

A Semi Automated Approach to Assess Web Vulnerability

Scanner Tools Effectiveness

Tania Basso
1
, Regina L. O. Moraes

2
, Mario Jino

1

1
Faculdade de Engenharia Elétrica e de Computação

2
Faculdade de Tecnologia

Universidade Estadual de Campinas (UNICAMP) – Campinas, SP, Brazil

{taniabasso, regina}@ft.unicamp.br, jino@dca.fee.unicamp.br

Abstract. Nowadays, software products are developed with security

vulnerabilities due to bad coding. Vulnerability scanner tools automatically

detect security vulnerabilities in web applications; thus, trustworthiness on the

results of these tools is essential and, sometimes, the evaluation of their results

is done manually or even empirically. This work presents a semi automated

approach, based on fault injection techniques, to assess the efficacy of these

tools. Three scanner tools were assessed with the presence of realistic

software faults responsible for security vulnerabilities in web applications.

Results show that the approach is effective and has the advantage of

predicting security vulnerabilities through the fault injection techniques.

1. Introduction

The World Wide Web has become a sophisticated platform that is capable of delivering

a broad range of web applications. From single individuals up to large organizations,

there is an increasing dependency on this technology. Information and data are stored,

traded and made available on the Web. This type of application is becoming

increasingly exposed, the reason why as any security vulnerability can be exploited by

crackers. The consequences can range from simple website defacement to

environmental disasters and loss of human life [Gilman 2009]. Also, attacks to

organizations can put in check their credibility and have a highly negative impact on

users. Therefore, security and reliability have become a priority for web applications.

 Software faults are mistakes made by software product programmers and remain

in the program source code. The root cause of most security attacks are security

vulnerabilities created by software faults [Fonseca and Vieira 2008, Basso et al. 2009].

Even though the software developers are encouraged to follow best coding practices –

and it includes security aspects – most times, due to time restrictions, the developers are

focused on developing the main functionalities and satisfying the client requirements,

neglecting security aspects and introducing software faults that can be responsible for

security vulnerabilities. It is known that traditional network security mechanisms as

firewalls, cryptography and intrusion detection systems can protect the network but not

mitigate web application attacks. Then, the attackers are changing their focus from the

XIII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2013

72 c©2013 SBC — Soc. Bras. de Computação

network to the web applications, where the insecure codification represents major risks

[Fonseca and Vieira 2008].

 Automatic vulnerability scanners are tools often used by developers and system

administrators to test Web applications against security vulnerabilities. Reliable results

from vulnerability scanners are essential and the analysis of the scanners’ effectiveness

is important to guide the selection as well as the use of these tools. Also, scanner tools

are developed by organizations [Acunetix 2013, HP Webinspect 2013, IBM Security

AppScan 2013] and academic researchers [Chen and Wu 2010, Galán et al. 2010] and

must be tested to evaluate its effectiveness, especially when is desired to compare their

results with results provided by other scanner tools (and demonstrate which has the best

ones). Sometimes, the tests are done manually [Chen and Wu 2010], with targeted web

applications and usually they do not consider predicting software faults which lead to

security vulnerability nor use a flexible approach to include new ways of attack that

arises [Chen and Wu 2010, Galán et al. 2010].

 The goal of this paper is to show a semi automated approach to assess the

efficacy of vulnerability scanner tools. This approach is based on software fault

injection and attack trees modeling. It consists of injecting realistic Java software faults

into web applications and, once the faults are injected, the scan is run to check if it can

detect the potential vulnerabilities caused by the injected fault. Existence of

vulnerabilities is confirmed through attacks, guided by the attack trees, which can give

the attacker vision to exploit the security vulnerabilities in the web application. The

procedures of fault injection and attack injection are automated and performed through

the J-SWIFT [Sanches et al. 2011] and J-Attack [Fernandes et al. 2011] tools. The Java

programming language was chosen due to its extensive use for developing modern

applications, especially web applications.

 The structure of the paper is as follows: Section 2 presents the related work,

which established the basis of this work; Section 3 describes the tools and technologies

used to compose the semi automated approach. Section 4 presents the approach and

section 5 presents an experimental study to demonstrate it, regarding the absence and

the presence of injected faults and the scalability of using attack trees. Section 6 presents

the discussion about the results of the case study and Section 7 presents conclusions and

future works.

2. Related work

Some works bring new developed vulnerability scanner tool and some works assess the

effectiveness of available scanner tools. In both cases is necessary to have a way of

evaluating the effectiveness of the results. Effectiveness may be assessed by two main

aspects: vulnerability coverage and false positive rate. Vulnerability coverage refers to

the ability of the tool to detect correctly all security vulnerabilities in the application (the

scanner is considered doubtful whether undetected vulnerabilities do not really exist in

the application or the scanner was not able to detect it). False positive refers to

vulnerabilities detected by the scanner tool that, in fact, do not exist in the application.

 Chen and Wu [Chen and Wu 2010] developed an automated vulnerability

scanner system based on injection point which automatically analyses web sites with the

aim of finding exploitable SQL injection and XSS vulnerabilities. To evaluate the

XIII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2013

73 c©2013 SBC — Soc. Bras. de Computação

reliability of their system, they designed a simple targeted web application with many

SQL-injection and XSS vulnerabilities and use other seven applications. Although the

first application can be used in a controlled way, the other ones can have more unknown

vulnerabilities, which can affect the results of the developed tool.

 Bau et al. [Bau et al. 2010] developed a study to assess the state of the art of the

vulnerability scanners. The authors evaluated the efficacy of eight commercial scanners

vulnerability tools on detecting security vulnerabilities like Cross Site Scripting (XSS),

SQL Injection and Cross Site Request Forgery (CSRF). The validation of the results was

based on already known vulnerabilities in applications under test. The knowledge of

these vulnerabilities is from patches developed to correct them. It means that, if a

particular release of an application has a correction patch for a particular vulnerability, it

is because the application does have this vulnerability and the scanner should detect it.

However, the authors do not predict vulnerabilities caused by hidden software faults,

which can provide more accurate results. Fonseca et al. [Fonseca et al. 2007] also

present an experimental evaluation of security vulnerabilities. Four well known

vulnerability scanners have been used to identify security flaws in web services

implementations. They used the fault injection technique and the existence (or not) of

each vulnerability detected was confirmed manually. Also, this study was focused on a

specific family of applications, namely database centric web based applications written

in PHP, and the results obtained cannot be easily generalized, especially if we take into

account the specificities of web services environments.

 Fonseca et al. [Fonseca et al. 2009] proposed a methodology to automatically

inject vulnerabilities and attacks in web applications to assess security mechanisms in

place. Two commercial web application vulnerability scanners were assessed and,

however the methodology is automated, it does not permit the scalability of the attacks,

i.e., when new forms of attacks arise, is not easy to insert them in the attack tool. Nor

other different attack types. Our intention is to propose a clear and semi automated

approach where, following some stages, it is possible to evaluate the effectiveness of

any scanner vulnerability tool, including the prediction of vulnerabilities caused by

hidden software faults (through software fault injection techniques) and scalability of

attacks (through attack trees models). This scalability is achieved through an attack

injection tool based on attack trees, which permit the inclusion of new ways of

performing particular attacks as they arise. So, it is possible to have a more complete

attack injection tool and better results in assessing the vulnerability scanner tools.

 As results, the previous works [Bau et al. 2006, Fonseca et al. 2007, Fonseca et

al. 2009] show, by agreement, that the scanners had low coverage and several cases of

false positives, indicating the limitations of this segment of tools.

3. Technologies and Automatic Tools

The proposed approach can be used with different tools. The two automatic tools were

used are the J-SWFIT [Sanches et al. 2011] and J-Attack [Fernandes et al. 2011]. They

are based, respectively, on technologies as software fault injection and attack trees,

which are briefly described below.

XIII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2013

74 c©2013 SBC — Soc. Bras. de Computação

3.1. Fault Injection Techniques and the J-SWFIT tool

Software faults are mistakes made by software product programmers and remain in the

program source code. The complete elimination of software faults is a difficult or even

impossible goal to be achieved [Lyu 1996, Musa 1996]. Fault injection techniques are

one option for activation of these faults in order to evaluate the software behavior during

the software validation process. This technique consists of introducing faults into a

target system in a deliberated way and observing if the system keeps operating as

desired [Hsueh et al. 1997]. In some cases, software faults are responsible for security

vulnerabilities that can be exploited. The use of fault injection to assess security is

actually a particular case of software fault injection. It helps to speed up the detection of

security vulnerabilities, allowing that countermeasures are applied to eliminate them or

to reduce the severity of their exploitation, contributing to higher levels of dependability

for the application under test.

 Knowledge of the software fault representativeness is essential for realistic fault

injection. A big concern when using fault injection environments and tools is to ensure

that injected faults represent real faults, because it is necessary to obtain significant

results. Thus, defining a realist faultload (i.e., a set of selected faults to be injected) is

primordial to the success of the dependability validation of software systems. Basso et

al. [Basso et al. 2009] presented a representative faultload to security software Java

faults, with faults that represents specificities of the language. The most frequent faults

of the security fautload were implemented in the J-SWFIT tool.

 The Java Software Fault Injection Tool – J-SWFIT allows the automatic

injection of software faults in Java systems in a scalable way. This tool is based on a set

of fault injection operators (implemented from the faultload) that reproduce directly in

the target bytecode the instruction sequences that represent the most common types of

high-level software faults. So, the J-SWFIT preserves the independence of the

availability of the source code to inject software faults. The operation of J-SWFIT

consists of: finding places where specific software faults can exist; injecting each

software fault independently; executing the application with the present software fault

and monitoring the results; at the end, the tool compares the behavior of the application

on the presence and absence of each fault.

3.2. Attack trees and the J-Attack tool

Attack tree [Schneier 1999] is a structure that permits to represent, in a clear and

organized way, the attacker actions to exploit security vulnerability successfully. In the

attack trees the root node represents the achievement of the ultimate goal of the attack.

Each child node represents sub-goals that have to be accomplished in order to reach the

parent’s goal to succeed. Parent nodes can establish relationships with their child nodes

using an “OR” or an “AND” relationship. In an “OR” relationship, if any of the child

nodes sub-goals are accomplished then the parent node is successful. With an “AND”

relationship, all of the child node sub-goals must be accomplished in order to the parent

node to be successful. The leaves of the tree (i.e., nodes that are no longer decomposed)

represent attacker’s actions.

 J-Attack is a tool developed to automate injection attacks through the model tree.

In J-Attack, the test cases extracted from attack trees are registered in a database that is

XIII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2013

75 c©2013 SBC — Soc. Bras. de Computação

used to guide the tool to perform the tests. To inject attacks, the user have to inform the

target application and then the application is mapped, i.e., the tool sends request to the

URL provided by the user, identifies and stores links contained in the reply to the initial

request. For each link, the input fields are identified and the tests registered in the

database are executed. J-Attack is scalable, so, it is possible to expand it to cover more

security vulnerabilities. New tests and vulnerabilities can be added to the database.

4. The Proposed Approach

This section presents the proposed approach and its respective stages for evaluation of

the effectiveness of vulnerability scanner tools by the two main aspects (vulnerability

coverage and false positive rate). The goal is to provide guidelines for the acquisition

and use of these tools, and, thereby, provide higher levels of dependability for Web

applications (in this case, web applications developed in Java programming language).

 Comparing to other existing techniques, in summary, the approach proposed in

this paper presents several key advantages, including:

 It predicts vulnerabilities caused by hidden software faults (through the use

of software fault injection techniques).

 It does not require the source code of the web application, once that the J-

SWFIT injects software faults in the compiled source code.

 It is faster and more accurate than manual approaches, as the process of

injecting faults and attacks are automated through the respective tools.

 It is extendable to other types of attacks injection by simply registering it in the

J-Attack’s database.

 It does not rely on any learning process, thus it does not suffer from

incomplete or incorrect learning processes, which many times lead to inaccurate

results.

 It achieves extremely good results at a very low financial cost. Indeed the cost

of the tools is null as it is available for free use at [Moraes 2013]. It is necessary

only an expert user to apply the approach.

 The approach has six stages, illustrated on Figure 1 and described below.

Figure 1. The stages of the semi automated approach.

XIII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2013

76 c©2013 SBC — Soc. Bras. de Computação

 The stage 1 is transparent to the user unless it is necessary to test vulnerabilities

that are not configured in J-Attack tool. The stage is described as part of the approach

because they can be followed if it is necessary to update the J-Attack with new ways that

may arise of exploiting the vulnerability under test or to add different types of attack to

exploit different vulnerabilities.

 1 – Configure the J-Attack tool. If necessary, the J-Attack can be easily

complemented with new ways of exploiting vulnerabilities that may arise. For this

purpose, it is necessary, first, to identify and understand the ways the application can be

attacked. Then, the attack trees structure is used to organize and describe the attacks

identified in the first step. Different attack paths can be represented in the same attack

tree and new attacks can be added due to its modular structure, permitting its expansion.

The attack scenarios are derived from the attack trees and registered in the J-Attack’s

database to perform the attacks automatically. The more complete is the range of attacks

to a particular vulnerability, the more efficient is the application of the approach.

 2 – Analyze the target application using the scanner under test and store the

results. In this stage the original web application should be used first, i.e., the web

application without any fault injected. Then, with the scanner tool to be evaluated, a

scan is performed in this web application – this performing is called “gold run” – and

the obtained results should be stored to be used as a basis to compare the next scan

results (in the presence of injected software faults). Originally, the web application may

have some security vulnerabilities and this scan should detect them, ensuring that new

vulnerabilities detected over the experiments are due to the injected faults. This first

scan may be the reference to verify the effect of the new software faults injected,

especially in the creation of new security vulnerabilities.

 3 – Inject software faults in the target application. From a defined faultload,

the software faults should be injected in the web application. This stage is important

because it permits a control about the software faults present in the applications’ source

code, knowing where the faults are located. The representativeness of the faultload is

primordial to the success of assuring new vulnerabilities, i. e., the software faults to be

injected must be responsible for creating potential security vulnerabilities.

If new security vulnerabilities are identified due to the fault injected, impacting the

application behavior, it is possible to verify the effectiveness of the scanner tool on

detecting the new vulnerability. The faults are automatically injected by the J-SWFIT

tool.

 4 – Reanalyze the target application (with the software fault injected) using

the same scanner. In this stage the scan may be re-executed in the application in the

presence of the software fault injected. Many executions are done, one execution to each

injected fault. The obtained results should be stored similarly as described in the stage 2,

facilitating the automation of a comparison of results obtained in this stage with the

results of the “gold run”.

 5 – Compare the scanner results from the original target application

(without software fault injected) and the scanner results from the target

application with software fault injected. The results of the original scan (gold run –

step 3) may be compared with the results of each scan executed in the web application

XIII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2013

77 c©2013 SBC — Soc. Bras. de Computação

with software fault injected. This comparison is done to evaluate if there are changes

and, if changes are observed, the differences may be investigated because it can indicate

false positive, lack of coverage from the scanner tool or new security vulnerabilities due

to the presence of software faults. It is important that the scan results from the original

web application also be analyzed. The analysis is described in the next stage.

 6 – Validate the scanner results performing security tests obtained from the

modeled attack trees. If there are differences between the original scan results and the

scan results in the application with the faults injected, attacks may be performed to the

security vulnerabilities that are desired to investigate. These attacks are performed

automatically by the J-Attack tool. If the attack is successfully performed it means that

the scanner tool detected the security vulnerability correctly. In this case, the attack may

be performed also in the original web application to verify if the vulnerability already

existed before the fault injected and was not prior detect by the scanner tool, indicating

lack of coverage from the tool. Moreover, if the attack is not successfully performed, the

tool presented a false positive.

 A case study was developed to assess the applicability of the approach and is

related in the next section.

5. Case Study

To develop the case study experiments some decisions were taken: the Java web

applications were selected; the security vulnerabilities, to be investigated, were

identified and configured in the J-Attack tool; the scanner tools, to be evaluated, and the

faultload were identified and applied to the J-SWFIT tool.

 Three Web applications developed in Java were selected to carry out the

experiments. The first one has 137 classes and approximately 27,048 lines of code

(LOC), the second one has 262 classes and approximately 45,800 lines of code and the

third one has 164 classes, approximately 45 thousands lines of code and four databases

integrated.

 The first web application is a Customer Relationship Manager (CRM) and

Project Management Tool. It uses MySQL database and technologies such as Hibernate,

framework Struts and Jasper Reports. The second Web application is a Distance

Education management system, developed by the Brazilian federal government. It uses

the Postgres database, Hibernate and Ajax technologies. The third web application is

from a large company that is focused in human health care. It uses Hibernate, Ajax and

the framework Java Server Faces. The database used is MySQL. All web applications

were selected because they represent the same segment of applications (data

management), and they use some technologies that probably impact the scanner tool

results (for example, the Hibernate, which deal with query construction and can affect

the detection of SQL injection vulnerabilities). Moreover, they are web applications

whose services are applied in the commercial and academic areas. We have chosen

similar use cases from all applications to be the target piece of code of injected faults, as

create, retrieve, update and delete products, courses and appointments, respectively.

 The three security vulnerabilities considered for this study are SQL injection,

XSS (Cross Site Scripting) and CSRF (Cross Site Request Forgery). They were selected

XIII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2013

78 c©2013 SBC — Soc. Bras. de Computação

because of their criticality, occupying the first, second and fifth place in the 2010

OWASP Top 10 [OWASP 2010] and first, third and eighth places in the 2013 OWASP

TOP 10 [OWASP 2013] respectively. These vulnerabilities are widely spread and

dangerous, and may cause major damage to the victims. Although the CSRF

vulnerability type represents the fifth place in 2010 and eighth place in 2013 more

critical top 10 rank, testing Web applications against this type of vulnerability is

important because the attacks are difficult to detect and, usually, the remediation is only

possible after the incidents. Moreover, according to Lin et al. [Lin et al. 2009], this is an

area in which limited research has been done.

 XSS occurs when a web application gathers malicious data from a user, usually

gathered in the form of a hyperlink which contains malicious content within it. After the

data is collected by the Web application, it creates an output page for the user,

containing the malicious data that was originally sent to it, but in a manner to make it

appear as valid content from the website [Uto and Melo 2009] . SQL injection refers to

a class of code-injection attacks in which data provided by the user is included in an

SQL query in such a way that part of the user’s input is treated as SQL code. By

leveraging these vulnerabilities, an attacker can submit SQL commands directly to the

database [Halfond et al. 2006]. Last, CSRF works by exploiting the trust a site has for

the user. Site tasks are usually linked to specific URLs allowing specific actions to be

performed when requested. If a user is logged into the site and an attacker tricks their

browser into making a request to one of these task URLs, then the task is performed and

logged as the logged in user [CSRF 2013].

 For each of these three types of vulnerability an attack tree was created (see

Fernandes et al. [Fernandes et al. 2010]) and the attack scenarios were registered on the

database of J-Attack. For the CSRF tree we covered the part of the CSRF attack relative

to the acceptance of the requests coming from another source. The part relative to the

means used to lure the user to activate the request is not covered as they are out of the

defensive bounds that an application can have against CSRF.

 The types of fault to be injected are the two most frequent ones from the

faultload of Basso et al. [Basso et al. 2009] and are implemented by the J-SWFIT tool.

The scanner tools selected were Acunetix [Acunetix 2013] version 6.0, Rational

AppScan [IBM Security AppScan 2013] version 7.8 e HP WebInspect [HP Webinspect

2013] version 8.0. These tools were selected due to its great market insertion.

6. Results and Discussions

To present the results of the experiments, the brands and versions of the scanner are not

associated, as well as the web applications, to assure neutrality and also because

commercial tools providers usually do not permit the publication of the results of this

type of evaluation. Then, the scanners used in the experiments will be referred, from this

point, as S1, S2 and S3, without any special order. The applications will be called Ap1,

Ap2 and Ap3 also without any special order. Results are presented and discussed by

means of the effect of fault injection have on the vulnerability results and the lack of

coverage and false positives pointed by the scanner tools.

 Effect of fault injection on the results. For the three Web applications, we

analyzed, respectively, 31, 35 and 24 different scenarios. Each scenario is represented by

XIII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2013

79 c©2013 SBC — Soc. Bras. de Computação

one fault injected in the selected classes from the use case . The second line from Table

1 shows the total of scenarios that presented new security vulnerabilities due to the fault

injection.

Table 1. Applications scenarios and vulnerabilities

 Ap1 Ap2 Ap3 Total

Total scenarios analyzed 31 35 24 90

Scenarios with new vulnerabilities 22 20 0 42

% of faults that affected the scan 70.9% 57.1% 0% 46.7%

 According to Table 1, about 46.7% of the injected software faults affected the

scanner results. In approximately 20% of the 90 scenarios, the changes in the results

were verified by at least two scanners. The injected faults affected the applications

behavior and, consequently, the scanner tool behavior, due to the context of the

application and the procedures necessary to activate the fault. For example, many faults

were injected in locations where a null entry point is verified in the source code.

Activating this fault, the application modifies its behavior by not verifying the null entry

point and forcing the application to display error pages.

 Lack of coverage and false positives. Table 2 shows, for each scanner and each

web application, the lack of coverage and the number of false positives obtained in the

experiments. The lack of coverage is about vulnerabilities that do exist in the web

applications, confirmed through successful attacks and was accounted based on the total

number of vulnerabilities detected correctly by the tests using the J-Attack. The number

of false positives is related to vulnerabilities indicated by the tool that were not

confirmed by the attacks. These attacks were performed using the J-Attack and, to

provide greater reliability of the tests – once it depends of the accuracy of this tool –

they were also confirmed manually.

Table 2. Applications lack of coverage and false positives

 Lack of coverage False positive

 Ap1 Ap2 Ap3 Tot. Ap1 Ap2 Ap3 Tot.

S1 19 3 1 23 13 1 2 16

S2 54 17 2 73 1 0 0 1

S3 54 10 2 66 18 1 0 19

 Based on Table 2, the Ap1 presented the biggest lack of coverage and false

positives no matter the scanner tool that was used. By the analysis of the context of the

source code, we believe that the reason for this result is that Ap2 and Ap3 code is more

modularized, with less coupling with other modules and fewer implemented use cases.

Also, the Ap3 is widely used in the commercial environment, so, it is more mature and

with less bugs and vulnerabilities.

 Table 3 shows the percentage of lack of coverage and false positives according

to each type of security vulnerability. The tests based on J-Attack (and, also, manually,

using the attack scenarios, to reinforce the existence of the vulnerability) allowed

confirming that do exist, among the 90 scenarios analyzed, 3 XSS vulnerabilities, no

SQL injection vulnerability and 73 CSRF vulnerabilities. The false positive and lack of

coverage rates are calculated from these numbers.

XIII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2013

80 c©2013 SBC — Soc. Bras. de Computação

Table 3. Lack of coverage and false positive rate by security vulnerability type

Correctly detected Lack of coverage False positive

S1

XSS 100% 0% 0%

Inj. SQL ---- 0% 100%

CSRF 58.8% 27.0% 14.2%

S2

XSS 75.0% 0% 25.0%

Inj. SQL ---- 0% 0%

CSRF 0% 100% 0%

S3

XSS 33.3% 66.7% 0%

Inj. SQL ---- 0% 100%

CSRF 12.20% 86.5% 1.3%

 In Table 3 it is possible to observe that the highest rate of lack of coverage refers

to CSRF vulnerabilities and encompasses the three scanners, S1, S2, and S3, with

respectively 27.0%, 100% e 86.5%. The lacks of coverage were identified in the original

applications (without any fault injected) and in the applications with faults injected. In

most of the cases, when scanning the application with faults injected, a new

vulnerability detected by the tool was the one that was already presented in the original

application, not identified in the “Gold Run”. The false positives are about the three

types of vulnerabilities, representing 25% to XSS (detected by scanner S2), 100% to

SQL injection (detected by scanners S1 and S3) and approximately 16% to CSRF

(14.2% detected by scanner S1 and 1.3% detected by S3).

 The false positive associated to the XSS vulnerabilities is considered because the

scanner tool integrates outdated version of internet browsers. An attack successfully

executed by the tool, when executed in the later versions of internet browsers, has no

effect, because these versions implement features that do not permit the execution of

common XSS attacks.

 The SQL injection false positives were identified through the attacks and the

analysis of the source code. All applications use the Hibernate technology, which is an

object/relational persistence and query service. It permits to encapsulate the queries and

send objects to the database through predefined classes and methods, discarding the

necessity of explicit SQL queries constructions. The code constructed with Hibernate is

more difficult – but not impossible – to have vulnerability to SQL injection attacks.

However, the way that the applications were coded, i.e., extremely encapsulated, do not

open opportunities to develop successful attacks. Even the scanner tool provides no

assurance about its detection result, and it informs that this detected vulnerability

requires user verification.

 In most of the cases where CSRF false positives were identified, they happened

in error pages. An attacker performing a CSRF attack on error pages can be dangerous if

the error page presents links or buttons that permit access to the application (as “back”

buttons which bring back the user to the last page he/she accessed) or if the error page

displays private information about the system (such as database name or table names).

For all three applications, the error pages do not present any way of accessing

application functionalities or private information. Hence, we considered these cases as

false positives because a CSRF attack when accessing the error pages is useless.

XIII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2013

81 c©2013 SBC — Soc. Bras. de Computação

 Also it is possible to observe in Table 3 that CSRF vulnerabilities are more

frequent than XSS and SQL injection. This is due to the development frameworks as

Struts or Java Server Faces and data persistence technologies as Hibernate that was used

in the web applications. These development frameworks have, as default, a filter to

execute scripts. So, unless the programmer, when constructing the application code,

specify that the application may execute scripts – and it is not common because the idea

is to add security aspects to the web application instead of removing them – the

application will treat any script as a string, i.e., tags as <script>/<script> will not be

executed, but added to the application as a normal text. About Hibernate, its use permits

that the application has its queries totally encapsulated in objects and API (Application

Programming Interfaces), not allowing that pieces of query be concatenated.

 Efficacy of the evaluated scanners. Figure 2 illustrates, for each type of

security vulnerability analyzed, the relationship between the detections by the scanners

S1, S2 and S3. The intersection areas in the circle represent the number of the same

vulnerabilities detected by more than one scanner. The cases of lacks of coverage were

not considered to the illustration, i.e., only the detected vulnerabilities were considered,

including the false positives.

Figure 2. Relationship between the security vulnerability detection

 According to Figure 2, there are few vulnerabilities in common between the

three scanner tools. This difference indicates that these tools implements different ways

of performing the intrusion tests and the results from different tools can be very

different. It suggests that, to have a good coverage to security tests, the user can

combine multiple scanner tools instead of trusting the results of only one. An analysis of

the efficacy of these scanner tools can provide guidelines to their selection. Table 4

shows the percentage of lack of coverage and false positives to each scanner tool

analyzed, no matter the type of vulnerability.

Table 4. Lack of coverage and false positives from the scanner tools.

 S1 S2 S3

Vulnerabilities analyzed 92 77 95

Vulnerabilities correctly detected 53 (57.6 %) 3 (3.8 %) 10 (10.5%)

Lack of coverage 23 (25.0 %) 73 (94.9 %) 66 (69.5%)

False positive 16 (17.4 %) 1 (1.3 %) 19 (20.0%)

 While comparing the aspects of coverage and false positives that the tools

presented, it is clear, by looking at Table 4, the scanner S1 is the best in terms of

coverage, presenting the lowest rate in cases of lack of coverage (25.0%), followed by

XIII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2013

82 c©2013 SBC — Soc. Bras. de Computação

scanners S3 and S2, with, respectively, 69.5% and 94.9%. The scanner S2 presented the

highest rate of lack of coverage but, however, presented much lower percentage of false

positives compared to scanners S1 and S3 (1.3%). The percentage of false positives

from scanners S1 and S3 are close (17.4% and 20.0% respectively), considering the

higher number of vulnerabilities that has been analyzed for the scanner S3.

 It is also possible, observing Table 4, to evaluate the effectiveness of the

scanners according to the type of vulnerability. The scanner S1 presented better results

on testing vulnerabilities like XSS because it did not present false positives or lack of

coverage for this type of vulnerability. The scanner S2 presented better results for SQL

injection vulnerabilities because it also did not detect any false positive or lack of

coverage. As for CSRF vulnerabilities, the three scanners presented different results,

where the number of cases of lack of coverage and false positives are inversely

proportional (the lower the lack of coverage rate, the higher the incidence of false

positives and vice versa). In this case, other selections criteria should be used in a

complementary way, such as a second most important vulnerability to determine the

best tool to be adopted.

 As expected, the rate of false positives tends to be directly proportional to the

capacity of the tool to detect vulnerabilities. These results, which presented high levels

of coverage and lack of false positives, show that the application of the approach is

adequate and brought similar results to previous works (cited in section II), reinforcing

the evidence of the limitations of scanners vulnerabilities. To critical web applications,

multiple scanners should be used and complementary tests may not be discarded.

7. Conclusions

In today’s scenario that portrays the lack of security in web applications – especially in

the management information segment – and the limitations of vulnerability scanner

tools that were presented in this work and the previous ones, that are due to the low

effectiveness of the tools, something must be done. The present paper proposes a semi

automated approach to validate the effectiveness of these kinds of tools and, with this,

to contribute to increase the level of dependability of the web applications. The

approach has six stages and it is based on fault injection techniques and attack tree

models. Previous studies served as the basis to the faultload to be injected; the attack

trees served to guide the tests and automatic tools that support the stages of fault

injection and attack injection.

 A case study was performed to evaluate the effectiveness of three commercial

scanner tools with great market insertion. The results showed that the approach is

adequate, providing similar results to previous studies, i.e., the low coverage and high

false positive rates pointed by the evaluated scanner tools. The advantage of using the

approach is to have support tools to automate some stages and to easy the prediction of

existent vulnerabilities through software faults injection. Also, especially, the use of

attack trees permit the inclusion of new attacks to be performed by the attack tool,

improving greater completeness of the security tests and, consequently, better results.

 The application of the approach provide guidelines for the selection of the

scanner tools, indicating that, to have good coverage of the security tests, the user can

combine multiple scanners instead of trusting the results from only one of them. Or even

XIII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2013

83 c©2013 SBC — Soc. Bras. de Computação

select the most convenient tool in accordance with predetermined priorities, such as the

priority in detecting particular type of vulnerability (some scanners presented better

results in detecting particular type of vulnerabilities). Additional tests must not be

discarded from the procedure, especially for critical web applications.

 Although a few web applications were used in the case study, and these

applications represent only a segment among the various existing, the approach showed

satisfactory results, meeting the goals it has set itself. As a possible limitation of the

approach, the false positive identification is dependent on the accuracy of the J-Attack

tool. However, this tool has shown good accuracy in previous tests and it was confirmed

through our manual analysis. Generally speaking, the set (approach and automatic tools)

presents a good technique to perform security tests, even when the applications’ source

code is not available.

 As future work we intend to apply the approach to other segments of web

applications to investigate its behavior and generalize the results. If necessary, some

adjustments can be performed.

References

Acunetix Web Security Scanner (2013). Available: http://www.acunetix.com/.

Accessed: 07-mar-2013.

Basso, T.; Moraes, R.; Sanches, B.; Jino, M. (2009). “An Investigation of Java Faults

Operators Derived from a Field Data Study on Java Software Faults”. In: Workshop

de Testes e Tolerância a Falhas - WTF, Brazil, pp. 1-13.

Bau, J.; Bursztein, E.; Gupta, D.; Mitchell, J.(2010). “State of the Art: Automated

Black-Box Web Application Vulnerability Testing”. In. IEEE Symposium on

Security and Privacy, Oakland, USA. p. 332-345.

Chen, J.-M.; Wu, C.-L. (2010). “An automated vulnerability scanner for injection attack

based on injection point”. International Computer Symposium (ICS), p. 113 -118.

CSRF (2013). “The Cross-Site Request Forgery (CSRF/XSRF) FAQ”. Available:

http://www.cgisecurity.com/csrf-faq.html. Accessed: 07-jun-2013.

Fernandes, P. C. S. ; Basso, T. ; Moraes, R. (2011). “J-Attack - Injetor de Ataques para

Avaliação de Segurança de Aplicações Web”. XXIX Simpósio Brasileiro de Redes

de Computadores e Sistemas Distribuídos - Workshop de Testes e Tolerância a

Falhas, Campo Grande, Brasil.

Fernandes, P. C.; Basso, T.; Moraes, R.; Jino, M. (2010). “Attack Trees Modeling for

Security Tests in Web Applications”, 4th. Brazilian Workshop on Systematic and

Automated Software Testing (SAST). Natal - RN, Brasil.

Fonseca, J. and Vieira, M. (2008) “Mapping software faults with web security

vulnerability”. IEEE/IFIP Int. Conf. on Dependable Systems and Networks (DSN),

Anchorage, USA, p. 257-266

 Fonseca, J.; Vieira, M.; Madeira, H. (2007). “Testing and Comparing Web

Vulnerability Scanning Tools for SQL Injection and XSS Attacks”, in 13th Pacific

Rim International Symposium on Dependable Computing - PRDC, p. 365 -372.

XIII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2013

84 c©2013 SBC — Soc. Bras. de Computação

Fonseca, J.; Vieira, M.; Madeira, H. (2009). “Vulnerability & attack injection for web

applications”, in IEEE/IFIP International Conference on Dependable Systems

Networks - DSN, p. 93 -102.

Galán, E.; Alcaide, E.A.; Orfila, A.; Blasco, J. (2010). “A multi-agent scanner to detect

stored-XSS vulnerabilities”. International Conference for Internet Technology and

Secured Transactions (ICITST), p. 1 -6.

Gilman, N. (2009). “Hacking goes pro”. Engineering Technology, vol. 4, nº 3, p. 26 -29.

Halfond, W. G.; Viegas, J.; Orso, A. (2006) “A Classification of SQL-Injection Attacks

and Countermeasures”, In Proceedings of the International Symposium on Secure

Software Engineering - ISSSE, Arlington, Virginia.

HP WebInspect (2013). Available: http://www.hpenterprisesecurity.com/products/hp-

fortify-software-security-center/hp-webinspect. Accessed: 07-jul-2013.

Hsueh, M. C.; Tsai, T. K.; Iyer, R. K. (1997). “Fault injection techniques and tools”,

Computer, vol. 30, no. 4, p. 75–82.

IBM Security AppScan (2013). Available: http://www-

01.ibm.com/software/awdtools/appscan/. Accessed: 07-jul-2013.

Lin, X., Zavarsky, P., Ruhl, R., and Lindskog, D. (2009) “Threat Modeling for CSRF

Attacks.” Proceedings of the 2009 international Conference on Computational

Science and Engineering, pp 486-491.

Lyu, M. R. and others (1996). “Handbook of software reliability engineering”, vol. 3.

IEEE Computer Society Press CA.

Moraes, R. (2013). Available: http://www.ft.unicamp.br/~regina. Accessed: 09-apr-

2013.

Musa, J. D. (1996). “Software reliability-engineered testing”, Computer, vol. 29, no. 11,

p. 61–68.

OWASP (2010). “The Open Web Application Security Project”. TOP 10 2010.

Available: https://www.owasp.org/index.php/Top_10_2010-Main. Accessed: 07-jun-

2013.

OWASP (2013). “The Open Web Application Security Project”. TOP 10 2013.

Available: https://www.owasp.org/index.php/Top_10_2013-T10. Accessed: 07-jun-

2013.

Sanches, B.; Basso, T.; Moraes, R. (2011) “J-SWFIT: A Java Software Fault Injection

Tool”. Fifth Latin-American Symposium on Dependable Computing - LADC. São

Paulo, Brazil, pp.106-115.

Schneier, B. (1999) “Attack Trees: Modeling Security Threats”, Dr. Dobb’s Journal.

Uto, N., Melo, S.P. (2009). “Vulnerabilidades em Aplicações Web e Mecanismos de

Proteção”. Minicursos SBSeg 2009. IX Simpósio Brasileiro em Segurança da

Informação e de Sistemas Computacionais, 2009.

XIII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2013

85 c©2013 SBC — Soc. Bras. de Computação

