onerous process, requiring the user to come up with a password that is se-
cure, memorable, unique, and obeys the service’s policy, which is often contradictory
among different services. Incapable of fulfilling all requirements, users choose low-
entropy passwords, which are easy to guess and vulnerable to brute force attacks. Ana-
lyzing a dataset of 70 million passwords, [Bonneau 2012] concluded: “As a rule of thumb
for security engineers, passwords provide roughly equivalent security to 10-bit random
strings against an optimal online attacker trying a few popular guesses for large list of
accounts.”



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

343 © 2017 Sociedade Brasileira de Computação

server) plus two environmental factors (network and physical environment of the user).
Different assumptions are made for each.

The mobile device is assumed to be secure, but the scheme should have some
resilience to physical theft and software compromise. This means that in case one of
these events happens, then some security properties may be lost but only temporarily.
For example, physical theft may allow the attacker to extract the private keys from the
device, and authenticate on the corresponding servers. However, the user is still capable
of revoking those keys and taking control back.

The browser is only assumed secure enough to be trusted with one session. Since
the user will be using the browser to interact with the service, this assumption must,
unfortunately, always be present. Still, the browser is not able to identify the user on
unrelated services, or open new sessions by itself in the future.

The server is assumed to be completely untrustworthy for authentication purposes.
It may pretend to belong to a different service, forward authentication attempts to steal
sessions on a different service, try to identify the user (link accounts), or any other behav-
ior. Additionally, a database leak should not allow attackers to impersonate or identify
users.

The network is assumed to also be untrustworthy. The authentication scheme
relies on TLS to ensure confidentiality, integrity, and authenticity of the server (domain
name matching), even under active attackers. Similarly, the environment around the user
is also considered untrustworthy. The scheme should uphold its security properties even
if all user interactions are seen by the attacker (e.g. video surveillance recording key
presses). Active attacks on the physical environment are not considered, and left as an
exercise for spy thrillers.

4. Comparing with other authentication protocols
In this section we compare our proposal to two other authentication protocols: username
and password, which is the de facto standard for most of the web; and SQRL, which is
the closest protocol to our proposal.

4.1. Username and password
The most common authentication scheme on the web is the username and password
combo [Bonneau et al. 2012]. This method requires the user to provide a name, uniquely
identifying his account, and a memorized secret to authenticate him. Common additions
include registering an email to recover lost passwords, and using the possession of a cer-
tain mobile device.

Password authentication schemes have usability problems. For example, account
creation is an onerous process, requiring the user to come up with a password that is se-
cure, memorable, unique, and obeys the service’s policy, which is often contradictory
among different services. Incapable of fulfilling all requirements, users choose low-
entropy passwords, which are easy to guess and vulnerable to brute force attacks. Ana-
lyzing a dataset of 70 million passwords, [Bonneau 2012] concluded: “As a rule of thumb
for security engineers, passwords provide roughly equivalent security to 10-bit random
strings against an optimal online attacker trying a few popular guesses for large list of
accounts.”

Additionally, some groups of people have trouble with the creation, memorization,
and typing of passwords. For instance, elderly users face special difficulties because of
memory and motor skills disabilities [Renaud 2006], while blind users may have trouble
interacting with password forms and complying with policies [Saxena and Watt 2009].
These accessibility challenges are active areas of research and improvements are being
made, but due to the myriad of individual implementations, many of the password scheme
implementations will certainly remain faulty.

Passwords also imply complexity on the service side. Passwords must not
be logged, have to be hashed with a special-purpose algorithm before storage (e.g.
bcrypt [Provos and Mazières 1999], scrypt [Percival and Josefsson 2016]), and verified
with a constant time algorithm. Updating the hash algorithm creates further difficulties,
and more advanced security requirements such as ”must be different than the last 10 pass-
words” are common sources of additional complexity. Worsening the problem, there is a
plethora of resources online that teach wrong or outdated practices.

Password based authentication schemes also suffer from several security is-
sues. Weak or reused passwords create trivial security holes, and phishing is ram-
pant [Bonneau et al. 2012]. If a user has forgotten their password, the usual alternatives
are receiving a password-resetting link by email (creating a single point of failure for
all services in the same inbox), or security questions about public or easily guessable
personal data [Stuart Schechter 2009]. And if the service mishandles the passwords it
receives, attackers can use data breaches to impersonate legitimate users.

4.2. SQRL

There have been a number of proposals for authentication protocols that seek to miti-
gate these security and privacy challenges. The best representative of these protocols
is the SQRL. SQRL [Gibson 2016] is an authentication system with very similar goals
and methods, and that ultimately inspired the creation of our scheme. From the point of
view of the user, the setup and authentication processes are virtually identical between the
two schemes; however, our proposal and SQRL diverge in the underlying cryptographic
techniques used, and therefore security properties achieved. We will briefly describe the
SQRL scheme, then compare to our proposal.

The SQRL authentication scheme also relies on users scanning QR codes with
their mobile devices, and having the mobile device store service key pairs to perform
proof-of-possession protocols. The two main differences to our scheme are in the creation
of the service key pairs and the revocation facilities. There are plenty of other smaller
differences, but they are usually in the level of detail of the client implementation (e.g.
exact algorithm, how to protect secret values with passwords, how URLs are processed),
or cryptographic differences that do not result in dissimilar security properties (e.g. SHA-
256 vs. SHA-512).

In the SQRL protocol all service key pairs are derived deterministically using
as seed the value HMACSHA256(key = master key, msg = domain). The (symmetric)
master key is derived from a password and a 256-bit pre-master-key value stored in the
device. The password is passed through a suitably slow Key Derivation Function, the
result of which is XOR’ed with the pre-master-key. A variation of the pre-master-key is
also backed up offline to allow account recovery.



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

344© 2017 Sociedade Brasileira de Computação

The Key Derivation Function used is PBKDF, with different parameters for the
pre-master-key in the device and its variation in the offline backup. The online version is
protected with parameters that should take half a second to unlock on a standard mobile
device, while the offline backup uses parameters for about 60 seconds of processing time.
This protection is to avoid brute force attacks in case an adversary acquires access to the
physical device or backup.

When first introduced, SQRL lacked a revocation feature. This led to several
complaints, and eventually was patched by adding the concept of an ”id lock”. Six keys
are involved in the process, forming three asymmetric key pairs, one pair of which is
derived from the other two using Elliptic Curve Diffie-Hellman Key Agreement (DHKA).
To aid in their description we will use the following notation:

[M]: stored in the user’s mobile device.
[S]: stored in the service’s server.
[B]: stored in offline backup (analogous to our offline safe site).
[-]: not stored. This value is used to derive other data and then safely discarded.

Grouped by key pair 〈 public, private 〉, the keys used in the id lock are:

〈Identity Lock [M], Identity Unlock [B]〉: fixed, created during setup.
〈Server Unlock [S], Random Lock [-]〉: created randomly for each service.
〈Verify Unlock Key [S], Unlock Request Signing Key [-]〉: generated by performing

either DHKA(Identity Lock [M], Random Lock [-]) or DHKA(Server Unlock [S],
Identity Unlock [B]).

During account creation on a new service, the user generates the 〈Server Un-
lock [S], Random Lock [-]〉 pair. Using the Identity Lock [M] key stored on the client it
then generates Verify Unlock Key [S] through DHKA(Identity Lock [M], Random Lock [-
]). As indicated by the brackets notation the Random Lock [-] key is discarded, while the
Verify Unlock Key [S] and Server Unlock [S] are stored in the server.

To perform a revocation the user first loads the Identity Unlock [B] from offline
backup and requests Server Unlock [S]. Together they form DHKA(Server Unlock [S],
Identity Unlock [B]), which is able to generate the Unlock Request Signing Key [-], whose
public part is the Verify Unlock Key [S] and was stored in the server. Thus only the owner
of the offline backup can sign revocation requests, and the server can verify them.

4.3. Comparison of SQRL to our proposal

Both protocols provide pseudonymous authentication in different services without third
parties, mainly by using a mobile device to read a QR code, and allow for account man-
agement in those services. Also, both protocols require the backup of some important
secret key in offline storage.

The main security difference is that SQRL’s service key pairs are generated de-
terministically based on a master key that is stored in the device. We propose random
service key pairs, later stored encrypted in the server (namely inside the disaster recovery
data).

If the device is compromised, SQRL forces the user to revoke the master key. This
means revoking all accounts in all services. Our proposed scheme requires revocation of



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

345 © 2017 Sociedade Brasileira de Computação

The Key Derivation Function used is PBKDF, with different parameters for the
pre-master-key in the device and its variation in the offline backup. The online version is
protected with parameters that should take half a second to unlock on a standard mobile
device, while the offline backup uses parameters for about 60 seconds of processing time.
This protection is to avoid brute force attacks in case an adversary acquires access to the
physical device or backup.

When first introduced, SQRL lacked a revocation feature. This led to several
complaints, and eventually was patched by adding the concept of an ”id lock”. Six keys
are involved in the process, forming three asymmetric key pairs, one pair of which is
derived from the other two using Elliptic Curve Diffie-Hellman Key Agreement (DHKA).
To aid in their description we will use the following notation:

[M]: stored in the user’s mobile device.
[S]: stored in the service’s server.
[B]: stored in offline backup (analogous to our offline safe site).
[-]: not stored. This value is used to derive other data and then safely discarded.

Grouped by key pair 〈 public, private 〉, the keys used in the id lock are:

〈Identity Lock [M], Identity Unlock [B]〉: fixed, created during setup.
〈Server Unlock [S], Random Lock [-]〉: created randomly for each service.
〈Verify Unlock Key [S], Unlock Request Signing Key [-]〉: generated by performing

either DHKA(Identity Lock [M], Random Lock [-]) or DHKA(Server Unlock [S],
Identity Unlock [B]).

During account creation on a new service, the user generates the 〈Server Un-
lock [S], Random Lock [-]〉 pair. Using the Identity Lock [M] key stored on the client it
then generates Verify Unlock Key [S] through DHKA(Identity Lock [M], Random Lock [-
]). As indicated by the brackets notation the Random Lock [-] key is discarded, while the
Verify Unlock Key [S] and Server Unlock [S] are stored in the server.

To perform a revocation the user first loads the Identity Unlock [B] from offline
backup and requests Server Unlock [S]. Together they form DHKA(Server Unlock [S],
Identity Unlock [B]), which is able to generate the Unlock Request Signing Key [-], whose
public part is the Verify Unlock Key [S] and was stored in the server. Thus only the owner
of the offline backup can sign revocation requests, and the server can verify them.

4.3. Comparison of SQRL to our proposal

Both protocols provide pseudonymous authentication in different services without third
parties, mainly by using a mobile device to read a QR code, and allow for account man-
agement in those services. Also, both protocols require the backup of some important
secret key in offline storage.

The main security difference is that SQRL’s service key pairs are generated de-
terministically based on a master key that is stored in the device. We propose random
service key pairs, later stored encrypted in the server (namely inside the disaster recovery
data).

If the device is compromised, SQRL forces the user to revoke the master key. This
means revoking all accounts in all services. Our proposed scheme requires revocation of

only the keys that were present in the device. It is still suggested to revoke the master key
pair to avoid account collisions, but this is a nuisance instead of a security danger.

Worse still, the compromise of SQRL’s master key, that is kept in the device (al-
beit under a password) compromises all past and future key pairs based on that master
key. This means that a one-time attack that goes undetected will expose accounts created
after the compromise. An attacker would have total control on all services until the user
changes the master key for other reasons, potentially never.

Our equivalent key is the online master key (the one kept in the device). If it is
compromised, the only attack on future accounts is to pre-register that user ID. This does
not compromise those future accounts, and it reveals to the legitimate user that their online
master key was attacked. Similarly, service key pairs not stored in that mobile device are
also safe. This is because the only way to recover (or take over) an account is having
access to the disaster recovery key.

Additionally, SQRL does not allow changing one individual service key pair, since
all such key pairs are derived deterministically from the fixed master key. This property
discourages the user from using the scheme in more flexible ways, such as sharing less
sensitive service key pairs, or storing them in simpler devices (e.g. thumb drives).

The drawback of our proposed method is that if the user wishes to use more than
one mobile device (or a mobile device and a desktop client), the synchronization of service
key pairs must be done actively. In SQRL this is accomplished by simply sharing the
master key, from which all service key pairs are derived. Naturally, the value of this
feature must be weighed against the security repercussions.

An important property, unrelated to security, is the simplicity of the scheme.
SQRL’s scheme uses one symmetric master key, service key pairs, plus three distinct key
pairs for revocation, and a non-trivial application of Elliptic Curve Diffie-Hellman Key
Agreement. Our proposal has one master key pair, service key pairs, and a revocation
code. We believe this simplicity is fundamental for achieving a wider adoption.

5. Analysis of the proposed protocol
An evaluation of the proposed protocol was made, considering several properties of cryp-
tographic protocols commonly used in the analysis of authentication protocols. Table 1
shows the list of desirable properties that our proposal meets.

Table 1: Desirable Properties of our Proposed Protocol.

Property Analysis
Memoryless There are no values to be memorized by the human user, secret or otherwise.
Leak resistant Access to a server’s leaked database confers no advantage in impersonating them to

the service it was leaked from, or identifying users across services.
Should-surfing
and keylogger
resistant

Secrets are handled inside the trusted device. The user never interacts directly with
any secret.

Pseudonymity The same user has unrelated identities in each service.
Timeless back-
ups

The user does not have to update the backup after registering or revoking a service.
This allows the disaster recovery key to be stored in a way that is safer but harder to
access.



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

346© 2017 Sociedade Brasileira de Computação

Updatable keys The keys to a service can be changed without changing the master key. This is a
trivial property for most schemes, but hard to achieve without updating backups.

No third-party The scheme does not rely on any trusted third party, even during revocation.
Phishing resis-
tant

It is resistant to Phishing attacks since the domain is explicitly part of the authenti-
cation process.

Scalable Authenticating with a service has the same difficulty independent from how many
accounts the user has. Similarly, authenticating one user costs the same for the server
regardless of the total number of users registered.

Low friction Users don’t have to type any name, password, or code, and once authorized the login
is nearly instantaneous.

Flexible The user may self-impose a PIN, password or biometric check; detached keys allow
usability-security trade-offs; key pairs can be stored with different security levels.
This also applies to the disaster recovery key.

Unfortunately, it also has a few downsides. Table 2 shows these drawbacks.

Table 2: Undesirable Properties of our proposed Protocol.

Property Analysis
Device carry The cryptographic key pairs have to be kept in a personal trusted device. The loss of

this device can bring difficult problems.
Backup required The user has to safely back up the disaster recovery key.
User unfamiliar-
ity

The authentication process has less friction, but it’s unfamiliar to users. This in-
creases the rate of errors and makes users more susceptible to social engineering
attack.

6. Conclusion

Web authentication is usually based on passwords, and to some extent, emails. These
protocols, however, have security, privacy and usability flaws. The requirement of having
high-entropy unique passwords is at odds with human memory, enabling various kinds
of attacks, and the manual input aspect is responsible for the creation of innumerous
types of phishing. The use of an email address for disaster recovery leads to single-point-
of-failure scenarios and needlessly reveals the user’s identity. Lastly, passwords are a
constant source of headaches for developers, administrators and the users themselves.

The SQRL protocol is a popular proposal to this problem, making use of ubiqui-
tous smartphone possession. By using a mobile device to scan a QR code, the protocol
enables users to log in without any usernames or passwords, and a much higher level of
security. By using an offline backup instead of email account, privacy and single-point-
of-failure concerns are also addressed.

However, the SQRL protocol creates cryptographic key pairs deterministically
based on a master key, which is kept on the mobile device. This makes the protocol
inflexible, and creates security concerns. Additionally, the disaster recovery protocol (re-
vocation + recovery) is extremely complex, complicating its analysis and implementation.

To remedy these flaws, a new protocol for authentication on the web was intro-
duced. From the point of view of a user, our proposal is similar to the SQRL protocol.
However, our proposal creates random key pairs and is much simpler during disaster re-
covery.



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

347 © 2017 Sociedade Brasileira de Computação

Updatable keys The keys to a service can be changed without changing the master key. This is a
trivial property for most schemes, but hard to achieve without updating backups.

No third-party The scheme does not rely on any trusted third party, even during revocation.
Phishing resis-
tant

It is resistant to Phishing attacks since the domain is explicitly part of the authenti-
cation process.

Scalable Authenticating with a service has the same difficulty independent from how many
accounts the user has. Similarly, authenticating one user costs the same for the server
regardless of the total number of users registered.

Low friction Users don’t have to type any name, password, or code, and once authorized the login
is nearly instantaneous.

Flexible The user may self-impose a PIN, password or biometric check; detached keys allow
usability-security trade-offs; key pairs can be stored with different security levels.
This also applies to the disaster recovery key.

Unfortunately, it also has a few downsides. Table 2 shows these drawbacks.

Table 2: Undesirable Properties of our proposed Protocol.

Property Analysis
Device carry The cryptographic key pairs have to be kept in a personal trusted device. The loss of

this device can bring difficult problems.
Backup required The user has to safely back up the disaster recovery key.
User unfamiliar-
ity

The authentication process has less friction, but it’s unfamiliar to users. This in-
creases the rate of errors and makes users more susceptible to social engineering
attack.

6. Conclusion

Web authentication is usually based on passwords, and to some extent, emails. These
protocols, however, have security, privacy and usability flaws. The requirement of having
high-entropy unique passwords is at odds with human memory, enabling various kinds
of attacks, and the manual input aspect is responsible for the creation of innumerous
types of phishing. The use of an email address for disaster recovery leads to single-point-
of-failure scenarios and needlessly reveals the user’s identity. Lastly, passwords are a
constant source of headaches for developers, administrators and the users themselves.

The SQRL protocol is a popular proposal to this problem, making use of ubiqui-
tous smartphone possession. By using a mobile device to scan a QR code, the protocol
enables users to log in without any usernames or passwords, and a much higher level of
security. By using an offline backup instead of email account, privacy and single-point-
of-failure concerns are also addressed.

However, the SQRL protocol creates cryptographic key pairs deterministically
based on a master key, which is kept on the mobile device. This makes the protocol
inflexible, and creates security concerns. Additionally, the disaster recovery protocol (re-
vocation + recovery) is extremely complex, complicating its analysis and implementation.

To remedy these flaws, a new protocol for authentication on the web was intro-
duced. From the point of view of a user, our proposal is similar to the SQRL protocol.
However, our proposal creates random key pairs and is much simpler during disaster re-
covery.

Compared with other authentication schemes, we find that our proposal is one of
the best candidates for wide adoption on the web. It has vastly superior security properties
than pure password schemes, several advantages against more sophisticated schemes, and
improves significantly on similar proposals.

The proposed protocol, described in this work, was implemented and verified
in practice. The code containing its implementation can be obtained in https://
github.com/boppreh/frango-app.

References
Bonneau, J. (2012). The science of guessing: analyzing an anonymized corpus of 70 million passwords. In

2012 IEEE Symposium on Security and Privacy, pages 538–552. IEEE.

Bonneau, J., Herley, C., Van Oorschot, P. C., and Stajano, F. (2012). The quest to replace passwords: A
framework for comparative evaluation of web authentication schemes. In 2012 IEEE Symposium on
Security and Privacy, pages 553–567. IEEE.

Bonneau, J. and Preibusch, S. (2010). The password thicket: Technical and market failures in human
authentication on the web. In WEIS.

Borchert, B. and Günther, M. (2013). Indirect nfc-login. In ICITST, pages 204–209.

Dierks, T. and Rescorla, E. (2008). The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246
(Proposed Standard). Updated by RFCs 5746, 5878, 6176, 7465, 7507, 7568, 7627, 7685.

Gibson, S. (2016). Sqrl. https://www.grc.com/sqrl/sqrl.htm.

Lindemann, R., Baghdasaryan, D., and Tiffany, E. (2014). Fido universal authentication framework proto-
col. Version v1. 0-rd-20140209, FIDO Alliance, February.

Mansfield-Devine, S. (2015). The ashley madison affair. Network Security, 2015(9):8–16.

Percival, C. and Josefsson, S. (2016). The scrypt Password-Based Key Derivation Function. RFC 7914
(Informational).

Provos, N. and Mazières, D. (1999). Bcrypt algorithm. In Proceedings of 1999 USENIX Annual Technical
Conference. USENIX.

Renaud, K. (2006). A visuo-biometric authentication mechanism for older users. In People and Computers
XIX—The Bigger Picture, pages 167–182. Springer.

Saxena, N. and Watt, J. H. (2009). Authentication technologies for the blind or visually impaired. In
Proceedings of the USENIX Workshop on Hot Topics in Security (HotSec), volume 9, page 130.

Stuart Schechter, A.J. Brush, S. E. (2009). It’s no secret: Measuring the security and reliability of authen-
tication via ’secret’ questions. In Proceedings of the 2009 IEEE Symposium on Security and Privacy,
Berkeley, CA, USA. IEEE Computer Society.

van Dijk, J. (2014). A closer look at sqrl. Technical report, University of Amsterdam.

Xu, F., Han, S., Wang, Y., Zhang, J., and Li, Y. (2015). Qrtoken: Unifying authentication framework
to protect user online identity. In Cyber Security and Cloud Computing (CSCloud), 2015 IEEE 2nd
International Conference on, pages 368–373. IEEE.

Yan, Q., Han, J., Li, Y., and Robert DENG, H. (2012). On limitations of designing usable leakage-resilient
password systems: Attacks, principles and usability. In 19th Network and Distributed System Security
Symposium (NDSS).


	Sessão técnica 9 (ST9): Controle de Acesso, Autenticação, Biometria, Confiança e Gerenciamento de Identidade
	1. Privacy-aware web authentication protocol with recovery and revocation
	Lucas Boppre Niehues, Ricardo Custódio

