
XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

362 © 2017 Sociedade Brasileira de Computação

3. Authentication of Identity Documents Using DNSSEC, Digital Signatures and QR Codes
Luiz Fernando Ribeiro Amaral, Jorge Guilherme Silva dos Santos, Mateus Almeida 
Rocha, Joseph Gersch, Georges Daniel Amvame-Nze, Robson de Oliveira Albuquerque, 
Rafael Timóteo de Sousa JúniorAuthentication of Identity Documents Using DNSSEC, Digital

Signatures and QR Codes
Luiz Fernando Ribeiro Amaral1,

Jorge Guilherme Silva dos Santos1, Mateus Almeida Rocha1,
Joseph Gersch2, Georges Daniel Amvame-Nze1,

Robson de Oliveira Albuquerque1, Rafael Timóteo de Sousa Júnior1

1Decision Technologies Laboratory - LATITUDE
Electrical Engineering Department

University of Brası́lia (UnB)
Brası́lia, DF, Brazil

2Department of Computer Science
Colorado State University

Fort Collins, CO, USA

{luiz,jorge,mateus,robson}@redes.unb.br,

jgersch@colostate.edu,

{georges,desousa}@unb.br

Abstract. This paper describes a system for authenticating identity documents
by digitally signing the data and embedding it in a 2D code to be printed with
the document. In the proposed scheme, a message is digitally signed using a
digital signature block which is stored in a QR Code. The code is later scanned
by the user and, after validation, the corresponding digital information can be
compared with the printed information. The authenticity of the message is guar-
anteed using RSA digital signatures and a secure DNS implementation based
on DANE and DNSSEC for the certificate distribution. A proof of concept was
implemented using the ISC BIND DNS Server and OpenSSL to create and dis-
tribute the certificates and a Telegram Bot for signature verification.

1. Introduction
Document counterfeiting is on the rise as sophisticated printing and scanning technologies
become cheap, enabling criminals to take advantage of digital technology to produce high
quality fraudulent documents. Society relies on experts for verifying the authenticity of
these documents using special tools and document properties, an almost impossible job
for entities dealing with thousands of documents daily [Garain and Halder 2008].

The system proposed in this paper addresses the verification of an identity docu-
ment by enabling any person to verify the information contained in this document using
a smartphone application. There is no need for specialized people or physical security
features in the document itself.

Compared to previous work [Warasart and Kuacharoen 2012], this system does
not rely on a certificate authority to provide valid certificates, nor does it need to have the
certificates preloaded by the application used for signature validation. Using DNSSEC



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

363 © 2017 Sociedade Brasileira de Computação

Authentication of Identity Documents Using DNSSEC, Digital
Signatures and QR Codes
Luiz Fernando Ribeiro Amaral1,

Jorge Guilherme Silva dos Santos1, Mateus Almeida Rocha1,
Joseph Gersch2, Georges Daniel Amvame-Nze1,

Robson de Oliveira Albuquerque1, Rafael Timóteo de Sousa Júnior1

1Decision Technologies Laboratory - LATITUDE
Electrical Engineering Department

University of Brası́lia (UnB)
Brası́lia, DF, Brazil

2Department of Computer Science
Colorado State University

Fort Collins, CO, USA

{luiz,jorge,mateus,robson}@redes.unb.br,

jgersch@colostate.edu,

{georges,desousa}@unb.br

Abstract. This paper describes a system for authenticating identity documents
by digitally signing the data and embedding it in a 2D code to be printed with
the document. In the proposed scheme, a message is digitally signed using a
digital signature block which is stored in a QR Code. The code is later scanned
by the user and, after validation, the corresponding digital information can be
compared with the printed information. The authenticity of the message is guar-
anteed using RSA digital signatures and a secure DNS implementation based
on DANE and DNSSEC for the certificate distribution. A proof of concept was
implemented using the ISC BIND DNS Server and OpenSSL to create and dis-
tribute the certificates and a Telegram Bot for signature verification.

1. Introduction
Document counterfeiting is on the rise as sophisticated printing and scanning technologies
become cheap, enabling criminals to take advantage of digital technology to produce high
quality fraudulent documents. Society relies on experts for verifying the authenticity of
these documents using special tools and document properties, an almost impossible job
for entities dealing with thousands of documents daily [Garain and Halder 2008].

The system proposed in this paper addresses the verification of an identity docu-
ment by enabling any person to verify the information contained in this document using
a smartphone application. There is no need for specialized people or physical security
features in the document itself.

Compared to previous work [Warasart and Kuacharoen 2012], this system does
not rely on a certificate authority to provide valid certificates, nor does it need to have the
certificates preloaded by the application used for signature validation. Using DNSSEC

(Domain Name System Security Extensions) enabled servers, the certificates can be pub-
lished in the signing entity zone and the authenticity and integrity of the data can be
guaranteed by the chain of trust provided by DNSSEC signatures [Arends et al. 2005].

Digital signatures are a standard for guaranteeing authenticity and integrity nowa-
days. A digital signature algorithm allows an entity to authenticate the integrity of signed
data and the identity of the signatory. The recipient of a signed message can use a digital
signature as evidence in demonstrating to a third party that the signature was, in fact,
generated by the claimed signatory [FIPS 2013]. In our proposed scheme, a message is
digitally signed using a digital signature block which is stored in a QR Code which is
printed on the identity document, such as for instance a driver’s license containing a QR
Code with the message and its signature as shown in Figure 1.

Figure 1. Driver’s license example. Adapted from [DMV 2013]

This paper is organized so the complete system architecture is first described and
then a proof of concept implementation of the system is presented.

2. The System Architecture
The architecture is composed of signing entities, which can be governmental institutions
or companies who issue identification documents, a phone application used for the sig-
nature validation and the DNS infrastructure. Figure 2 shows a complete diagram of the
system. Each entity can have a signing server, for storing the keys and generating the QR
Codes with the signatures and the DNS servers to provide the certificates for signature
validation. A user, using his smartphone scans the QR Code using the camera. The phone
decodes the data and queries the DNS server to retrieve the certificate and validate the
DNSSEC chain of trust. It then validates the signature using the retrieved certificate and
if valid, presents the data to the user.

A key feature is that, while other implementations propose the use of
optical character recognition (OCR) for obtaining the message for validation
[Warasart and Kuacharoen 2012], we rely on a person to validate the document by com-
paring digitally signed data contained in the QR Code message with the actual data printed
on the document.

2.1. DNS Servers
Although the CERT Resource Record specification allows the storage of certificates in
insecure DNS zones, it specifies that in these cases the whole certificate chain needs to



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

364© 2017 Sociedade Brasileira de Computação

Figure 2. System Architecture Overview[Source: Authors]

be validated, exacerbating the principle of relying on a certificate authority. To be able to
trust the certificate without the need of verifying the whole certificate chain, we propose
the use of CERT or DANE self-signed certificates in the DNS. In this case, the zone must
be secure, i.e, DNSSEC-enabled, and the record authenticity verified by using DNSSEC
[Josefsson 2006b].

The DNSSEC specification defines the required behavior for DNSSEC-enabled
zones, including serving keys, signatures, secure denial of existence and serving the zone
securely in all of the authoritative name servers [Osterweil et al. 2009]. NIST allows the
use of 1024-bit RSA keys for DNSSEC, as long as other key management practices are
put in place, to avoid key compromise [Chandramouli and Rose 2013].

2.2. Message Format
The messages used by the system consist of JSON objects such as shown in Figure
3. JSON is a lightweight, text-based, language-independent data interchange format
[Bray 2014]. This choice brings flexibility to the data format, making it easy to add
or remove fields, without the need to completely rewrite data templates or the application
itself.

The message object needs two mandatory values: root and key, representing
the DNS root and the key identifier, respectively. These fields indicate where to find the
certificate needed for signature validation. The validating application still needs to know
the DNS zone corresponding to the indicated root to fetch the certificate, but the key field
brings more flexibility, as the signing entity can easily add more certificates to the DNS
infrastructure without the need of updating the signature validation application.

2.3. Information Signing
The message is signed using the RSA digital signature scheme, with 2048-bit RSA private
keys, the SHA-512 hash algorithm and the PSS padding scheme, meeting the recommen-
dations established by NIST in the SP800-57 Part 3 Rev. 1 [NIST 2015].

Figure 4 illustrates the message signature process. The issuer of a document cal-
culates the message SHA-512 hash, encrypts it using the RSA private key and finally



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

365 © 2017 Sociedade Brasileira de Computação

Figure 2. System Architecture Overview[Source: Authors]

be validated, exacerbating the principle of relying on a certificate authority. To be able to
trust the certificate without the need of verifying the whole certificate chain, we propose
the use of CERT or DANE self-signed certificates in the DNS. In this case, the zone must
be secure, i.e, DNSSEC-enabled, and the record authenticity verified by using DNSSEC
[Josefsson 2006b].

The DNSSEC specification defines the required behavior for DNSSEC-enabled
zones, including serving keys, signatures, secure denial of existence and serving the zone
securely in all of the authoritative name servers [Osterweil et al. 2009]. NIST allows the
use of 1024-bit RSA keys for DNSSEC, as long as other key management practices are
put in place, to avoid key compromise [Chandramouli and Rose 2013].

2.2. Message Format
The messages used by the system consist of JSON objects such as shown in Figure
3. JSON is a lightweight, text-based, language-independent data interchange format
[Bray 2014]. This choice brings flexibility to the data format, making it easy to add
or remove fields, without the need to completely rewrite data templates or the application
itself.

The message object needs two mandatory values: root and key, representing
the DNS root and the key identifier, respectively. These fields indicate where to find the
certificate needed for signature validation. The validating application still needs to know
the DNS zone corresponding to the indicated root to fetch the certificate, but the key field
brings more flexibility, as the signing entity can easily add more certificates to the DNS
infrastructure without the need of updating the signature validation application.

2.3. Information Signing
The message is signed using the RSA digital signature scheme, with 2048-bit RSA private
keys, the SHA-512 hash algorithm and the PSS padding scheme, meeting the recommen-
dations established by NIST in the SP800-57 Part 3 Rev. 1 [NIST 2015].

Figure 4 illustrates the message signature process. The issuer of a document cal-
culates the message SHA-512 hash, encrypts it using the RSA private key and finally

Figure 3. Example Message [Source: Authors]

appends it to the end of the message. Message and signature are then published in the
form of a QR Code on the printed document. It is valid mentioning that the padding and
mask generation operations were removed from the figure for simplicity.

Figure 4. Message signature process. [Source: Authors]

2.4. QR Code

A QR Code is one of the many kinds of 2D codes. It was invented in 1994 to be used
in automotive industry and became an ISO standard in 2000. Nowadays it has become
widespread, being used in electronic components labeling, aircraft and space industrial
data-product identification, bus tickets, betting tickets, patient identification in hospitals
and many other applications in all kinds of fields [Soon 2008].

The QR Code specification states that it can store 2,953 characters at maximum
when using 8-bit binary mode. Other modes are available and offer higher capacity, but
are limited and don’t cover our use case. Table 1 shows the capacity of each of the
available modes.

The QR Code standard states that the alphanumeric mode, for example, covers
only part of the ASCII character table and doesn’t include the brackets and colon ({,},:)
used in the JSON message object. One way to make our data comply with the require-
ments of the alphanumeric mode would be encoding it using Base32, but the gain in data
capacity between the alphanumeric mode and the binary mode is approximately 45%,
while the Base32 encoding adds an overhead of 60%, making it inefficient for use with



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

366© 2017 Sociedade Brasileira de Computação

Table 1. QR Code capacity for each mode. Adapted from [Soon 2008]
Mode Capacity

Numerical characters 7,089 characters at maximum
Alphanumerical 4,296 characters at maximum
Binary (8 bit) 2,953 characters at maximum

Kanji characters 1,817 characters at maximum

the alphanumeric mode [Josefsson 2006a]. Our proposed system is designed for the au-
thentication of identity documents, which usually don’t carry a large amount of data. For
example, a drivers license contains an ID number, name, address, sex, height, DOB, ex-
piration date and issuance date. In the case of an application that needs to carry a big
amount of data, compression may be applied to the data and signature which will help to
reduce the size of the QR Code printout.

2.5. Storing Certificates on the DNS

The certificates used for signature validation are stored in the signing entity DNS zone
under CERT Resource Records. According to [Josefsson 2006b], it is recommended that
certificate CERT Resource Records be stored under a domain name related to their sub-
ject, i.e., the name of the entity intended to control the private key corresponding to the
public key being certified. Hence, each document issuer who uses the system will store
its certificates under its own DNS domain name and zone.

The structure of a CERT Resource Record is shown in Figure 5. in this structure,
the certificate type field defines the type of data contained in the record. In our case, this
field is set with type 1 - PKIX. The key tag field is a 16-bit value computed from the
certificate public key used for efficient public key selection. The algorithm used for com-
putation is specified in [Arends et al. 2008], Appendix B. The algorithm field identifies
the digest algorithm used. This value changes based on the certificate being published
in the record and a full list of algorithms and their IDs can be found in [IANA 2017].
Finally, the Base64 encoded certificate goes into the certificate field.

Figure 5. CERT Resource Record Structure (Numbers on top indicate each bit).
Source: [Josefsson 2006b].

2.6. Signature Validation

This process, as shown in Figure 6, is performed in a smartphone, beginning with the QR
Code capture by the device camera. After scanning the QR Code, the signature validation



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

367 © 2017 Sociedade Brasileira de Computação

Table 1. QR Code capacity for each mode. Adapted from [Soon 2008]
Mode Capacity

Numerical characters 7,089 characters at maximum
Alphanumerical 4,296 characters at maximum
Binary (8 bit) 2,953 characters at maximum

Kanji characters 1,817 characters at maximum

the alphanumeric mode [Josefsson 2006a]. Our proposed system is designed for the au-
thentication of identity documents, which usually don’t carry a large amount of data. For
example, a drivers license contains an ID number, name, address, sex, height, DOB, ex-
piration date and issuance date. In the case of an application that needs to carry a big
amount of data, compression may be applied to the data and signature which will help to
reduce the size of the QR Code printout.

2.5. Storing Certificates on the DNS

The certificates used for signature validation are stored in the signing entity DNS zone
under CERT Resource Records. According to [Josefsson 2006b], it is recommended that
certificate CERT Resource Records be stored under a domain name related to their sub-
ject, i.e., the name of the entity intended to control the private key corresponding to the
public key being certified. Hence, each document issuer who uses the system will store
its certificates under its own DNS domain name and zone.

The structure of a CERT Resource Record is shown in Figure 5. in this structure,
the certificate type field defines the type of data contained in the record. In our case, this
field is set with type 1 - PKIX. The key tag field is a 16-bit value computed from the
certificate public key used for efficient public key selection. The algorithm used for com-
putation is specified in [Arends et al. 2008], Appendix B. The algorithm field identifies
the digest algorithm used. This value changes based on the certificate being published
in the record and a full list of algorithms and their IDs can be found in [IANA 2017].
Finally, the Base64 encoded certificate goes into the certificate field.

Figure 5. CERT Resource Record Structure (Numbers on top indicate each bit).
Source: [Josefsson 2006b].

2.6. Signature Validation

This process, as shown in Figure 6, is performed in a smartphone, beginning with the QR
Code capture by the device camera. After scanning the QR Code, the signature validation

Figure 6. Signature validation process [Source: Authors]

is quickly done, as the process of decryption only takes milliseconds in most contempo-
rary smartphones [Thiranant et al. 2015].

Thus, to validate the signature, the user takes a picture of the identification docu-
ment QR Code using a smartphone. The application then splits the message and signature
and starts two different processes. The first one calculates the SHA-512 hash of the mes-
sage and keep it for later usage. The second process uses the root and key contained
in the message to fetch the certificate from the DNS server and then decrypts the signa-
ture data and obtains the hash of the signed message. By comparing the two hashes, the
authenticity of the message contained in the QR Code can be guaranteed.

The validation process in Figure 6 authenticates the message contained in the QR
Code, but does not guarantee that the data in the printed document is authentic. This
second validation needs to be done by the user, by visual comparison between the data
presented by the application and the data in the document.

3. Proof of Concept

To evaluate the proposed architecture, a proof of concept was implemented using open-
source software tools. A certificate authority was created using OpenSSL, two ISC BIND
DNS servers were setup in master-slave operation, a web API was created to execute the
signature operation and a Telegram Bot was used to provide an user interface for signature
verification.

3.1. Certificate Authority

Using the default OpenSSL settings, an example certificate authority was created and
two certificates, for two example companies were issued. The private keys related to the
certificates were 2048-bit long, as recommended by NIST.

3.2. DNS Zone

To achieve the stated requirements, the system was implemented using two DNS servers,
one master and one slave. Two example zones, representing pseudo-organizations Acme
and Globex, respectively acme.luiz.eng.br and globex.luiz.eng.br, were created to hold



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

368© 2017 Sociedade Brasileira de Computação

the certificates used for the signatures. The zones were implemented with DNSSEC, in a
pre-existing DNSSEC-enabled infrastructure.

While the acme.luiz.eng.br zone has a valid DNSSEC signature and valid DS en-
tries in the parent zone, the zone globex.luiz.eng.br only has the DS entries in the parent
zone, resulting in a signature validation failure as the zone is in a bogus state, simulating
for example, a cache poisoning situation.

To verify the secure status of the ACME zone and bogus status of the Globex
zone, we used the Verisign DNSSEC Analyzer [Verisign Inc. 2011]. Figure 7 shows the
result of the DNSSEC validation for both zones, where the Globex zone does not contain
a DNSKEY record, neither RRSIGs.

Figure 7. DNSSEC validation of the zones. Adapted from [Verisign Inc. 2011]

After setting up the zone, the certificates were published following the RFC4398
[Josefsson 2006b] specification, except for the naming scheme, as it is just a recommen-
dation. The first certificate, the one for the fictitious Acme organization, was published
under 1.acme.luiz.eng.br, and the second, for the fictitious Globex Corporation, was pub-
lished under 1.globex.luiz.eng.br.

3.3. Message Signing
In our implementation, we used the Tornado Web Framework
[The Tornado Authors 2017] to implement a Web API for message signing. With
this API, two messages were signed to be used later in the validation process. The
messages are JSON objects containing sample data of a driver’s license, as shown in
Figure 3. A sample output from the API can be seen in Figure 8.



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

369 © 2017 Sociedade Brasileira de Computação

the certificates used for the signatures. The zones were implemented with DNSSEC, in a
pre-existing DNSSEC-enabled infrastructure.

While the acme.luiz.eng.br zone has a valid DNSSEC signature and valid DS en-
tries in the parent zone, the zone globex.luiz.eng.br only has the DS entries in the parent
zone, resulting in a signature validation failure as the zone is in a bogus state, simulating
for example, a cache poisoning situation.

To verify the secure status of the ACME zone and bogus status of the Globex
zone, we used the Verisign DNSSEC Analyzer [Verisign Inc. 2011]. Figure 7 shows the
result of the DNSSEC validation for both zones, where the Globex zone does not contain
a DNSKEY record, neither RRSIGs.

Figure 7. DNSSEC validation of the zones. Adapted from [Verisign Inc. 2011]

After setting up the zone, the certificates were published following the RFC4398
[Josefsson 2006b] specification, except for the naming scheme, as it is just a recommen-
dation. The first certificate, the one for the fictitious Acme organization, was published
under 1.acme.luiz.eng.br, and the second, for the fictitious Globex Corporation, was pub-
lished under 1.globex.luiz.eng.br.

3.3. Message Signing
In our implementation, we used the Tornado Web Framework
[The Tornado Authors 2017] to implement a Web API for message signing. With
this API, two messages were signed to be used later in the validation process. The
messages are JSON objects containing sample data of a driver’s license, as shown in
Figure 3. A sample output from the API can be seen in Figure 8.

Figure 8. API Signature Request [Source: Authors]

The message signing itself is implemented through the hazardous materials layer
of the Python Cryptography [Python Cryptographic Authority 2013] package. The haz-
ardous materials layer contains low-level cryptography primitives, meaning that the func-
tions included with it should be used carefully, as they can result in an insecure imple-
mentation.

The binary output of the signature function is encoded in Base64, so we can later
separate the message from its signature using the ASCII character 0x1F, without the risk
of having this same byte in the signature data.

When using a 2048-bit key, the produced signature is 256 bytes long and after the
Base64 encoding, which has a 4:3 ratio [Josefsson 2006a], will result in a 344 bytes long
string, leaving room for up to 2609 bytes for the message, although the utilization of this
data depends on the QR Code capacity.



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

370© 2017 Sociedade Brasileira de Computação

Despite all the capacity left for the message, a QR Code to store all this data,
would be too big to fit on an identity document. A solution is to employ the feature of
QR Code linking, allowing the division into symbols enabling the printing even if there is
not enough space available for the complete QR Code. Figure 9 shows an example of the
linking technique.

Figure 9. An example of QR Code linking [Soon 2008]

Regarding the example message in Figure 3, which has only 154 bytes and is small
enough for its resulting QR Code to fit in an identity document, as the example shown in
Figure 1, the QR Code linking feature was not employed in our proof of concept.

To prove that the system works, two different messages were signed and a QR
Code was created for each of them. The two created QR Codes can be seen in Figures 10
and 11.

Figure 10. QR Code containing the message with a valid signature [Source: Au-
thors]



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

371 © 2017 Sociedade Brasileira de Computação

Despite all the capacity left for the message, a QR Code to store all this data,
would be too big to fit on an identity document. A solution is to employ the feature of
QR Code linking, allowing the division into symbols enabling the printing even if there is
not enough space available for the complete QR Code. Figure 9 shows an example of the
linking technique.

Figure 9. An example of QR Code linking [Soon 2008]

Regarding the example message in Figure 3, which has only 154 bytes and is small
enough for its resulting QR Code to fit in an identity document, as the example shown in
Figure 1, the QR Code linking feature was not employed in our proof of concept.

To prove that the system works, two different messages were signed and a QR
Code was created for each of them. The two created QR Codes can be seen in Figures 10
and 11.

Figure 10. QR Code containing the message with a valid signature [Source: Au-
thors]

Figure 11. QR Code containing the message with an invalid signature [Source:
Authors]

3.4. Signature Validation

The signature validation is done through a Telegram Bot [Telegram 2017], as we con-
sidered it a simple way to implement a nice mobile user interface using Python. This
decision makes our solutions multi-platform, so that the users can interact with the Bot
using the Telegram app on different devices, including iPhones and Android phones.

To validate the signature, the Telegram Bot decodes the QR Code and splits the
resulting data into message and encoded signature, considering the 0x1F character as
their separator. The Bot then maps the root field of the message to a list of zones already
known to it and uses the key field to build the complete DNS name to fetch the certificate.

When fetching the certificate, the validity of the DNSSEC signatures is checked,
to establish if the returned data can be trusted or not. If the returned response has an
invalid DNSSEC signature or no DNSSEC at all, the certificate cannot be trusted and, by
consequence, the signature will be considered invalid.

If the certificate fetching is successful, the message is validated against the sig-
nature and, if the data matches, the information contained in the message is presented to
the user. Figure 12 shows the resulting output for the two example QR Codes mentioned
before.

4. Conclusion and Future Work

The proposed architecture can provide a distributed, flexible yet safe way of guaranteeing
the authenticity of identity documents without the need of relying completely on a trusted
third-party. By using the DNS infrastructure for certificate retrieval, identity document
issuers can create and manage their own keys, making it easier to execute key rollovers
for example, as the keys don’t need to be preloaded by the verifying application or party.

The decentralization of the keys makes it harder for an attacker to compromise the
whole system. As the keys are distributed, an attacker would have to breach into each of
the subsystems to acquire all the keys and the DNSSEC guarantees that the keys stored
on the DNS are served in a secure manner, preventing attacks like cache poisoning and
alteration of the keys stored in the zone. By means of DANE, we are able to use and trust
self-signed certificates, removing the need of a Public Key Infrastructure and reducing the
costs related to a third-party Certificate Authority.



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

372© 2017 Sociedade Brasileira de Computação

Figure 12. Bot messages after validating the two signatures [Source: Authors]

In the future, optical character recognition techniques can be used to automate the
validation of identity documents, removing the need of a visual comparison done by the
user. The security can be increased by including a timestamp to prevent replay attacks
and including a serial number to provide an identifier to enable traceability by the issuer.

Acknowledgments
This research work has the support of the Brazilian research and innovation Agencies
CAPES – Coordination for the Improvement of Higher Education Personnel (Grant
23038.007604/2014-69 FORTE – Tempestive Forensics Project) and CNPq – National
Council for Scientific and Technological Development (Grant 465741/2014-2 Science
and Technology National Institute – INCT on Cyber Security), as well as the Brazilian
Ministry of Planning, Development and Management (Grants 005/2016 DIPLA – Plan-
ning and Management Directorate, and 11/2016 SEST – State-owned Federal Compa-
nies Secretariat), as well as Secure64 Software Corporation, for technical information on
DNSSEC deployment and behavior.

References
Arends, R., Austein, R., Larson, M., Massey, D., and Rose, S. (2008). Rfc 4034-resource

records for the dns security extensions (2005).

Arends, R., Austein, R., Larson, M., Massey, D., and Rose, S. W. (2005). Dns security
introduction and requirements, rfc 4033. Internet Engineering Task Force (IETF).

Bray, T. (2014). The javascript object notation (json) data interchange format.

Chandramouli, R. and Rose, S. (2013). Secure domain name system (dns) deployment
guide. NIST Special Publication, 800:81–2.



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

373 © 2017 Sociedade Brasileira de Computação

Figure 12. Bot messages after validating the two signatures [Source: Authors]

In the future, optical character recognition techniques can be used to automate the
validation of identity documents, removing the need of a visual comparison done by the
user. The security can be increased by including a timestamp to prevent replay attacks
and including a serial number to provide an identifier to enable traceability by the issuer.

Acknowledgments
This research work has the support of the Brazilian research and innovation Agencies
CAPES – Coordination for the Improvement of Higher Education Personnel (Grant
23038.007604/2014-69 FORTE – Tempestive Forensics Project) and CNPq – National
Council for Scientific and Technological Development (Grant 465741/2014-2 Science
and Technology National Institute – INCT on Cyber Security), as well as the Brazilian
Ministry of Planning, Development and Management (Grants 005/2016 DIPLA – Plan-
ning and Management Directorate, and 11/2016 SEST – State-owned Federal Compa-
nies Secretariat), as well as Secure64 Software Corporation, for technical information on
DNSSEC deployment and behavior.

References
Arends, R., Austein, R., Larson, M., Massey, D., and Rose, S. (2008). Rfc 4034-resource

records for the dns security extensions (2005).

Arends, R., Austein, R., Larson, M., Massey, D., and Rose, S. W. (2005). Dns security
introduction and requirements, rfc 4033. Internet Engineering Task Force (IETF).

Bray, T. (2014). The javascript object notation (json) data interchange format.

Chandramouli, R. and Rose, S. (2013). Secure domain name system (dns) deployment
guide. NIST Special Publication, 800:81–2.

DMV, N. Y. S. (2013). Sample New York State DMV Photo Documents.
https://dmv.ny.gov/id-card/sample-photo-documents. (Accessed on 2017-07-10).

FIPS, P. (2013). 186-4. Digital Signature Standard (DSS).

Garain, U. and Halder, B. (2008). On automatic authenticity verification of printed secu-
rity documents. In Computer Vision, Graphics & Image Processing, 2008. ICVGIP’08.
Sixth Indian Conference on, pages 706–713. IEEE.

IANA (2017). Domain Name System Security (DNSSEC) Algorithm Numbers.
https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml.
(Accessed on 2017-07-10).

Josefsson, S. (2006a). The base16, base32, and base64 data encodings.

Josefsson, S. (2006b). Storing certificates in the domain name system (dns).

NIST, S. (2015). 800-57 part 3 rev 1, recommendation for key management: Part 3:
Application-specific key management guidance.

Osterweil, E., Massey, D., and Zhang, L. (2009). Deploying and monitoring dns security
(dnssec). In Computer Security Applications Conference, 2009. ACSAC’09. Annual,
pages 429–438. IEEE.

Python Cryptographic Authority (2013). Welcome to pyca/cryptography — Cryptography
2.0.dev1 documentation. https://cryptography.io/en/latest/. (Accessed on 2017-07-10).

Soon, T. J. (2008). Qr code. Synthesis Journal, 2008:59–78.

Telegram (2017). Bots: An introduction for developers. https://core.telegram.org/bots.
(Accessed on 2017-07-10).

The Tornado Authors (2017). Tornado web server - tornado 4.5.2 documentation.
http://www.tornadoweb.org/en/stable/. (Accessed on 2017-07-10).

Thiranant, N., Lee, Y. S., and Lee, H. (2015). Performance comparison between rsa
and elliptic curve cryptography-based qr code authentication. In Advanced Informa-
tion Networking and Applications Workshops (WAINA), 2015 IEEE 29th International
Conference on, pages 278–282. IEEE.

Verisign Inc. (2011). DNSSEC Analyzer. https://dnssec-debugger.verisignlabs.com/. (Ac-
cessed on 2017-07-10).

Warasart, M. and Kuacharoen, P. (2012). Paper-based document authentication using
digital signature and qr code.


	3. Authentication of Identity Documents Using DNSSEC, Digital Signatures and QR Codes
	Luiz Fernando Ribeiro Amaral, Jorge Guilherme Silva dos Santos, Mateus Almeida Rocha, Joseph Gersch, Georges Daniel Amvame-Nze, Robson de Oliveira Albuquerque, Rafael Timóteo de Sousa Júnior

