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Abstract. In fuzzy pairing, two parties compare two bit strings which are sup-
posed to be similar, but almost never identical. So A and B engage in a protocol
to verify whether d(sA, sB) is less than some threshold T ; if not, the parties
abort and authentication failed. Here d() is to be taken as the Hamming dis-
tance. One standard protocol is the code-offset method: A computes a random
vector x such that sA − x is a code word of some pre-agreed error-correcting
code and sends x to B, who decodes sB − x. Together they verify whether the
two decoded codewords are the same. A common secret key can be obtained
subsequently,
We cast this problem in a different context, in which A and B want to com-
pare continuous signals, instead of discrete bit strings. We test the code offset
method for four classes of error-correcting codes: Reed-Solomon (RS) Codes,
Low Density Parity Check (LDPC) Codes, Repeat-Accumulate Codes (RAC) and
Low Density Lattice Codes (LDLC).
For similar error correction capability our results show that RS codes perform
slowly, while LDPC and RAC which very similar are both really fast. LDLC has
the best correction capabilities, but are slower because of their mathematical
complexity. Our results can be generalized to fuzzy extractors.

1. Introduction

1.1. Fuzzy pairing with bit strings

Consider the following setting: Alice has a string sA while Bob has a string sB. Al-
ice and Bob know that their strings are similar, but probably not identical. In addition,
they know or suspect that the adversary Eve has some information about their bit string,
but up to some known limit. In addition we assume that Alice and Bob can send each
other authenticated messages, to which Eve also has access. Now consider the following
cryptographic functionalities:

Fuzzy mutual authentication: A and B want to verify whether d(sA, sB) is less than
some threshold T , where d() is to be taken as the Hamming distance. If true,
authentication succeeds; if not, the parties abort and this authentication attempt
failed.
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Fuzzy mutual authentication: A and B want to verify whether d(sA, sB) is less than
some threshold T , where d() is to be taken as the Hamming distance. If true,
authentication succeeds; if not, the parties abort and this authentication attempt
failed.

Fuzzy key establishment: Alice and Bob want to obtain two smaller strings s′A and s′B
such that s′A = s′B with overwhelming probability.
This problem is otherwise known as key reconciliation or information reconcilia-
tion, and seems to have occurred first in the context of quantum cryptography: the
bit strings are the result of those positions in which Alice and Bob used the same
basis when transmitting resp. measuring the quantum state.
Note also that after reconciliation succeeded, Eve still might have information
about the common string s′ = s′A = s′B, so it is typically followed by another
protocol known as privacy amplification. See [Bennett et al. 1995] for details.

Fuzzy pairing: In fact, pairing is the combination of the two preceding functionalities:
the two parties decide to trust each other, and agree on some symmetric key to
establish a secure communication channel.

Note that there exist a simple protocol to verify equality at the sacrifice of one
bit per round: Alice choose random r ∈ Zm

2 and computes the parity (xor sum) pA =
par(s′A ∧ r), and sends the pair (r, pA) to Bob. Bob computes pB = par(s′B ∧ r). It is
easy to see that if s′A = s′B then pA = pB always, whereas if s′A �= s′B then pA �= pB
with probability 1

2
. So this protocol, which we call EQUAL must be repeated a sufficient

number of times.

1.2. The code-offset method

The more famous reconciliation protocols for bitstrings, such as
[Brassard and Salvail 1993], rely heavily on interaction. But a simpler approach
can be based on error correcting codes. Later known as the code-offset method, A
computes a random vector x ∈ Zn

2 such that s′A − x belongs to C ⊆ Zn
2 , some pre-agreed

error-correcting code, and sends x to B, who decodes s′B − x. Then the parties verify
whether the decoded codewords are equal, using the EQUAL protocol outlined above. If
C is a linear code, an equivalent result is obtained if A sends the syndrome of s′A to B.

1.3. Fuzzy pairing with signals

Traditionally, the information to be reconciled is represented as bits. In this paper we
discuss a different setting: the information shared between A and B are signals that are
similar, but not identical. In principle these signals can be of any kind: audio, wifi signal
strength, accelerometer data, biometric data etc.

To model this setting adequately we need a continuous communication model.
The natural choice is the AWGN (Additive White Gaussian Noise) channel, which is es-
sentially as follows: imagine two Gaussian probability distributions: N0 = N(−1, σ)
with center 0 and N1 = N(−1, σ) with center 1. To send a bit v, A produces a signal
according to Nv; this signal is received by B as w. B’s task is to guess v given w. Obvi-
ously, B’s error depends on σ. We also need to substitute the Hamming distance for the
Euclidean distance in Rn.

In order to reconcile information in this continuous context, the logical step is to
apply the code-offset method for an error-correcting code suitable for this context. In fact,
no other approach seems possible since all the interactive protocols do not seem to carry
over to this new setting.
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1.4. Our research

It turns out that in all realistic scenarios for fuzzy pairing, the main performance bottle-
neck is decoding time, since it translates directly in the time the users have to wait to
know if the pairing process succeeded or not.

In this paper we analyse the decoding performance in the signal (i.e. continuous)
setting with AWGN channel for four classes of error correcting codes: Reed-Solomon
(RS) Codes, Low Density Parity Check (LDPC) Codes, Repeat-Accumulate Codes (RAC)
and Low Density Lattice Codes (LDLC).

This choice of these codes is natural: RS are very popular and well-known. Later
LDPC codes were developed with superior performance; RAC were included because
they are a dramatic simplification of LDPC with respect to encoding, while using essen-
tially the same decoding algorithm. Finally, in theory LDLC will correct more than the
others, however due to its complexity it is expected to be much slower. In this work we
want to study how big that difference in both correction and speed is in practice.

1.5. Comparison with other work

Many existing pairing protocols, including Bluetooth, are based on the Diffie-Hellman
Key Exchange. This has two disadvantages. First, it is based on computational assump-
tions. Second, to exclude a man-in-the-middle attack some user intervention is necessary.
By using the newest features of smart phones, this comparison task can be performed by
one of the devices. The hash value is no longer communicated or compared by a human,
but through some alternative, reliable channel with the help of a human. Possibilities are:

• One display shows a code, user enters it in the keyboard of the other device.
• Printer prints or displays a bar code; a camera takes a photo.
• One smart phone plays a random melody; the other records the sound.

See [Kumar et al. 2009] for an overview. Observe that all these options require user ac-
tion.

In our fuzzy pairing protocol no human intervention is necessary. Also it is not
based on a computational assumption but on physical proximity: we assume that A and
B have access to some similar signal, whereas the signal that Eve can obtain is not suffi-
ciently similar.

1.6. Paper outline

The next section present a broad overview of fuzzy cryptography, providing many ad-
ditional references to reconciliation and fuzzy crypto protocols. In section 3 we outline
our protocol for the audio setting, and discuss the literature on other approaches. Section
4 discusses the classes of codes we tested. In section 5 we present our simulation and
results, while Section 6 contains the conclusion.

2. Fuzzy Mutual Authentication
Fuzzy cryptography can be described as the area in which legitimate parties have simi-
lar but not identical information. Historically this problem has been approached in two
different ways: one is based on information reconciliation, the other is called fuzzy cryp-
tography.
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2. Fuzzy Mutual Authentication
Fuzzy cryptography can be described as the area in which legitimate parties have simi-
lar but not identical information. Historically this problem has been approached in two
different ways: one is based on information reconciliation, the other is called fuzzy cryp-
tography.

2.1. Reconciliation protocols

A great variety of quantum key distribution protocols make the legitimate parties to have
keys with little difference because of eavesdroppers and imperfections in the transmission
line and detectors. Therefore, we can see this problem as Alice transmitting the key
through a binary symmetric channel for Bob. In order to Alice and Bob have the same
key, an error correction has to be done.

[Brassard and Salvail 1994] describes the Cascade protocol. It takes two corre-
lated strings from Alice and Bob, divide them in blocks and, in each round, sends the
parity of a block. Essentially, a binary search is done in order to find a different bit.
However, because the parity of some blocks are revealed, privacy amplification has to
be executed after the protocol to reduce the adversary’s knowledge. This is one of the
first works to address the key exchange problem when the legitimate parties have some
correlated knowledge.

[Linnartz and Tuyls 2003] proposed an authentication scheme that can also be
slightly modified to create a key conciliation protocol. Additional references are
[Buhan et al. 2007a][Chang et al. 2004][Zheng et al. 2006][Verbitskiy et al. 2010].

2.2. Fuzzy cryptography constructions

[Juels and Sudan 2006] proposes a new construction called fuzzy vault. If Alice has a
secret k and a set A, she does a commitment with the secret k. Bob can only perform
a decommitment if he has a set B close enough to A. A practical protocol using Reed-
Solomon codes (described in [Reed and Solomon 1960]) is showed.

In [Dodis et al. 2008] two important constructions are showed. The secure sketch
construction can be seen as an authentication scheme. One side is the user and the other
is the database with the user information. Authentication is only possible if the user has a
feature that is close enough by some metric to the information that the database has. The
other construction is the fuzzy extractor. It allows that Alice and Bob distill a secret and
common key if they both have information with enough correlation.

[Buhan et al. 2007b] extends the definition of fuzzy extractor to continuous
sources. It shows that it is possible to see the schemes that work with continuous source
as authentication systems with some False Acceptance Rate (FAR) and some False Rejec-
tion Rate (FRR) with a public distribution of the feature of the users (global distribution)
and private distributions of the users (each user has his own).

In [Verbitskiy et al. 2010] the results regarding the cs-fuzzy extractor (fuzzy ex-
tractor for continuous source) are extended and some limits of security are calculated.
It is important to highlight that has been discussed that no universal fuzzy extractor for
continuous source can exist. It is necessary to make assumptions about the distribution
used.

3. Fuzzy pairing based on audio
We illustrate the context with a specific scenario in which we use audio as the common
signal between two devices (smartphones) A and B. This was indeed the original context
of our research, after we discarded accelerometer data for having insufficient entropy. We
make the following assumptions for our protocol:



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

446© 2017 Sociedade Brasileira de Computação

(a) Each device has a microphone.
(b) Each device has processing capacity.
(c) The devices dispose of a wireless, unauthenticated communication channel. An ad-

versary can listen to this channel, but cannot modify messages sent by A or B.
(d) The two microphones are physically close to each other during the recording phase

in order to have very similar sound recordings. We call this the private sound zone.
(e) An adversary cannot enter the private sound zone of the two legitimate parties without

being detected, and if he tries, A and B will simply not execute the protocol. Therefore
the adversary cannot obtain information about the audio recording.

Fuzzy pairing protocol:

1. A and B share the same sound environment and are synchronized in some way not
discussed here. They record the sound.

2. Each party submits the collected audio data to an identical set of transformations
resulting in two singular vectors sA and sB.

3. A computes a random vector x ∈ Zn
2 such that sA − x belongs to C ⊆ Zn

2 , some
pre-agreed error-correcting code, and sends x to B.

4. A decodes sA − x to obtain s′A while B decodes sB − x to obtain s′B. This is the
most time-consuming protocol step. Observe that if d(sA, sB) < dmin(C) then
s′A = s′B.

5. A and B both perform privacy amplification, as follows. A compute s′′A = h(s′A),
where h() is a universal hash function. B applies h to his value.

6. A and B use the EQUAL protocol to test whether s′′A = s′′B. If true, authentication
succeeded and s′′ is there common shared secret key. If not, authentication has
failed and they abort

3.1. Other authentication protocols using audio
[Schurmann and Sigg 2013] proposed and built an application using a fuzzy extractor
scheme. Two computers, each one with it own microphone, agree on a common time
to record. The audio data was processed in order to generate a fingerprint of 512 bits.
A secret random string of 204 bits was generated and encoded to 512 bits using a Reed-
Solomon code, specifically RS(210, 204, 512). This value was added to the audio finger-
print and then transmitted to the other legitimate part.

One positive aspect of this work is the amount of tests that had been done. With
the analysis of four environments and varying the distance from the microphones, 7500
tests were done. This work has the same goal and uses the same source to extract features.
Furthermore, the audio processing uses STFT to calculate the energy difference between
frames. Although this approach works with the discrete Hamming distance, the STFT
processing is an interesting choice to use with audio.

[Goodrich et al. 2006] creates a system called Loud and Clear (L&C). It users that
fact that every device, such as a smartphone, has at least one user. A sound is produced
at a device and the user needs to verify if the sentence recognized is the same. From this,
one-way authentication is possible (two-way is just another execution of the protocol).
Although this protocol uses sound in order to authenticate the devices, it ignores the sound
context of the surrounding of both devices. Furthermore, the improvement suggested in
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the paper uses the Diffie-Hellman key exchange protocol. Summarizing, it returns to the
computational security in an unnecessary way. Albeit the protocol is interesting, it is not
suitable for actual use.

4. Fuzzy authentication using other phenomena

4.1. Authentication with Acceleration

[Kirovski et al. 2007a] and [Kirovski et al. 2007b] proposed a key conciliation protocol
based on acceleration. Before doing the readings, it is necessary to pair the device and
synchronize the clocks in order to have correlated information. Next, a shaking of the
devices is done. The name of this work comes from the fact that shaking the two devices
is similar to shake a Martini. The readings are separated in quantization zones and each
zone is divided between an correct zone and an error zone. The preliminary information
is if the measurement is in the error zone or not. Alice and Bob reveal their preliminary
information. If they agree on a particular point, then the quantization zone where the
measurement belongs is kept as private information. If they do not agree, then they discard
the information.

With this approach, is possible that Alice and Bob agree when the measurements
belong to different zones. Therefore, a correction might be necessary after the distillation
of the private strings. Like [Linnartz and Tuyls 2003], we can see that the space is divided
in exactly two interval, however the secret information is the quantization zone that the
measurement belongs and the helper data tells us if the measurement is in the part odd or
even of the quantization zone.

In the first version, the correction is done using BCH codes (described in
[Bose and Ray-Chaudhuri 1960]) and transmitting the checksums bits. The leaked infor-
mation is derived from the amount of communication needed to correct all the errors. In
the second version, there is no direct correction, but the quantization steps are calculated
in order to assure a low false negative rate.

One important point is that an adversary could try a man-in-the-middle attack.
Every time that one party sends a bit b from the preliminary information, he sends ¬b
back. By doing this, the adversary determines how many positions he has to guess in order
to discover the secret information. The solution proposed is to divided the information in
two blocks and each party reveals one of them. Moreover, a minimum of samples with
the same preliminary information (odd or even) in each partition is created. With this
approach, impersonation becomes harder.

This work was an important advance in key conciliation with noisy information.
However, the functions used discard too much information. The rate used for sampling is
220Hz and the rate of bits distilled for seconds is at maximum 20 bits, thus there is a great
waste of information. A better result could be achieved if a better cryptography scheme
were used.

[Mayrhofer and Gellersen 2007] and [Mayrhofer and Gellersen 2009] is another
work that has created a key conciliation protocol based on acceleration. Differently from
[Kirovski et al. 2007a] and [Kirovski et al. 2007b] that do the conciliation for each di-
mension, this work uses the magnitude over all normalized dimensions. After acquiring
and processing the information, the protocol has two approaches to distill a key. The first
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one uses Diffie-Hellman and Interlock to exchange the times series generated from each
part. The security of this scheme is based on computational assumptions, which is unde-
sirable. The second uses the Candidate Key Protocol described in [Mayrhofer 2007] to
exchange the time series and extract a key. This approach is very dependent of how the
processing of the feature was done, possibly a large amount of information is discarded
and, also, high entropy is necessary to avoid off-line lookup table attacks. The lower
bound of seven bits extracted per second is achieved in this work.

4.2. Authentication with Wireless Signal Power

[Premnath et al. 2014] created a protocol that measures the wireless signal power of a
Bluetooth connection and, from it, derives a key between close devices. Some processing
is necessary because of the low entropy of the measured power. Because of this, the
bit rate distillation is considerably small, making this protocol less preferable in an real
scenario.

4.3. Authentication with Biometry

In [Tuyls et al. 2005], another authentication system is built. The main focus is to use this
in fingerprint recognition. A user has his feature measured multiple times and, for every
measurement, if the value is greater than the global mean, then the output is 1, otherwise
is 0. A feature is reliable if all the outputs are equal. The great disadvantages are the short
keys and that there are few features that are really reliable.

5. Classes of codes compared

5.1. Reed-Solomon Codes

Reed-Solomon codes are the most well-known class of codes, appearing in
CDs, NASA space missions, QR Codes, and many scientific papers, including
[Schurmann and Sigg 2013]. For this reason they serve as a base line, and were there-
fore included in our comparison.

Reed Solomon codes are a subset of BCH codes and are linear block codes. A
Reed-Solomon code is specified as RS(n, k) with s-bit symbols. This means that the
encoder takes k data symbols of s bits each and adds parity symbols to make an n symbol
codeword. There are n − k parity symbols of s bits each. A Reed-Solomon decoder can
correct up to t symbols that contain errors in a codeword, where 2t = n− k.

Reed-Solomon algebraic decoding procedures can correct errors and erasures. An
erasure occurs when the position of an erred symbol is known. A decoder can correct up to
t errors or up to 2t erasures. Erasure information can often be supplied by the demodulator
in a digital communication system, i.e. the demodulator ’flags’ received symbols that are
likely to contain errors.

When a codeword is decoded, there are three possible outcomes:

1. If 2s+ r < 2t, where s is the number of erasures and r the number of erros, then
the original transmitted code word will always be recovered.

2. The decoder will detect that it cannot recover the original code word and indicate
this fact.
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erasure occurs when the position of an erred symbol is known. A decoder can correct up to
t errors or up to 2t erasures. Erasure information can often be supplied by the demodulator
in a digital communication system, i.e. the demodulator ’flags’ received symbols that are
likely to contain errors.

When a codeword is decoded, there are three possible outcomes:

1. If 2s+ r < 2t, where s is the number of erasures and r the number of erros, then
the original transmitted code word will always be recovered.

2. The decoder will detect that it cannot recover the original code word and indicate
this fact.

3. The decoder will mis-decode and recover an incorrect code word without any
indication.

The probability of each of the three possibilities depends on the particular Reed-
Solomon code and on the number and distribution of errors. For detailed information
about encoding and decoding RS codes please refer to [Lin and Costello 2004].

5.2. Low-Density Parity Check Codes
Low-Density Parity Check Codes (LDPC) [Gallager 1962] are capacity achieving codes
that works using the sum-product algorithm in the decoding process. The graph that this
algorithm uses is known as the Tanner graph. It is a bipartite undirective graph. In one
side we have the check nodes connected only to the variable nodes, that are on the other
side. The check nodes take the value that is believed to be true and check if the constraint
of the code is correct. Figure 1 from [Johnson 2009] shows an example of this graph.

Figure 1. Tanner Graph of (1)

This graph represents the parity matrix:

H =




1 1 0 1 0 0
0 1 1 0 1 0
1 0 0 0 1 1
0 0 1 1 0 1


 . (1)

Each row correspond to a check node and each column to a variable node. The
soft and hard decoding approaches can be used with the Tanner graph.

We have that the generator matrix G and parity matrix H have the property that
GH t = 0 . The encoding is done simply by a matrix multiplication which can be opti-
mized. Words c that belong to the code have the property that Hct = 0.

5.3. Repeat-Accumulate Codes
Repeat-Accumulate Codes are a simplification of LDPC codes. The encoding process is
even simpler than the bipartite graphs of LDPC codes. The following example is taken
from [MacKay 2003] (page 582): let the source bits be s1 . . . sK . Repeat each bit 3 (say)
times: s1s1s1 . . . sKsKsK and apply some arbitrary but fixed permutation on these bits,
to obtain u1u2u3 . . . uN with N = 3K. Transmit the accumulated sum: t1 = u1; ti =
ti−1 ⊕ ui for 1 < i ≤ N .

RACs can also be represented through a Tanner graph and therefore decoding is
also performed through the sum-product algorithm. RACs have a spectacular performance
given their simplicity.
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5.4. Low-Density Lattice Codes

Low-Density Lattice Codes (LDLC) [Sommer et al. 2008] are capacity achieving codes
of the Unconstrained Power Channel (UPC) [Poltyrev 1994] and are based on the LDPC
codes.

The UPC is simply an AWGN channel without the power restriction. So, because
of this, another definition of capacity is used: instead of Signal Power, the volume of the
lattice is used. This volume is defined as the generator matrix G of the code. In LDLC
we have the restriction that |det(G)| = 1 and G = H−1. In LDPC codes messages are
encoded as bits and the distance notion is the Hamming distance. In LDLCs messages are
represented as integer vectors with Euclidean distance; they can be interpreted as indexes;
the encoded messages are lattice points, and decoding is performed using a sum-product
algorithm adapted to the constraints.

One important aspect is that the UPC is merely a theoretical channel; it does not
model a true communication scenario. In order to be applicable, the infinite region of the
lattice has to be shaped into a finite one. See for example the approaches presented in
[Sommer et al. 2009] and [Kurkoski et al. 2009].

Code-Offset Method with LDLC

Although in order to use the UPC in a real communication channel the shaping has to be
done, in the code-offset method there is no actual communication, so there is no power
restriction. Therefore, LDLC are suitable to be used directly. Compared to a channel like
the BSC, we see that it can be used directly because in this specific case it is assumed that
the quantization has already been done. By analyzing this, we can see that the shaping is
done implicitly by the space of the feature itself.

6. Our simulations

To compare these four classes of codes, we need a good implementation of each one.
LDPC codes have a good library in python named pyldpc which we decided to use. We
also found a good implementation of the Reed-Solomon codes in the wikiversity site.
However we couldn’t find implementations for the LDLC and Repeat-Accumulate codes,
so we coded those ourselves.

Each Repeat-Accumulate Code is defined by some parameters, as explained be-
fore, so after we had a fully functional implementation it was also necessary to search for
a good set of them. We did so by generating several random combinations and testing the
resulting codes for decoding speed and correction capacity.

6.1. Comparing speed

To compare the decoding speed, we generated 5000 random messages with size varying
from 500 to 2000 values (these values where bits in the LDPC and Repeat-Accumulate
codes, and integers in LDLC and Reed-Solomon codes), we then added noise to them and
proceeded with decoding.

This process gave us the following results:
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(a) Reed-Solomon Codes (b) Low-Density Parity-Check Codes

(c) Repeat-Accumulate Codes (d) Low-Density Lattice Codes

Figure 2. Message Size by Decoding Time

Observing these graphics we see that for small messages Reed-Solomon Codes
are the fastest, but as the message grows its decoding time increases substantially.

Low-Density Lattice Codes’ decoding time grows linearly with message size,
however it is much slower than Low-Density Parity Check and Repeat-Accumulate codes,
which also exhibit linear time complexity for decoding. This is a very interesting obser-
vation. When we first started working on this project we expected that LDLCs would
be superior in every aspect. But practice showed us a complete different reality. Binary
codes are much faster, and given the difference in magnitude and the smoothness of its
growth we believe this to be a real advantage.

6.2. Comparing correction capability

To compare the codes according to correction capability, we again generate 5000 random
messages of size varying from 500 to 2000, added noise, and then tried to correct them.
One difference here is that we decided not to include Reed-Solomon Codes because their
correction ability is known beforehand. We did not hperform simulations with Repeat-
Accumulate Codes; it will be a future work to complete the comparisons adding these
codes.
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Low-Density Lattice Codes and Low-Density Parity-Check Codes both presented
good results.

The noise we added was approaching both codes’ limits, meaning that if it was a
little higher, neither of them would be able to correct. But within the expected range they
performed fine.

6.3. Comparing entropy

Another interesting criterion for comparing these codes is regarding their entropy, that
is, how each one spreads its encoded messages in the coding space. That comparison
was made only with LDPCs and LDLCs, since they were the most similar in construction
(even if the theory behind is completely different) and the obvious difference of one being
a binary code and the other a continuous one.

To do so, we treated the all zero message −→
0 as the codified message. We added

noise to it and then tried to correct it, meaning we tried to correct noise alone, and ob-
served how the codes behaved.

The process of adding noise, and trying to correct it was repeated around 5000
times using each code. After doing that we counted how many times each ’decoded
message’ appeared. Having these values, the minimum entropy was calculated according
to:

Hmin =
count(mmax)
n∑

i=0

count(mi)
(2)

Here count(x) is the number of times message e was observed and n is the total
number of different observed messages.

LDPC decoded all of his messages to the original one −→
0 , which was to be ex-

pected given that the all zero message is a valid codeword for any LDPC instance, due to
that its minimum entropy is 0!

LDLC gave us a more interesting result, we didn’t get 2 equal messages, meaning
that we found a total of 5000 different messages by correcting 5000 ’noisy messages’. So
according to the formula above, we got a total min entropy of 0.0002203 (we discarded
messages that were not successfully corrected to valid code words).

7. Conclusions

With this work we concluded that LDPC codes’ performance is still superior when it
comes to speed, with Repeat-Accumulate Codes coming right after it.

Both LDPCs and LDLCs show great potential when it comes to correction capa-
bility, Reed-Solomon codes are the most trustworthy since its decoding capabilities are
pre-defined and we can always make it as large as needed, Repeat-Accumulate codes are
very similar to LDPCs but we still can’t say much about its correcting capabilities, but
due to its simplicity it is worth investigating in the future.
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