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Abstract. This paper presents the current status of our research on the robust-

ness of CoAP server-side implementations. We discuss the importance of the

CoAP protocol as an enabler of the Internet of Things (IoT) vision, and also

the current state of CoAP implementations available out there. Then, we pro-

ceed to test those implementations using fuzzing techniques previously used in

the literature in areas such as Web Service and Network Protocol security test-

ing, namely Random, Mutational and Generational Fuzzing, both “dumb” and

“smart”. Finally, we provide preliminary results and analysis regarding i) how

robust the CoAP implementations studied are and ii) how the different fuzzing

techniques used compare to each other.

1. Introduction and Motivation
The promise of the Internet of Things (IoT) is to increase the efficiency of our lives by
providing new, valued-added services through the integration of several technologies and
communications solutions, so our society could benefit from a wide range of applications
in areas such as agriculture, manufacturing, city infrastructure (e.g. mobility & transporta-
tion, energy & water distribution, environment monitoring), retail, logistics, healthcare,
home & building, and many others 1. This vision leads to a very heterogeneous envi-
ronment, in terms of both hardware and software [Atzori et al. 2010]. Also, considering
the complex, heterogeneous scenarios IoT networks may lead us to, there are security
and privacy concerns that need to be addressed before this new paradigm can be widely
accepted by the public [Granjal et al. 2015].

Even so, the amount of connected devices is already growing, with current esti-
mates ranging from 20.8 to 30.7 billions for 2020 2. Regardless of the exact figure and
despite the fact that the “real IoT” vision—with uniquely identifiable edge nodes running
IPv6, reachable through a Service-Oriented or Resource-Oriented Architecture (ROA or
SOA)—is not realized yet, we can find reportings of vulnerable devices in the “ad-hoc,
fake IoT”—with devices mostly running HTTP over IPv4 behind NAT or proprietary
stacks—both found in a lab [Patton et al. 2014] as well as in the wild 3 4, the biggest and
most famous one probably being the Mirai botnet 5.

1http://www.libelium.com/libelium-smart-world-infographic-smart-cities-internet-of-things/
2http://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-

devices-by-2020-is-outdated
3http://www.crn.com/slide-shows/internet-of-things/300084663/8-ddos-attacks-that-made-enterprises-

rethink-iot-security.htm
4http://www.checkpoint.com/press/2014/media-alert-check-point-researchers-discover-isp-

vulnerabilities-hackers-use-take-millions-consumer-internet-wi-fi-devices/
5https://krebsonsecurity.com/2016/10/hacked-cameras-dvrs-powered-todays-massive-internet-outage/



XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais - SBSeg 2017

534© 2017 Sociedade Brasileira de Computação

Although a number of standards for IoT communications have been proposed in
the recent years, and none of them have become a de facto standard yet, the protocol stack
composed by IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs),
IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL), and the Constrained
Application Protocol (CoAP) [Shelby et al. 2014] running over IEEE 802.15.4 has been
thoroughly explored by the research community, due to its focus on enabling direct
end-to-end integration of edge devices—and initially isolated Wireless Sensor Networks
(WSNs)—to the Internet [Palattella et al. 2013, Granjal et al. 2015]. A parallel between
this protocol stack and the current Internet stack can be seen in Figure 1.
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Figure 1. 6LoWPAN-based stack for IoT in comparison with the traditional proto-
col stack used in the Internet.

Running at the application layer, CoAP is a RESTful protocol featuring a well-
defined mapping to HTTP and its methods (GET, POST, PUT and DELETE), and support-
ing multicast, Universal Resource Identifiers (URIs), content-type identification, resource
discovery, response codes and simple subscription and caching mechanisms. Aiming for
simplicity and low overhead, it requires a fixed 4-byte header. Since the messages are
transported over UDP, CoAP implements simple reliability and message deduplication
mechanisms as well. Additionally to the base specification, several extensions to the pro-
tocol were already standardized as well, the most popular ones being Observe 6, Block 7

and CoRE Link-Formats 8.

As IoT devices are exposed to the Internet to allow resource sharing and ubiqui-
tous services provisioning, the CoAP protocol becomes a possible attack vector, which
may be exploited by a myriad of vulnerabilities, including protocol parsing, URI process-
ing, proxying and caching, risk of amplification, IP address spoofing, etc. System-wide,
these threats include (D)DoS, corrupted nodes, fraudulent packet injection, and the pos-
sibility of a malicious entity compromising a node to perform lateral movements on a
private network [Mohsen Nia and Jha 2016].

To the best of our knowledge, there is little to no work on the practical se-
curity of this “real IoT” vision, and most of them focus either on cryptographic ap-
proaches [Raza et al. 2013], or attack scenarios performed by previously compromised
CoAP nodes in a constrained network [Martins et al. 2016]. Our work, on the other hand,

6RFC7641 - Observing Resources in the Constrained Application Protocol (CoAP)
7RFC7959 - Block-wise Transfers in the Constrained Application Protocol (CoAP)
8RFC6690 - Constrained RESTful Environments (CoRE) Link Format
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focus on understanding and finding out the ways in which a CoAP node could be com-
promised in the first place. To that end, we leverage fuzzing techniques to discover vul-
nerabilities in available CoAP implementations.

2. Background and Related Work

As previously stated, we found no work on CoAP Robustness or Security Testing. There
are, however, a few projects targeting the functional test of CoAP implementations, which
we use as a basis for our testing system, especially as an input for the Mutation-based
Fuzzer (see PCAP Conversation in Figure 2).

The European Telecommunications Standards Institute (ETSI) promotes Plugtest
events, in which different organizations can test their own implementations of a given
standard, focusing on the interoperability of products and services. Together with other
industry members, ETSI has organized four IoT CoAP Plugtests so far, the latest one in
March, 2014 9. The F-Interop project aims to develop and provide online testing tools to
perform Conformance, Interoperability, and other non-functional testing, although it does
not cover Robustness nor Security testing. A video demonstration of a Proof-of-Concept
(PoC) CoAP interoperability testing tool is currently available at the project website 10.
The test specifications used are the ones from ETSI CoAP#4 Plugtest. We note this is
an ongoing research project, so further development can be expected. Peach Fuzzer is
a commercial fuzzer with CoAP support 11. The tool has an open source Community
Version available as well, but CoAP is not supported in that distribution. Codenomicon’s
Defensics is another commercial fuzzer with support for CoAP 12. This tool has no open
source or evaluation version. Table 1 shows a comparison between these testing solutions.

Table 1. Comparison of available CoAP Testing Solutions.

Project CoRE Reference Specification Tool Support /
Automated Testing Security Testing

Base Observe Block Link-Format

ETSI Plugtests RFC7252 draft-12 draft-14 RFC6690
- Offline pcap analyzer
- Automatic stimuli -

F-Interop RFC7252 draft-12 draft-14 RFC6690
- Real-time pcap analyzer
- Manual stimuli -

PEACH Fuzzer RFC7252 draft-16 draft-17 - - Fully automated Mutational Fuzzing

Defensics RFC7252 - - - - Fully automated Generational Fuzzing

Fuzzing or fuzz testing is an automated software testing technique that involves
providing invalid, unexpected, or random data as inputs to a computer program. Re-
garding fuzzing techniques in general, [Oehlert 2005] describes two ways of obtaining
testing data for fuzzing—data generation and data mutation—; differentiates between
intelligent fuzzers (those that leverage some knowledge of the target format) and unin-
telligent fuzzers (those that, for instance, just randomly changes bits); discuss common
fuzzing problems, such as the care to be taken regarding target formats using hashes or

9http://www.etsi.org/news-events/events/741-plugtests-2014-coap4
10http://www.f-interop.eu/index.php/tools-experiments
11http://www.peachfuzzer.com/wp-content/uploads/CoAP.pdf
12http://www.codenomicon.com/products/defensics/datasheets/coap-server.html
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checksums; and the difficulties to check if a target application behaves correctly or not—
suggesting the use of source code instrumentation and monitoring parameters from the
System Under Test (SUT) execution, such as memory and CPU usage. The present study
will provide a comparison between those techniques.

Finally, our efforts are guided by work on fuzzing techniques previously
applied in Web Service Security testing, such as data perturbation for generat-
ing test cases, by [Offutt and Xu 2004], guidelines to build penetration testing tools
by [Antunes and Vieira 2016] and work on using Boundary Value Analysis and dictio-
naries of peculiar strings to test Network Protocols as done by the PROTOS project 13.

3. Experimental Setup
The architecture of our testing system can be seen in Figure 2. Fuzzing engines (respon-
sible for generating fuzzed data or scrambling—mutating—valid data into fuzzed data)
and the workload executor (responsible for sending and receiving packets) were based on
the Scapy 14 framework. The steps of an experiment instance are as follows:
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Figure 2. Architecture of the testing system.

1 We fill a configuration file for the given System Under Test (SUT), holding an unique
name, the command line to start and stop it, any required environment variables it may
need, and parameters regarding how long we should wait for the SUT to (re)start, as
well as a target path to be used as heartbeat. Then, we can start our Fuzzer.

2 Our Fuzzer communicates with the Process Monitor 15 (which runs at the target
machine—which, in turn, could be the same as the fuzzer machine—listening on a
given TCP port), through Remote Procedure Calls (RPC), sending the parameters from
the SUT configuration file to it, so the Process Monitor is able to properly start the SUT.

3 Now that the SUT is already running, the first step of our Fuzzer is to send a GET
.well-known/core CoAP request to the SUT, in order to obtain a list of available
links (or paths) the SUT exposes, as well as other relevant information about those
links, e.g. if a given link supports the observe feature; the resource type it returns; etc.

13https://www.ee.oulu.fi/research/ouspg/Protos
14https://github.com/secdev/scapy
15This entity was adapted from the Boofuzz tool, available at https://github.com/jtpereyda/boofuzz
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4.a If we are experimenting with Random Fuzzer, a set of completely random Test Cases
(TCs) is generated. We also run experiments with a slightly modified version that we
call Informed Random Fuzzer, which adds Uri-Path options—obtained from step
3—to the TCs generated, providing some guidance to the testing process.

4.b Else, if we are running a Mutational Fuzzer, a set of TCs is generated from mu-
tations performed on previously captured (through tcpdump or Wireshark) CoAP
conversations. We also run experiments with a slightly modified version that we call
Smart Mutational Fuzzer, which uses information from the CoAP Packet Model to
perform smarter and/or more complex mutations, as well as the target links from step
3. Complex mutations requiring knowledge of the CoAP Packet Model includes option
duplication, option removal or any mutation to specific protocol fields.

4.c Otherwise, if we are running a Generational Fuzzer, we use techniques such as
Boundary Value Analysis, Equivalence Partitioning and dictionaries of carefully-
crafted strings to fill out CoAP packet templates based on the CoAP Packet Model,
generating smarter TCs to be sent to the SUT. In this mode, we are free to explore any
possible CoAP packet, given the inherent knowledge of protocol structure.

5 Workload Execution, sending the generated Test Cases to the SUT. Before actually
sending it (5.b), the Fuzzer informs the Process Monitor of a new incoming TC using
the pre send() method through RPC (5.a). After the fuzzed packet is sent, and a
possible response packet is received (5.b), the Fuzzer performs some checks. If the
packet is not answered, it is appended to a list, together with its TC number; if this
list reaches a threshold (we currently use 5), the Fuzzer will check the SUT’s health
both through an RPC polling method (post send(), which will contact the Process
Monitor to check for process’s signals or coredump files related to the SUT), as well
as through a heartbeat, which is basically a request known to always work on that SUT
(the most common one is just a GET .well-known/core request). If the fuzzer
establishes that the SUT has crashed, relevant information (coredump file, exit status
and signal, last five packets sent, etc.) is saved (see step 6) and the SUT is restarted,
so the process can continue from step 5; else, it just continues from step 5 again. If,
however, the packet is answered, the Fuzzer can just continue from step 5.

6 Relevant information is always saved throughout the fuzzing process. This includes a
summary and a report for each packet template (Generational Fuzzer), mutated value
per TC, execution times, etc. Especially useful information relevant to the offline crash
analysis described in Section 5 includes the SUT log and coredump files. Additionally,
the list of “last sent packets” related to each failed TC can be used to reproduce the
failures in a more controlled way, assisting in manual debug for root cause analysis.

4. Target Implementations

Since CoAP is a rather new protocol, we have faced some difficulties trying to find rele-
vant samples to be used as SUTs. We ran an extensive and systematic search against pub-
lic source code and/or software repositories as well as general search engines and other
sources, from which results can be seen on Table 2, together with the number of SUT
candidates found and their current status regarding availability to our research. The defi-
nition for each status is described in the following paragraphs. We note that these numbers
are roughly preliminary, since this study about the current use, status and availability of
CoAP implementations is expected to constitute one of our research’s contributions.
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Table 2. Number of SUT candidates found per Code/Software Repository and/or
Search Engines. Only the keyword ’coap’ applies, unless noted.

Repository/Search Engine SUT Candidates

Irrelevant Hard Pending OK Total

https://github.coma 1099 33 122 16 1270
https://bitbucket.org 16 2 18
https://gitlab.com 61 1 3 65
http://coap.technology 24 2 26
https://en.wikipedia.org/wiki/Constrained Application Protocol 26 2 28
https://code.google.com/archive 6 2 8
https://sourceforge.net 6 2 8
https://www.openhub.net 13 13
http://www.krugle.org 2 2
https://www.codeplex.com 6 6
http://www.grepcode.com 8 8
https://google.comb 2 3 N/A
a Includes keywords ’lwm2m’ and ’om2m’ (two Device Management protocols based on CoAP).
b Mostly ongoing. For each of the relevant keywords, we intend to check the first 5 pages, i.e. 50 results.

After we find an SUT candidate, we perform a preliminary manual inspection of
any available source code and documentation to assess the suitability of that candidate
towards our research goals. This assessment includes, but is not limited to i) look for
any executable which will be listening on an UDP port expecting CoAP packets (includ-
ing example applications that ships together with programming libraries for CoAP, demo
applications ranging from personal projects to industry or academia prototypes, etc.); ii)
check if we have available infrastructure to run such an executable (hardware architecture,
supported operating system, etc.); and iii) build, install and run the candidate to test for
basic CoAP communication.

Table 3. Short list of SUT candidates.
SUT Candidate Status CoAP Library Lang. SUT Candidate Status CoAP Library Lang.

aiocoap-rd OK aiocoap Python mbed-client Hard mbed SDK C++
californium-pt OK californium Java microcoap-server OK microcoap C
californium-proxy OK californium Java molex-transcend-gwa Hard ? ?
go-coap-server OK go-coap Go riot-gcoap-server OK gcoap + nanocoap C
ikea-tradfri-gwa Hard ? ? rtos-wot-server Hard Erbium C
iotivity-fridge-server Pending libcoap C, C++ swiftcoap-server Hard SwiftCoAP Objective-C
a As far as we know, these are the only two commercial products using CoAP out there. IKEA Tradfri16is a smart lighting +
gateway ecosystem and Molex Transcend17is a Power over Ethernet (PoE) gateway.

From that assessment, the SUT candidate is classified into one of the following
four statuses, due to—but not limited to—the following reasons: a) Irrelevant - duplicate
or search result already found in a previous repository, very minimal (or old) support to
CoAP RFCs, no actual executable to listen for packets; b) Hard - missing infrastructure,
not possible to follow documentation in order to run it due to a language barrier; c) Pend-
ing - looks like a good candidate, only pending the build-install-run step, which can take
some time since we may have to deal with different programming languages, building

16http://www.ikea.com/gb/en/products/lighting/smart-lighting/
17http://www.transcendled.com/webfoo/wp-content/uploads/AI-POE-Gateway.pdf
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platforms or other unpredicted adversity; and d) OK - we are able to run it, and the SUT
is not a candidate anymore, being ready to be tested. Table 3 shows a few of our relevant
SUT candidates so far, including their statuses, CoAP libraries they use and programming
languages they are made in. The application environment diversity should be noted, as it
is one of our biggest obstacles.

5. Preliminary Experimental Results
In order to find details about the crashes reported by the Fuzzer, we need to investigate the
output artifacts generated between steps 5 and 6 from the process described in Section 3.

For TC-related and time-related metrics, we have files holding TC/sec, TC/crash
and execution times, to name a few, which can be drilled down by packet template (Gener-
ational Fuzzer only) or CoAP option name, supporting different possible types of analysis,
e.g. which options cause more crashes throughout all SUTs, etc. We did not perform this
kind of analysis yet.

For crash-related information, we can use both the logfile produced by the SUT
itself, which is properly marked as part of the process described in Section 3, so we
can relate a given piece of output to a known TC number; as well as the coredump files
generated. This task is currently automated, but there is still room for improvements, as it
is very dependent on the SUT itself, since our parser for the SUT logfile has to deal with
information provided by the specific SUT or specific SUT’s programming language, for
instance. Nevertheless, we show preliminary crash-related results in Table 4.

Table 4. Experimental results for some SUTs.

SUT
Generational Fuzzing Random Fuzzinga Informed Random Fuzzinga

Target
Paths

Gen. % TC Exec.
Time

Crashes % TC
Exec.

Exec.
Timeb

Crashes % TC
Exec.

Exec.
Timeb

Crashes
TCs Exec. Total Uniq. Total Uniq. Total Uniq.

californium-pt 29 3086634 100% 90h 9 0 100% 30 0 0 100% 34 0 0
coapthon-server 13 1255058 20,6% 22h 20725 7 5,2% 12 100 4 83,7% 35 50 3
ibm-coap-proxy 1 103442 95,2% 3h 209 1 56% 16 100 1 8,1% 6 200 1
jcoap-pt 4 385262 46,4% 7h 4217 14 100% 29 3 1 100% 41 50 3
libcoap-server 3 299746 90,8% 4h30 693 1 100% 30 0 0 100% 33 0 0
libnyoci-pt 7 670358 99,7% 12h30 308 6 100% 31 0 0 100% 37 0 0
a 40000 TCs were generated for Random and Informed Random Fuzzing.
b Execution Time in minutes for Random and Informed Random Fuzzing.

We can see from Table 4 that, although the number of generated TCs is bigger for
Generational Fuzzing than for both types of Random Fuzzing—it is proportional to the
number of packet templates used, which in turn is proportional to the number of paths
exposed by the SUT—, incurring in larger execution times, this technique is also able to
detect more crashes, for most cases. We also observe the number of recurrent crashes. We
are currently using a simple heuristics in which if a given parameter, such as an specific
packet template or CoAP option causes a threshold number of crashes, we skip to the next
template/option, trying not to lose much time on potential duplicated crashes; this is what
causes the round numbers in total crashes for both types of Random Fuzzing.

6. Final Considerations
Preliminary results shows the ability of fuzzing techniques in uncovering crashes during
CoAP servers’ execution and testing, which in turn represents potential security vulnera-
bilities in those servers (observing that a crash already threatens the availability property
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of security anyway). It also shows that a more informed, elaborate technique, such as
generational fuzzing, is able to expose crashes not exposed by random fuzzing. Even so,
our research currently have limitations regarding the relevance and number of our sam-
ples (the SUTs), due to no widespread use of CoAP so far. Additionally, although the
Mutational Fuzzing Engine module is not ready yet, it is a work in progress, and the effi-
ciency of this technique will be compared to the ones presented here in Section 5 as well.
Finally, we expect to obtain more relevant and detailed results, such as performing root
cause analysis for discovered crashes, as well as to apply these results, as our research
progresses.
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