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Abstract. This work investigates a solution to mitigate the threat of keystroke in-
jection attacks. Current defense mechanisms often require relatively expensive
hardware and time consuming configuration. We describe and test the effec-
tiveness of a software layer between USB input hardware and processes. Our
software, Keyblock, intercepts events from newly connected devices and uses
keystroke dynamics analysis to detect whether an attack is in course. By de-
tecting and immediately disabling devices with anomalous typing patterns, Key-
block provides a software-only automatic solution to prevent keystroke injection.

1. Introduction
The widespread use of USB technology has advantages and disadvantages. One advan-
tage is that plug-and-play, a requirement in the USB specification, makes the attachment
and setup of new USB devices a straightforward task. Nevertheless, automatic hard-
ware configuration can be exploited, specially when concerning human interface devices
(HID), such as keyboards. It is possible to disguise a microcontroller as a USB keyboard
by providing the target computer with a fake HID descriptor. An attacker can exploit this
security flaw by setting up a device to enter predefined keystrokes into a shell terminal
running on a target computer [SRLabs 2014]. This attack is known as keystroke injection.

In [SRLabs 2014], flaws in USB plug-and-play were exploited with the use of a
microcontroller and a storage device coupled together. The authors demonstrated attacks
in which an adversary could gain administrative access to Windows and GNU/Linux ma-
chines. These attacks were able to install a keylogger in the target computer, gain root
access and infect other USB devices. These vulnerabilities also acquired popularity in the
hacker community. A tool that exploits USB plug-and-play by HID emulation, known
as Rubber Ducky, is available online. The device, which includes a 60 MHz 32-bit CPU
and Micro SD storage, is disguised as a regular flash drive and programmed to perform
keystroke injection attacks when connected to a computer. In fact, these attacks can be
performed using any USB microcontroller capable of USB HID emulation.

It is important do develop defensive measures against this threat. In this paper,
we describe, implement and test the effectiveness of a software layer between USB input
hardware and processes. Our program, Keyblock, intercepts events from newly connected
keyboards and detects whether an attack is in action by performing keystroke dynamics
analysis. Our goal is to classify and automatically disable devices that present suspicious
typing patterns, a characteristic of keystroke injection attacks. The main contribution of
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this paper is a software-based keystroke injection detector with 0% error rate on prevalent
attacks and near 0% false positives for standard keyboards. Moreover, Keyblock does not
interfere with plug-and-play and requires no user configuration.

2. Related Work
The USB flaws that allow unwanted HID emulation and keystroke injection have drawn
attention from the security research community and some protection mechanisms have
been proposed. One measure to mitigate this threat is to require user interaction before
allowing an HID to generate events that target other applications. This measure has been
proposed and implemented in software and hardware.

[GData 2014] distributes a program that blocks events from new keyboards un-
til permission is granted when the user clicks a pop-up message. Another, more robust,
software-based approach is GoodUSB, a mediation architecture in the USB stack, pro-
posed by [Tian et al. 2015]. It prompts the user to define the capabilities of new USB
devices and restricts access to drivers that perform any other unwanted functionality, ef-
fectively preventing HID emulation.

Another solution, USBCheckIn, is a hardware-based HID protection system, pro-
posed by [Griscioli et al. 2016], that asks the user to solve a random challenge be-
fore forwarding events to the computer’s USB ports. Hardware interfaces between a
computer system and USB peripherals are proposed by [Kang and Saiedian 2015] and
[Loe et al. 2016]. They implement USBWall and SandUSB, respectively, systems that
enumerate newly connected devices and allow the user, via software, to verify whether
the peripheral is trusted before allowing it to operate. SandUSB has the advantage of
detecting some attacks using keystroke dynamics analysis.

Different algorithms and applications have been proposed for keystroke dy-
namics analysis. User authentication by analysis of typing patterns is proposed by
[Trojahn and Ortmeier 2013]. They classify users with attributes such as key press timing
and interval between different key presses. Their results show that it’s possible to ob-
tain error rates below 2% using a mixture of keystroke and handwriting recognition. Not
limited to physical keyboards, their study presents data related to touch screen devices in-
cluding features such as pressure and swipe distances. [Killourhy and Maxion 2009] and
[El-Abed et al. 2014] perform benchmarks of the main algorithms for anomaly detec-
tion and user biometrics, respectively, based on keystroke patterns. The use of keystroke
analysis for detection of HID attacks was first proposed by [Barbhuiya et al. 2012]. The
authors propose one possible architecture, useful keystroke parameters and metrics.

The majority of the cited solutions to alleviate keystroke injection risks depend
on relatively expensive hardware, such as [Griscioli et al. 2016], [Loe et al. 2016] and
[Kang and Saiedian 2015]. Others, such as [GData 2014] and [Tian et al. 2015], require
a set of configurations steps to be performed for every new device. One of the goals of
the proposed software, Keyblock, is to allow software-based keystroke injection detection
with no required configuration steps. The work by [Barbhuiya et al. 2012] is the closest
to our proposed solution, as it primarily uses keystroke dynamics to perform decisions.
However, Keyblock does not require additional steps or configuration such as capturing
keystroke samples and creating a user profile. In addition, our software uses a different
detection architecture and a simpler classification method.
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3. Principles of Designing Secure Systems
Any device that complies with the USB specification is vulnerable to HID emulation
and keystroke injection attacks. Current anti-virus software is not able to protect against
this threat [Tian et al. 2015]. But these plug-and-play exploits exist because current USB
standards ignore certain security principles. When considering computer security, it is
important to continuously reexamine all assumptions about threat agents and the envi-
ronment. The principle of complete mediation states that every access and every object
should be checked every time [Beznosov 2015]. A system should regard the environment
where it operates as inherently hostile and be reluctant to trust [McGraw 2013]. In the
case of USB HID authentication, the object is a new USB device that requests access to
the USB bus as an HID. While configuring a new device, the only verification is related
to device class. However, because class information is provided by the device itself, it
cannot be considered reliable. After the drivers are loaded and the device is configured,
there is no further verification concerning its behavior. Therefore, current USB protocols
neglect the principles of questioning all assumptions, complete mediation and reluctance
to trust, thereby giving rise to a security flaw. Keyblock fills this hole and allows a system
to continuously verify if a device should be trusted or not.

4. Keyblock and monitor threads
Keyblock was written in C/C++ and, currently, only supports GNU/Linux systems. Its
purpose is to be run as a daemon, requiring no interaction or configuration by the user.
The main loop of Keyblock continuously read the list of available input devices located
in /dev/input/ and starts a monitor thread for every new device.

A monitor thread is responsible for reading every input event from a given device
and decide whether it should be blocked or continue to operate normally. The operation
of a monitor thread is summarized in figure 1. As a security measure, no key event
is allowed to reach applications running on the X system, or graphical user interface,
without analysis from the monitor thread. Keyblock uses the ioctl system call in order to
configure a mechanism for monitor threads to grab and consume all events from a device.
This prevents a key press from directly reaching any X application. The thread registers
key press timestamps with nanosecond precision and only keeps in memory a window
containing the last N events.

Figure 1. Monitor thread operation

When a new key press is registered, the monitor thread executes the detection
phase. This phase is represented by a function that receives data about the last N key
events and returns true, if it identifies a possible attack, or false, if there is no unusual
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behavior. In the latter case, the key event is redirected to the X system. However, if
unusual typing patterns are detected by a monitor thread, the corresponding device is
automatically blocked until removal.

5. A simple detection model
The attack detection phase seen in figure 1 can be implemented in many ways. In princi-
ple, it is a function with a fixed length input vector that returns true or false. If true, the
monitor thread will block the device, else, it will redirect the key press to the X system.
This description allows great flexibility. One can use keystroke latencies or hold times as
input and perform classification using any of the available methods in the literature. For
our experiments, we developed two very simple classifiers, derived from empirical analy-
sis of two keystroke latency datasets: one produced by humans while typing and another
generated by our rogue microcontroller during keystroke injection tests.

The first dataset, D1, provides keystroke latencies from human writers and was
collected by [Calot 2015]. It contains delays between combinations of successive key
presses and releases, gathered during the period of one week. From this dataset, one
is able to extract statistics of human keystroke latency and hold time. Following this
approach, we generated a second dataset, D2, containing similar information to the first,
in order to characterize keystroke injection attacks, using our test tool, an ATMEGA32U4.

Figure 2. Estimated probabilities of keystroke injection attacks and human oper-
ators for latencies below 10 ms from D1 and D2

.

Our primary detection model derives from the observation that keystroke injection
attacks usually have the purpose of introducing a payload as fast as possible, thus leaving
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a low latency footprint. Therefore, in principle, it’s possible to discriminate between
a human operator and an attack tool by defining a latency threshold. Figure 2 shows
the lowest human typing latencies registered in D1, along with attack latencies in D2.
The dashed line is a cumulative density function (CDF) matching the observed human
latencies. The dotted line is a reverse CDF based on the latency distribution for keystroke
injection attacks. From figure 2, according to latencies from D1 and D2, we see that there
is an overlap between both distributions, specially in the interval from 3 ms to 5 ms. For
this reason, using latency alone, it is difficult to decide whether a set keystrokes are the
product of an attack or a fast typing human.

If we fit a normal distribution, with mean µ and standard deviation σ, to the ob-
served human latencies below 50 ms, the result is µ = 31.64 ms and σ = 9.63 ms.
Our detection model takes into account how far the last N latency samples deviate from
the expected human latency distribution. In this case, only left-side deviation from µ is
considered, as arbitrary deviations to the right are common when a human operator is
typing. Another characteristic of keystroke injection attacks is that keys are injected at an
approximately steady rate. Our detector is improved by measuring the standard deviation
of the last N keystrokes and comparing to the σ of an expected distribution.

Our detector is composed of two thresholds. The deviation threshold τd computes
how far is the average of the last N latencies to µ; it is triggered if keystrokes are fed to
the system with a much higher frequency than the average expected for a human. The
stability threshold τs measures how stable are the last keystroke latencies; it is triggered
if latencies have near constant values,producing a standard deviation much lower than the
expected σ. The current Keyblock implementation defines τd = µ− 3σ and τs = 0.1σ.

6. Experiments
We tested how effectively Keyblock is able to detect keystroke injection attacks and how
fast they are blocked using the model described in section 5. We used an ATMEGA32U4
to emulate a USB keyboard and inject a set of keystrokes in a target computer that runs
Keyblock. Our simulated attacks mimic the behavior of standard keystroke injection tools,
such as Rubber Ducky and Teensy. The ATMEGA32U4 was chosen as test platform,
instead of the alternatives, Rubber Ducky and Teensy, because the former is cheaper and
allows great programming flexibility. The ATMEGA32U4, which is USB 2.0 compliant,
has one 8-bit processor core, can run up to 16 MIPS and has 32 kB of program flash
memory [Atmel 2015].

We performed 100 keystroke injection experiments and registered whether each
attack was successfully blocked and how many keystrokes were accepted before the of-
fending device was disabled. Moreover, we tested if Keyblock could effectively identify
and allow humans to operate normally with standard USB keyboards. The process of
connecting a new keyboard and typing at different speeds was repeated 114 times. The
resulting false negative and false positive rates are summarized in table 1. Our tests in-
cluded two deviation threshold values, namely τd = µ − 2σ and τd = µ − 3σ. A false
negative happens when Keyblock incorrectly allows a keystroke injection attack to pro-
ceed. A false positive is registered if Keyblock erroneously disables a newly connected
keyboard while a human is typing.

For τd = µ − 2σ, we performed 50 keystroke injection tests with an AT-
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MEGA32U4 and 64 tests with typing humans. No attack was allowed to proceed, how-
ever we registered that 12 out of 64 human keyboard sessions were blocked, implying
a 18.75% false positive rate. This means that almost 1 in 5 human sessions were erro-
neously closed. For τd = µ − 3σ, we carried out 50 keystroke injection tests and 50
human keyboard sessions. Again, there was a 0% false negative rate. However, the false
positive rate was reduced to 2%, as only 1 human session was blocked. Additionally, in
these experiments, not a single keystroke injected by an attack was incorrectly allowed to
reach the X system.

Table 1. Results
τd = µ− 2σ τd = µ− 3σ

False negatives 0% 0%
False positives 18.75% 2%

7. Conclusion
The effectiveness of Keyblock’s detection architecture (figure 1) was demonstrated in our
experiments. This conclusion is drawn from the fact that Keyblock, using a relatively
simple detection model, can acquire a 0% false negative rate while keeping false positive
rates as low as 2%. The detection model used in the experiments was based on two thresh-
olds, derived from latency distributions measured for standard keystroke injection attacks
and human operators. Notwithstanding its simple classification method, it was able to
block the most prevalent category of keystroke injection attack, in which key events are
generated at speeds above that of a human, with a near constant frequency. More so-
phisticated attacks can be developed, such as imitating human typing patterns. Such an
attack would hardly be blocked by a detection model based on latency only. However, our
software architecture offers extensibility for implementation of new keystroke parameter
measurements and classification techniques. The next step in this project is to develop
and test other keystroke statistics, like key hold time, error rate and general typing habits,
and more robust classification methods, such as linear discriminant analysis, support vec-
tor machines and neural networks. Although our current implementation is focused on
GNU/Linux, the same architecture can be implemented as a tool for other operating sys-
tems, including Windows and Mac. [Keyblock 2017] is released as open-source software
under the CC Attribution-NonCommercial 4.0 license.
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