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Abstract. The cybernetic environment is hostile. An infinitude of gadgets with

access to fast networks and the massive use of social networks considerably

raised the number of vectors of malware propagation. Deep Learning models

achieved great results in many different areas, including security-related tasks,

such as static and dynamic malware analysis. This paper details a deep learning

approach to the problem of malware classification using only the disassembled

artifact’s code as input. We show competitive performance when comparing to

other solutions that use a higher degree of knowledge.

1. Introduction
The ascending market acceptance of cloud computing, the widespread use of social net-
works, smartphones and other devices connected to the Internet, considerably increased
the vectors of malware propagation throughout the years [Jang-Jaccard and Nepal 2014].
With the expansion of the number of users and devices, it is possible to observe an increase
on the number of attacks [Verison 2016, Symantec 2016, McAfee 2015, McAfee 2014].
Generally speaking, malware can be categorized as a class of threats, like viruses, trojans,
ransomware, spyware, worms, and bots, among others, whose objective, in a nutshell,
is the subversion of a system, or part of a system, in which it was inserted in a non-
authorized manner [McGraw and Morrisett 2000]. Those threats employ all sorts of tech-
niques to self-propagate and attack, exploiting vulnerabilities on hardware, operational
systems, networks, and applications, thus becoming the primary weapon for on-line illicit
activities [Jang-Jaccard and Nepal 2014, Damshenas et al. 2013].

Malware analysis is the process by which malicious code is detected and classi-
fied, and its potential impact discovered. Detection of malicious code is a challenging
task that usually is long and meticulous, requiring a specialist that uses all sorts of tools
and techniques to analyze a program. It’s typical to malware developers to augment their
codes with evasion procedures that can emulate innocuous program’s behaviors or creates
difficulties to the investigation process, like code obfuscation, polymorphic code, encryp-
tion and more [Mangialardo and Duarte 2015, Marpaung et al. 2012]. Besides that, the
growing volume of programs to be investigated surpasses the human limits, creating a
delay between the analysis procedure and definitive treatment. Hence, the demand for
autonomous and intelligent tools becomes evident.

Machine learning algorithms have been widely used to solve malware’s classifi-
cation and detection problems with a noted rate of success. Traditional machine learning
methods are heavily dependent on feature engineering, currently requiring a lot of exper-
imentation and a strong knowledge about the applied domain. However, Deep Learning
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models are known to learn hierarchical representations directly from data, achieving suc-
cess superior to traditional methods in different areas of application [LeCun et al. 2015].
This work presents a methodology to employ Deep Learning Autoencoders to learn repre-
sentative features directly from operational codes (opcodes) extracted from disassembled
Windows Portable Executable (PE) files from Microsoft Malware Classification Chal-
lenge dataset [Microsoft 2015]. Our best deep neural network model achieved an overall
accuracy of 99,55%, a competitive result in relation to the Challenge’s winner perfor-
mance.

2. Malware Analysis

Malware Analysis is an investigation process that seeks to detect and classify malicious
codes and identify its goals. It can be characterized as Static or Dynamic depending on
the objectives and the set of techniques used to perform the task. The Static Analysis
does investigations on source code or file structure level. To accomplish this, an analyst
can use anti-viruses tools, file identification hashes, string information, analysis of API
calls or file headers and, ultimately, the use of tools for reverse engineering – analyzing
the disassembled code. It is important to notice that during this process, the program is
not executed; the objective is to extract information directly from the file and the data
available within it. Otherwise, on Dynamic Analysis, the focus is on the behavior of a
running program. In this approach, a program is executed in a controlled virtual environ-
ment, a sandbox, where its actions are monitored [Mangialardo and Duarte 2015]. This
work focuses on Static Analysis, which is simpler and quicker to achieve.

3. Deep Learning Autoencoders

An Autoencoder or Autoassociator is a feed-forward neural network, trained in unsuper-
vised manner, with the goal to approximate an identity function, in other words, given
the input data, the network will try to learn how to copy the input values to its output. It
is divided into two functions: an encoder, h = f (x ), that is responsible for codifying the
input x into a new representation h, and a decoder, r = g(h), which tries to reconstruct
the original data from the hidden layer.

An approach to learning a useful representation is restricting the hidden layer di-
mension to be smaller than the size of the input dimension. With a constrained h, the
network would learn the most salient features in order to reconstruct x with minimal er-
ror. An autoencoder with these characteristics is called undercomplete. The opposite ap-
proach, the overcomplete, in which h is not constrained by the network’s input dimension
can be used with the risk that, given the extended capacity, the network could copy the
input data without learning useful features. In this case, other regularization techniques
must be applied, such as a sparsity penalty function applied upon h (sparse autoencoders)
or corrupting x and training the autoencoder to undo the corruption (denoising autoen-
coders) [Goodfellow et al. 2016].

In order to pre-initialize a MLP, a Deep Autoencoder can be assembled in two
ways: The first, like a shallow autoencoder version, but not restricted to use just one
hidden layer; or, second, using the stacking technique, in which shallow autoencoders,
with just one hidden layer, are trained individually and their results’ representations are
used as the input to another autoencoder to be trained on and so forth [Vincent et al. 2010,
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Bengio et al. 2013, Goodfellow et al. 2016]. The union of these learned representations
forms a deeper autoencoder.

4. Related Work
In recent years we have seen the use of Deep Learning architectures applied to Malware
detection and classification, generally benefiting from previous knowledge that helps to
achieve the task. [Hardy et al. 2016] developed a framework for malware detection. The
system is divided into two phases: Extraction and conversion of Windows API calls from
PE files into 32-bit signatures and pre-training Stacked Autoencoders to further classifica-
tion. The method showed superior performance in relation to traditional machine learning
methods. [Yuan et al. 2014] used features acquired via static and dynamic analysis ap-
plied to Deep Belief Networks to detect malware on Android applications. The approach
achieved the best accuracy over traditional methods. [Dahl et al. 2013] developed a large-
scale malware detection system, based on Deep Belief Networks and Random Projections
for dimensionality reduction on selected features. The best result was attained with an en-
semble of nine neural networks.

5. Autoencoders for Malware Classification
Here, we present details about an approach to malware static analysis employing a deep
autoencoder to pre-initialize a deep multilayer perceptron network for classification of
malwares into families. This process can be seen as a pipeline, from the extraction of
raw data of the disassembled files until the execution of the trained neural network for
prediction’s evaluation.

5.1. ”Bag of Opcodes”, Vectorization and TF-IDF weighting
After extracting the byte opcodes from each disassembled file, a bag-of-opcodes (bag-
of-words like) for unigrams and bigrams was generated and its terms were subsequently
counted and stored as vectors.

The Term Frequency - Inverse Document Frequency (TF-IDF) weighting is
then applied to each vector. This technique provides a way to select and anal-
yse the opcodes by its frequencies, which can be related to multiple kinds of mal-
ware, acting like some sort of ”signature” for malicious code. The TF-IDF is com-
puted for a term t by the formula tfidf (d , t) = tf (t)⇥ idf (d , t), where IDF is cal-
culated as idf (d , t) = log

h
(1+n)

1+df (d ,t)

i
+ 1 , n is the total number of documents and

df (d , t) is the number of documents that contains the term l [Pedregosa et al. 2011,
Manning et al. 2008]. This new vector representation is used to train and validate our
networks.

Following a hold-out cross-validation strategy to evaluate the models, the gener-
ated vectors are randomly assigned to a particular subset, training or validation, guaran-
teeing that 25% of the samples from each malware class are present on validation subset.

5.2. Models
On the next phase, Deep Autoencoder networks are configured, trained and evaluated
upon the experimentation set. The pre-trained Autoencoder’s parameters are used to pro-
duce a new network, a Multilayer Perceptron (MLP), which is trained and evaluated on
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the same dataset with the objective of classification. In this approach, we choose to imple-
ment deep autoencoders due to it’s architectural similarities with a MLP, thus becoming
simple to use the trained weights from the former to initialize the parameters of the lat-
ter. All autoencoders produced in the experiments falls in the category of undercomplete
autoencoders. Undercomplete autoencoders compress highly dimensional data into lower
dimensional representations, forcing the network to learn high quality features directly
from input data [Goodfellow et al. 2016]. The choices for the number of layers and num-
ber of neurons per layer in each model were based on previous experimentations in which
we choose to detail in this study only the deepest networks that achieved an interesting
result.

6. Experiments

This section describes the neural networks architecture and hyper-parameters used over
the experiments. All experiments were programmed using Keras Framework with Ten-
sorflow as backend [Chollet et al. 2015, Abadi et al. 2015]. When not mentioned, it is
assumed that the neural network layers’ parameters used default values initialized by the
framework. Scikit-learn library was employed on the n-grams extraction, terms counting,
vectorization and TF-IDF weighting [Pedregosa et al. 2011].

6.1. Dataset

In 2015, Microsoft sponsored a challenge - Microsoft Malware Classification Challenge
(BIG 2015) - through Kaggle website where the goal was to classify the provided mal-
ware samples into nine different families [Microsoft 2015]. The samples were divided
into two sets: the training set, in which every sample was labeled and a validation set
containing unlabeled samples. The training set contains two files per sample ID: a “.byte”
that contains a hexadecimal representation of the malware’s binary without the PE header
and a “.asm” with disassembled code and various information extracted from the binary
by a professional disassembler program - IDA Pro Disassembler [Hex-Rays 2017].

The distribution of samples throughout the malware families in the original set is
as follows (Class – Number of Samples): 1) Ramnit – 1541, 2) Lollipop – 2478, 3) Ke-

lihos ver3 – 2942, 4) Vundo – 475, 5) Simda – 42, 6) Tracur – 751, 7) Kelihos ver1 –
398, 8) Obfuscator.ACY – 1228 and 9) Gatak – 1013, accumulating 10868 samples in to-
tal. For the sake of experimentation, only samples of three classes in the original labeled
dataset were selected to create our experimentation set, composed only of the disassem-
bled “.asm” files. The criteria adopted to choose these classes were to use the samples
from the two most frequent families, Lollipop and Kelihos ver3, and from the rarer one,
in this case, Simda. Given this selection, for each file, we execute an extraction proce-
dure where only the hexadecimal bytes that represent the opcodes and their parameters
are separated to another file (Figure 1).

6.2. Performance Measures

The Performance Measures selected to evaluate the experiments are: number of True
Positive (TP) samples, number of True Negative (TN) samples, number of False Positive
(FP) samples, number of False Negative (FN) samples , Accuracy, Precision, Recall and
F1 Score.
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Figure 1. Excerpt of a disassembled file from the original dataset
[Microsoft 2015]. Byte opcodes and parameters are in bold.

6.3. Networks’ topologies and parameters

In respect to the topological aspect, each experiment had a particular configuration for
the number of layers and the number of neurons, or units, per layer. Three autoencoder
networks were created considering the opcodes vectors, two for unigrams and one for bi-
grams vectors, respectively (Figure 2). In the experiment ”Unigram 1”, the autoencoder
has 19 hidden layers with input and output layers having 96 units. The MLP was built
using the trained encoder parameters adding another layer for classification, resulting in
a network with 12 layers in total (96, 86, 76, 66, 56, 46, 36, 26, 16, 9, 3 and 3 units). For
”Unigram 2”, the autoencoder has 59 hidden layers with input and output layers having
96 units. The MLP built has 32 layers (96, 93, 90, 87, 84, 81, 78, 75, 72, 69, 66, 63,
60, 57, 54, 51, 48, 45, 42, 39, 33, 30, 27, 24, 21, 18, 15, 12, 9, 6, 3 and 3 units) . The
last architecture, for experiment ”Bigram”, the autoencoder has 19 hidden layers, with
input and output layers having 9216 units. The MLP built has 31 layers (9216, 8216,
7216, 6216, 5216, 4216, 3216, 2216, 1216, 600, 3 and 3 units). Different setups were
also evaluated on smaller subsets of the dataset, but these were the ones that showed best
initial results.

Figure 2. Autoencoders’ Topologies for I. Unigram 1; II. Unigram 2 and III. Bigram.

The Rectified linear unit (ReLU) activation function was used for all layers for
the three autoencoders and posteriorly on the MLPs. ReLU overcome the use of tra-
ditional sigmoidal activation functions for deep neural networks and helped to achieve
better results in several datasets in the most diverse domains [Schmidhuber 2015]. The
Sigmoid function was choosed for the MLP’s classification layer. The Loss function used
for autoencoders was the Mean Squared Error and the Cross-entropy for the MLPs. With
regards to the training and validation phase, we configured a loop of 1,000 epochs, using
mini-batches of 32 samples. Early stop criteria was adopted, based on the minimization of
the loss value measured on network’s validation, with a delta of at least 0.01, for autoen-
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coders, and the maximization of the accuracy value measured on network’s validation,
with a delta of at least 0.01, for the MLPs. The training stops if the criteria analyzed
were not reached in a span of a hundred epochs. The optimizer used was the Stochastic

Gradient Decent (SGD), with a learning rate value of 0.01.

6.4. Results

After training all deep autoencoders and assembling all classifiers, we executed the MLP
training and evaluation, resulting in the collected measurements as shown in Table 1.

Table 1. Performance measurements by class.
Experiment Classes TP TN FP FN Recall Precision Accuracy F1 Score

Unigram 1
Lollipop 617 747 0 3 99,51% 100,00% 99,78% 99,75%
Kelihos ver3 736 617 14 0 100,00% 98,13% 98,97% 99,05%
Simda 0 1356 0 11 0,00% – 99,19% 0,00%

Unigram 2
Lollipop 0 747 0 620 0,00% – 54,64% 0,00%
Kelihos ver3 736 0 631 0 100,00% 53,84% 53,84% 69,99%
Simda 0 1356 0 11 0,00% – 99,19% 0,00%

Bigram
Lollipop 619 747 0 1 99,83% 100,00% 99,92% 99,91%
Kelihos ver3 736 623 8 0 100,00% 98,92% 99,41% 99,45%
Simda 3 1355 1 8 27,27% 75,00% 99,34% 40,00%

The first experiment, that used unigram features, Unigram 1, showed good re-
sults in classifying samples from the Lollypop and Kelihos ver3 families – mistaken three
samples from the former and classifying every sample from the latter – the dataset’s most
representative families, although this network was not capable to classify any of the Simda

examples provided.

Unigram 2, the deepest architecture tested, achieved the worst performance over
all experiments. It classified every sample of the dataset as a member of the Kelihos ver3

family.

However, the network trained with bigram features – Bigram experiment –
achieved the best results for all families in the experimentation dataset, being capable
of classifying almost every Lollipop sample, misclassifying just by one sample, and every
Kelihos ver3 sample provided. It stills correctly classified three examples of Simda, the
rarest family of the dataset, as seen in subsection 6.1.

In comparison with the challenge’s winner’s approach, our ’Bigram’ model
showed a good performance, with the winner’s solution achieving 99,83% of average
accuracy against an average accuracy of 99.55% of our model. To the best of our knowl-
edge, it was not possible to proper compare our results by class against the winner’s solu-
tion, using other performance measure than the accuracy. Despite that fact, our ’Bigram’
model showed great rates for the two most frequent classes, Lollypop and Kelihos v3, with
a recall of 99,83% and 100,00% respectively, showing a diminutive number of false pos-
itives and false negatives as can be seen in Table 1. The winner’s approach relied heavily
on feature selection and engineering and used a 4-fold cross validation over the same la-
beled dataset used in our experiments. Respecting the differences in our dataset, that used
just samples from three classes of the original dataset, our approach showed competitive
results and indicates a promising solution to the malware classification problem.
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7. Conclusion

This paper presents a methodology using byte opcodes and their parameters as features
in the form of a ”bag-of-opcodes” with TF-IDF weighting extracted from disassembled
malware files, applied to Deep Autoencoders for pre-training Multi-layer Perceptrons to
classify malwares into families. It was shown in a series of experiments that even without
any former knowledge about specificities of each malware and even losing semantic con-
tent when analyzing opcodes as just counts and frequencies of terms in a document, allied
with the high capability of deep learning models in learning complex patterns and hierar-
chical representations that this method could actually achieve promising results, with our
best experiment attaining an overall accuracy of 99.55%.

Furthermore, there are still possibilities where this work could be extended. For
future work, we hope to run new experiments with the complete dataset, gathering other
’n-gram’ terms. Moreover, in order to improve our results, we expect to run a specificity
analysis to find the best parameters for our network models. In order to better evaluate the
generalization capacity of our approach we will execute k-fold cross validation on future
experiments. Another possibility is experimenting with word embedding techniques to
try to extract semantic content from the disassembled instructions. Other deep learning
architectures, like Convolutional Neural Networks or Recurrent Neural Networks, are
considered to be employed to solve the malware classification problem.
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