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Abstract. We present FairShuffle, a solution that allows players participating
in Trading Card Game (TCG) match to detect cheating attempts right when
they occur, and without the intervention of trusted third party (TTP). The pro-
tocol relies basically on commitment protocols built usinghash functions, thus
displaying a reduced computational cost. In addition, it displays many appeal-
ing characteristics, such as: support to multiple players;tolerance to players’
dropouts during a match; resistance to collusion among any number of play-
ers. As such, FairShuffle is well-adapted for securing TCG games played in a
peer-to-peer (P2P) environment.

1. Introduction

Online gaming is today a very lucrative market, with millions of users all around the globe.
Namely, the retail value of online games was U$ 3 billion in 2011 [D2D 2012], and ana-
lysts believe that this industry’s global revenue will growby more than 10% per year until
2016 [yStats 2012]. This growth is boosted by factors such asthe expansion of broadband
Internet access all around the world [Hsu and Lu 2007] and by the continuous increase in
the number of users that play games on their mobile devices (which recently surpassed the
100 million mark in USA [Newzoo 2012]). Meanwhile, many games have lead to the for-
mation of very dynamic communities and even to in-game economies whose items have
real-world value [Salomon and Soudoplatoff 2010]. At the same time, the increasing pop-
ularity and complexity of such games implies the need of deploying cheating-detection
mechanisms for ensuring the continuous interest of honest users in playing. However,
the development of secure and efficient solutions for onlinegames is a challenging is-
sue. Although the straightforward approach of relying on a trusted third party (TTP) for
handling the data from all players at all times can solve thisissue, this approach displays
low scalability, which motivates the development of solutions game architectures based
on peer-to-peer (P2P) [Jardine and Zappala 2008, Fan et al. 2010]. On the other hand, the
inherent scalability of peer-to-peer (P2P) environments comes with a price: the lack of
a central trusted entity monitoring the game greatly facilitates the activity of malicious
players.

A popular multiplayer online game genre with potential for deployment in a P2P
architecture is the so-called Trading Card Game (TCG), also known as Collectible Card
Game (CCG), a category that includes titles such asMagic: The Gathering1, Lord of
the Rings TCG2, andDuels Warstorm3, to cite a few. Unlike traditional card games (e.g.,

1Wizards of the Coast –http://www.wizards.com/magiconline/
2Decipher Inc. —http://lotronline.decipher.com/
3Challenge Games –http://www.warstorm.com/
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poker) in which all players share a common and fixed set of 52 cards, players in a TCG use
their own decks of cards, acquired through trading or purchasing, when playing against
each other. Personal decks are built from a very large pool ofcards, which grows period-
ically with new releases from the game provider. This diversity is undoubtedly one of the
most attractive features in this genre of game, but, unfortunately, it also creates additional
opportunities for cheating: since the players are not necessarily aware of the composition
of their opponents’ decks, it becomes more difficult to determine (1) if a card played was
actually part of that deck when the match started, (2) if thatdeck was fairly shuffled and
(3) if the order of the cards was not manipulated during the match.

Aiming to tackle the above issues, this paper proposes FairShuffle, a solution for
preventing cheating in P2P multiplayer online card games inwhich each player uses
his/her own deck of cards, such as TCGs. FairShuffle supports multiple players while
preventing collusion attempts among them. It is also robustenough to allow any number
of players to leave the match without affecting the remainder player’s experience. In ad-
dition , FairShuffle has a reduced computational cost, achieved by the use of lightweight
cryptographic methods (namely, hash functions), being thus easily implementable even
in constrained (e.g., mobile) devices. Finally, as discussed in section 7, FairShuffle is to
the best of our knowledge the first protocol able to prevent cheating and collusion in TCG
matches involving more than two players.

2. Scenario description

As discussed in [Pittman and GauthierDickey 2013], the overall architecture of P2P Trad-
ing Card Games is composed by two main entities : the game provider’s server and the
players.

2.1. Game Server

The game server is responsible for defining which cards are available in the game, inform-
ing the users of new editions when they are released, and alsofor managing the users’
accounts. However, the server’s interactions with playersshould ideally occur only be-
tween matches, while the matches themselves should be handled in a purely P2P manner.
More specifically, the game server in a P2P TCG assumes the following responsibilities:
generation of unique IDs for players (Puid) and cards (cuid); signature of player identities
and card ownership; card trading intermediation.

2.2. Players and decks

As briefly discussed in section 1, online TCGs are usually played by two or more players
and they connect each other by P2P or TTP connections. And thegame provider’s server
can offer rendezvous point as mentioned in section 2.1.

Each player uses his/her own deck built from a large pool of cards made available
by the game provider. The cards can be obtained via trading orpurchasing during the
interval between matches. Following the notation of [Pittman and GauthierDickey 2013],
we call the set of all cards available theUniversal Deck(Du), the set of cards the player
is authorized to use theBase Deck(Db) and the set of cards actually used in a match the
Play Deck(Dp), so thatDp ⊂ Db ⊂ Du (see Figure 1). As pointed out in section 2.1,
each player is identified by a unique ID and each card in a player’s base deck is bound
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Figure 1. Different types of decks
in a TCG: universal, base and play
decks.

Figure 2. Typical turn dynamics of
a TCG.

to that player’s ID. This allows the players to design personal play decks from their own
base decks for competing with other players. The exact size of a play deck constructed
from the base deck may vary from game to game, and in some casesit may be arbitrarily
chosen by each player. Moreover, most TCGs allow players to have repeated cards in
their decks, albeit such repetitions may be limited in number.

2.3. Game Dynamics

After the play deck is built, the actual match can begin. As many traditional card games,
TCGs are played in turns. In this context, the larger the number of players in a same game
instance, the longer they have to wait for their own chance toplay. For this reason, the
“massive” nature of TCGs typically comes from the large number of users participating
in different matches rather than playing in a single match.

The turn dynamics depends on the rules of each specific TCG. In addition, this
dynamics can be changed by some card placed into play, which may have particular abil-
ities such as: forcing all players to randomly remove a certain number of cards from their
hands or play decks; allowing a player to peek at the cards in another player’s hand or play
deck; allowing a player to draw extra cards; and many other “unusual” effects. Despite
this variability, the typical actions that can be performedby the turn’s active player are
the following (see Figure 2):

• Draw cards: the active player takes a certain number of cardsfrom his/her own
play deck and place them in his/her hand without disclosing them to other players.

• Reveal cards: the players reveal some of the cards from their hands, putting them
into the battlefield if the card’s effect is permanent, or in adiscard pile if the
card’s effect is only temporary. Rules may apply regarding who can reveal cards
in each turn, although usually every player is allowed to reveal a card in response
to actions of the active player.

• Use the cards in play: permanent cards in the battlefield can be used repeatedly by
their owner (e.g., to attack an adversary), until they are removed according to the
game rules.
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The match ends when a player achieves some goal, such as reducing the number
of “life points” of all other players participating in the match to zero.

3. Preventing cheating in TCGs: system requirements

In the scenario described in section 2, the violation of somegame rules involving a card
that has already been revealed may be easily detected by other players: after all, any player
can verify if its effect over the game is the one defined by the set of game rules. The same
does not apply, however, to the detection of cheating attempts related to the cards in the
player’s hand or play deck. With this issue in mind, and usingsome of the ideas introduced
by Cŕepeau [Cŕepeau. 1985] in the context of mental poker [Shamir et al. 1978] and also
from [Pittman and GauthierDickey 2013] in the context of TCGs, we can identify the
following generic security requirements that apply to a wide variety of TCGs and are the
focus of this work:

1. Cheating detection independent of a trusted third party (TTP): the security of the
game should not depend on the intervention of a trusted party.

2. Deck consistency: even though players in a TCG may build their own play decks,
the cards in a play deck cannot be modified after the start of a match.

3. Uniform random distribution of cards: each player’s hand must depend on contri-
butions from all players, in such a manner that none of them isable to predict or
control the order in which cards are drawn by any given player.

4. Complete confidentiality of cards: normally, players are only allowed to learn the
cards they hold in their own hands, not the cards faced down inany deck or in an
opponent’s hand.

5. Minimal effect of coalitions: in matches involving more than two players, some of
them can decide to establish a parallel communication channel and then exchange
information about the match (e.g., the cards in their hands)or about the game
protocol (e.g., a secret key). If this happens, the amount ofinformation gained
by those players should be equivalent to what they know separately; for example,
they can share information about their own hands, but they cannot learn anything
about the cards in an honest player’s deck or hand as a result of this coalition.

6. Cheating detection with very high probability: any attempt of cheating must be
detected by the solution, either at the end of the game or, preferably, at the moment
it happens.

We note that general security measures such as establishinga secure communica-
tion are not made explicit in the above requirements, since they can be easily solved using
standard mechanisms such as SSL/TLS [IETF 2008].

In addition to security, the following efficiency and flexibility features also apply:

1. Reduced computational cost: the protocol should have low dependency of costly
operations, such as those commonly involved in asymmetric cryptographic algo-
rithms. Moreover, the players should not need to store largedata structures during
the game. Finally, the protocol should not involve a large amount of communica-
tion between players.

2. Scalability and support for multiple players: the protocol must be flexible enough
to support two or more simultaneous players in the same match.
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3. Tolerance to player dropout: if a player leaves the game, either intentionally or by
accident, the remaining players should be able to continue playing [Roca 2005].
This is a crucial requirement in the context of online games,since a player may
be suddenly disconnected due to network problems or simply be eliminated from
the match after being defeated.

4. Proposed Solution: FairShuffle

In what follows, we describe how FairShuffle can be used for preventing cheating attempts
from going unperceived during a game involving the elementsand dynamics described
in section 2. For this, we decompose the match in two phases. The first is the match
Initialization, in which FairShuffle ensures that the cards picked by each player for his/her
own play deck remain confidential but cannot be changed afterward. The basic idea is that
all players commit to the cards in their own decks, in a given order, and also to a sequence
of pseudo-random numbers that guarantees that all players’cards will be drawn in an
unpredictable manner. The second refers to the actions taken during the actual match,
namelyCard DrawingandCard Revealing. In this case, FairShuffle provides methods for
verifying cheating attempts when a player draws or reveals acard, which is accomplished
by analyzing whether the action violates the commitments provided during the match
Initialization. Even though the exact action to be taken toward cheating attempts is out of
the scope of the protocol, its design is flexible enough to allow many different approaches,
such as asking the cheating player to undo his/her move, banning that player from the
match, or ending the match itself.

4.1. Preliminaries and notation

Consider a match withp players, each of which having a unique identifierPi (1 6 i 6 p)
and a deck ofdi cards. Consider also that all players agree on the adoption ofa suitable
hash functionhash of lengthhlen (e.g., SHA-256 [NIST 2008]), as well as on a pseudo-
random functionprf (e.g., one of the hash-based functions described in [NIST 2009]).

Without loss of generality, we assume that the turn sequenceis defined by the
index i. In other words,P1 is the first to play, followed byP2, and so on untilPp’s turn,
after whichP1 becomes the active player once again.

The set of card identifiers inPi’s play deck is denoted by{ID1
i , ..., ID

di
i },

where ID j
i unequivocally identifies a card and its underlying properties, as well as

its owner. For example, for identifying cards in an official match, one could make
ID = (cuid, Puid, sign), wheresign is the server digital signature linking the player iden-
tified byPuid to the card identified bycuid. In informal matches, in which the players are
more interested in testing generic decks of freely chosen cards rather than using the cards
they actually own, makingID = cuid would be enough.

4.2. Match initialization and construction of play deck

For the construction of the play deck, right before the startof the match, the players
perform the followingInitialization protocol, which is also illustrated in Figure 3:

1. AfterPi chooses a total ofdi cards from his/her own base deck, that player needs to
associate each of those cards to ahlen-long secret random numbermaskj

i (1 6 j 6
di). Each card inPi’s play deck is then represented asc j

i = (maskj
i , ID

j
i ), while
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Figure 3. Initialization protocol.

the corresponding play deck is represented by the sequenceDecki = [c 1
i , ..., c di

i ].
TheDecki array is stored byPi, and all of its contents are kept secret until it is
time to reveal some card (e.g., when the card is placed into play).

2. Pi then computes the hash of each of the cards in his/her own deck, respecting
the previously chosen (arbitrary) order, thus generating the sequencePilei =
[h1

i , ..., h
di
i ], wherehj

i = hash(maskj
i ‖ ID j

i ). The bit-length ofhj
i , hlen, must be

large enough so that every card fromDecki will have a unique correspondent in
Pilei with overwhelming probability; otherwise, the corresponding cards become
exchangeable, opening way for cheating.

3. EveryPi then broadcasts a message containingPilei and di to all other play-
ers, committing themselves to the corresponding cards and sequence in their play
decks.

4. After the reception of the messages from all other players, Pi generates and
stores ahlen-long random value denotedseedCi, which remains secret during the
whole duration of the game. That player then computes and stores a hash chain
[Lamport 1981] of length̀ i = 1 +

∑p
α 6=i dα as follows: first,Pi sets the chain

anchorlink0
i to seedCi, and after that computes the remainder`i − 1 chain values

aslinkk
i = hash(linkk−1

i ), 1 6 k 6 `i.
5. Every playerPi then broadcasts the last value in his/her chain,taili = link`i

i .
6. Finally, Pi locally stores the following information for every playerPα 6=i: Pα’s

chain tail,tailα; the sequence of hashes for the cards in that player’s deck,Pileα;
the hashes for the cards in that player’s hand,Handα, which is initially empty;
and the set of hashes for cards already revealed by that player, Usedα, which is
also initially empty.

In this protocol, the values ofmask generated in step 1 are used to mask the real
IDs of the play deck cards, while still allowing any player toverify that a card was indeed
part of the deck by means of the commitment broadcast in step 3. Hence,mask must be
kept secret until the corresponding card is revealed, when its value is then used to verify
attempts of cheating (see section 4.4).

4.3. Drawing a card

Suppose thatPa wants to draw a card. Obviously,Pa cannot just choose any card from
Pilea. Instead, the followingCard Drawing protocoltakes place for determining, in a fair
(i.e., uniform and random) manner, which is the next cardPa must draw (see Figure 5):
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Figure 4. Revealing a card: Pa

reveals a card from his/her hand,
which is then verified by the
other players.

Figure 5. Drawing a card: after the in-
teractions shown, Pa draws a randomly
chosen card.

1. Each player, except forPa, broadcasts his/her next chain valuelinkk
i to all other

players.
2. All players verify if the data broadcast correspond to valid chain values, i.e., if the

value oflinkk
i informed byPi (i 6= a) in the previous step satisfieshash(linkk

i ) =
linkk+1

i , wherelinkk+1
i is the chain value currently associated toPi. If this is the

case, every playerPj (1 6 j 6 p), updates the chain values for the other players,
replacinglinkk+1

i by the recently revealedlinkk
i ; otherwise, they run an adequate

mechanism for dealing with cheating, ending the Card Drawingprotocol.
3. In order to determine the index of the card to be drawn, all players employ the

received chain links as follows: supposing thatPa still has a total ofδa cards
in his/her deck, the index of the card drawn fromPilea is computed aspos =
hash(linkk

1 ‖ ... ‖ linkk
a−1 ‖ linkk

a+1 ‖ ... ‖ linkk
p) mod δa.

4. All players update the information ofPa, removinghpos
a (which corresponds to the

card drawn) fromPilea, and adding that same value toHanda.

The resulting procedure imposes no restrictions on the order in which the players
draw cards. For example, suppose all players need to draw a same number of cards at the
beginning of the game. In this case, the protocol described allows a player to draw his/her
full hand before the next player starts drawing, or one card at a time (taking turns with the
other players) until all hands are full, or any other method desired.

4.4. Revealing a card

Suppose thatPa wants to reveal a card to the other players, placing it into the game.
Obviously,Pa cannot play any card, but only one of those in his/her own hand(i.e., in the
setHanda). In the proposed solution, all players can verify the honesty of Pa during this
process using the followingCard Revealing protocol(see Figure 4):

1. In order to play the card whose identification isID j
a, Pa reveals the value ofc j

a =
(maskj

a, ID
j
a) to all other players, defining the corresponding game-dependent

parametersparams of that card (e.g., its target).
2. All players computehj

a = hash(maskj
a, ID

j
a), and check if the result corresponds

to one of the cards inHanda. If the previous verifications are successful for all
players, no cheating attempt is detected; otherwise, the players run an adequate
mechanism for dealing with cheating, ending the protocol.
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3. The players remove the value ofhj
a from Handa, which is then placed inUseda

to indicate that this card was already used byPa.

5. Security analysis

In this section, we analyze the proposed cheating-detection mechanism taking into ac-
count the security requirements presented in section 3.

5.1. Cheating detection independent of trusted third party(TTP)

The proposed solution does not require the intervention of atrusted third party (TTP)
during the whole match. More specifically, the activities that involve the game provider’s
server are restricted to transactions that take place before the match starts, such as card
trading and purchasing.

5.2. Deck consistency

By revealing the hash values of all cards during step 3 of the Initialization protocol,
the players commit to the cards in their decks and also to the order in which they are
organized. Therefore, unless a dishonest playerPd is able to compute ac j′

d satisfying
hash(c j′

d ) = hash(c j
d ) for somej, violating the security properties of the hash function,

Pd cannot modify the data in the locally stored arraysDeckd andPiled without creating
inconsistencies with the arrays stored by other players. Such inconsistencies can then be
easily detected during the Card Revealing protocol: whenPd would try to placec j′

d into
play, the other players would be able to verify thathash(c j′

d ) does not appear in their own
versions ofHandd.

5.3. Uniform random distribution of cards

The order in which the cards are drawn by playerPa ultimately depends on thepos vari-
able computed in step 3 of the Card Drawing protocol. This variable follows a uniform
distribution, since it is computed from the application of the hash function over the chain
links provided by all players exceptPa. Therefore, as long as the input to the hash function
is not manipulated, each card has the same probability of being drawn. In the proposed
solution, this input manipulation is infeasible due to the use of hash chains: all players
revealtail during step 3 of the Initialization phase, thus becoming committed to a given
sequence of pseudo-random contributions for the computation ofpos.

It is instructive to note that the absence of such commitmentmechanism would
allow undesirable situations such as the following: when playerPa needs to draw a card,
a dishonest playerPd could wait until all other players disclose their contributions in
step 1 of the Card Drawing protocol, and then choose a value that, in combination with
the previously revealed contributions, results in some desired card index. This maneuver
would not benefitPd directly, since the contributions from that player are never used to
determine the cards drawn by him/her, but two playersPa andPd could collude in order
to place some interesting cards in each other’s hands.

In summary, the Card Drawing protocol achieves a similar result as “re-shuffling
the deck following each card drawing”: after the players reveal a chain link, they are un-
able to determinea priori which will be the index of the next card drawn by themselves
or by their opponents, as each card is once again equiprobable. Even if some players
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collude, they would be unable to circumvent this property aslong as there is at least one
honest player in the game, whose contribution to the computation of pos would still intro-
duce the necessary randomness to the drawing process. Finally, even though a collusion
involving all players exceptPa does allow the computation ofpos beforehand, it does not
unveil any useful information becausePa is the only one who knows the real card IDs
corresponding to the hash values inPilea.

5.4. Complete confidentiality of cards

The irreversibility of the hash function ensures that knowing hj
i alone does not allow

a player to compute the corresponding value of(maskj
i , ID

j
i ). Concatenating a random

maskj
i to the card ID is required because, in the absence of such value: two cards with the

same ID would map to the samehj
i , revealing the existence of repeated cards in a player’s

deck; a playerPd who knows which cards are inPi’s deck (e.g., from a previous game
against that deck) could simply compute the hash of each known ID j

i and try to match the
results to the revealed hash values inPilei, promptly identifying those cards. Moreover,
the non-repetition ofmaskj

i used together with each card is in the best interest ofPi,
since using a same value for the same card in different games would allow adversaries to
recognize those cards from their respectivehj

i enclosed inPilei, not bringing any benefit
to Pi.

5.5. Minimal effect of coalitions

Players in a coalition cannot gain any useful information about the cards in a non-
colluding player’s hand or deck, since all players have access only to their own cards.
Moreover, as discussed in subsection 5.3, colluding players cannot subvert the unpre-
dictable nature of the card drawing process as long as there is at least one honest player
participating in the match.

5.6. Cheating detection with very high probability

The proposed solution prevents players from learning each other’s hands or decks, or
determining the cards drawn by some player (including themselves) beforehand. On the
other hand, dishonest players could try to take advantage ofthe resulting secrecy in order
to: manipulate the order in which cards are drawn; place intoplay a card that is not in
their hands; build a deck that violates some of the game rules.

Such cheating attempts are nevertheless easily detectabledue to the commitment
mechanism adopted in FairShuffle, meaning that players who are unable to violate the
security properties of the hash function employed cannot cheat except for an arbitrarily
low probability (which depends on the hash length adopted).Indeed, a cheating attempt
of the first type mentioned above can be detected at the momentit occurs, in step 2 of the
Card Drawing protocol. The second kind of cheating can also bedetected right away, in
step 2 of the Card Revealing protocol; Finally, third cheatingcategory is detectable after
the match ends, when all players reveal the secret information used to conceal their cards
and the play decks can be fully analyzed.

6. Performance Analysis

In what follows, we evaluate the proposed solution considering the efficiency and flexi-
bility requirements presented in section 3.
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6.1. Computational cost

Most of the communication overhead introduced by FairShuffle is concentrated in its
Initialization protocol, in whichPi broadcastsdi × hlen bits corresponding toPilei and
hlen bits for taili. In comparison, the Card Drawing protocol requires every non-drawing
player to broadcasthlen bits, corresponding to a single link from his/her own hash chain.
Finally, the FairShuffle-specific information broadcast inthe Card Revealing protocol
corresponds only to the card itself (clen bits). The first column of Table 1 summarizes the
communication cost of FairShuffle.

In terms of processing, the Initialization protocol requires each playerPi to gen-
erate one random nonce —maski — and compute one hash for each of thedi cards
ci in his/her own deck. In addition, that player must also create a hash chain of length
`i = 1 +

∑p
j 6=i dj. Therefore, for a game in which a total oftc cards exist, this proto-

col involves approximatelytc hash computations. During the actual match, every player
needs to performp+1 hash computations whenever a card is drawn for verifying thehash
links informed and for computingpos. WhenPa reveals a card, all other players need to
perform one hash computation for verifying if the card revealed is indeed in that player’s
hand. The second column of Table 1 summarizes the processingcosts of FairShuffle’s pro-
tocols, assuming that all random numbers are generated using the pseudorandom function
prf .

In terms of memory usage, and again for a game involvingtc cards, the total
overhead for playerPi is composed by the following elements. From the Initialization
protocol, that player must first store his/her own information — namelydi × clen bits for
Decki and the memory associated to his/her own hash chain — together with his/her op-
ponents’ information —(tc − di) × hlen bits for the committed play decksPileα 6=i and
(p − 1) × hlen bits for the committed chain tails. It is worth noticing thatthe memory
required by the hash chain itself can be arbitrarily reducedat the cost of extra processing:
since any chain linklinkj

i can be computed from the anchorlink0
i by the repeated applica-

tion of the hash function, onlylink0
i actually needs to be stored; some intermediary chain

links may be stored, though, in order to reduce the number of hash computations during
the match. The third column of Table 1 shows the overall memory overheads involved in
FairShuffle, summarizing the discussion above.

In order to give a more concrete insight on the total computational cost of Fair-
Shuffle, the algorithms involved were evaluated on a Motorola Milestone 2, a reason-
ably high-end mobile device equipped with a 1 GHz processor,8 GiB internal flash
memory, 512 MiB of RAM4. Specifically, we evaluate the SHA-256 hash function
[NIST 2008], which provides a 128-bit security level and lead to hlen = 256 bits. As
pseudorandom function, we use the HMAC-based construction described in [NIST 2009].
All implementations are taken from the publicly available RELIC cryptography library
[Aranha and Gouv̂ea 2012]. The results are summarized in Table 2. This table considers
that the base and play decks contain, respectively,base = 100 andd=60 cards, which are
reasonable values forMagic: The Gatheringtournaments [Wizards of the Coast 2009]. It
also assumes a format ofID that leads toclen = 200 bytes.

Since each execution of SHA-256 takes on the order of 10µs, it is easy to see that

4Source:http://www.gsmarena.com/motorola_milestone_2-3495.php
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Table 1. Computational overhead per player in FairShuffle. W e use the notation
<cost for active player / cost for other players > when these costs differ.

Communication (bits) Processing Memory (bits)

hlen× (di) prf
di × clen+

Initialization
(di + 1) (tc) hash

(p − 1) × hlen+
(tc − di) × hlen

Card Drawing <0 / hlen> (1 + p) × hash 0

Card Revealing <clen / 0> <0 / 1> × hash 0

Table 2. Benchmarking FairShuffle on the Motorola Milestone 2.
Communication (bytes) Processing (ms) Memory (bytes)

Initialization 1952 6.2 ± 0.4 27648
Card Drawing <0 / 32> <0.08 ± 0.01 / 0> 0
Card Revealing <200 / 0> <0 / 0.012 ± 0.001> 0

the resulting FairShuffle is very lightweight.

6.2. Scalability and support for multiple players

As discussed in section 6.1, the total computational cost involved in the proposed solution
grows linearly with the total number of cards and players involved in the match. The
maximum number of players in a same match is, thus, limited only by the amount of
resources available at the players’ devices, while the protocol itself allows anyp > 2.
Considering that the turn-based nature of TCGs is likely to lead to a small number of
players and cards per match (as discussed in section 2.3), even players participating in
many simultaneous matches should be able to keep their resource utilization in a low
level. For example, in a match with 10 players and 600 cards asthe one described in
section 6.1, both the amount of data stored or exchanged between players is expected to
remain below 4 KiB for the whole match (see Table 2).

6.3. Tolerance to player dropout

If a playerPo suddenly leaves the match, either after being defeated or due to network
problems, the impact over the proposed protocol is minimal.Namely, the only modifica-
tion necessary applies to the Drawing protocol, during which the remaining players must
not use nor wait forPo’s contribution when computingpos. Therefore, the remaining
players can continue playing normally after they all detectPo’s dropout.

7. Related Work

Many solutions for the mental poker problem have been proposed since its first appear-
ance in [Shamir et al. 1978] (for a survey, see [Roca 2005]), and some techniques for
preventing cheating in such games can also be used in the context of online TCGs.
Commitment mechanisms, for example, have been proposed in the past for preventing
cheating in online gambling scenarios [Showers et al. 2000]. However, existing men-
tal poker protocols usually rely on a trusted third part (TTP) [Fortune and Merritt 1984,
Showers et al. 2000], make intense use of costly algorithms for shuffling and
drawing cards [Barnett and Smart 2003, Crépeau. 1986, Goldwasser and Micali 1982,
Kurosawa et al. 1997], or both [Chou and Yeh 2002, Oppliger andNottaris 1997]. In

XIII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2013

180 c©2013 SBC — Soc. Bras. de Computação



FairShuffle, we explore some important characteristics of TCGs that are not present in
mental poker, such as the existence of separated decks rather than a single shared deck
and the fact that cards are revealed during the game rather than at its end. This allows
the construction of a cheating-detection solution more suitable for TCGs, which is more
efficient than existing mental-poker proposals and also TTP-free.

In [Yeh 2008], the authors propose a TTP-free shuffling protocol which uses
only symmetric operations (modular additions and permutations) for distributing secret
shares among players; during the game, these shares are disclosed to the appropriate
players, which can then recover the value of the cards. However, the proposal re-
quires at least three players and is not collusion-resistant, since two colluding players
may be able to discover all cards in the deck. Another P2P-oriented solution that relies
on secret shares and lightweight operations is the protocolfor P2P Scrabble described
in [Wierzbicki and Kucharski 2004]. Interestingly, this solution employs a commitment
mechanism in order to verify if a card played was actually drawn by the corresponding
player. Notwithstanding, this scheme also displays low collusion resistance: the secret
shares are built by distribution players, which may colludewith other players in order
to recover some or even all secrets; moreover, the commitment mechanism depends on
an arbiter (another player), which may also collude with other players in order to influ-
ence the drawings. Indeed, the secret sharing mechanism employed for shuffling a deck
before the match requires the distribution players to know this deck beforehand, which
goes against one of the main requirements of TCG games: the confidentiality of cards in
each player’s play deck. FairShuffle, on the other hand, provides such mechanisms and
includes a stronger method against collusion attempts, ensuring the fairness of the cards
drawn and played as long as there is at least one honest playerparticipating in the match.

To the best of our knowledge, the only cheating-detection proposal focused
specifically on P2P online TCGs is the recently proposed Match+Guardian protocol
[Pittman and GauthierDickey 2013]. Nonetheless, it also displays some important lim-
itations. The most important is that Match+Guardian was designed for matches involving
only two players and, hence, it does not take into account security against collusion or tol-
erance to player dropout. For example, Match+Guardian’s shuffling mechanism consists
basically in allowing opponents to shuffle each other’sPile array, changing the index of
the underlying cards, and then only revealing the next card in this shuffled deck when
requested by the deck’s owner or due to some card effect. If the same concept is applied
to a match with three or more players, allowing every player to iteratively shuffle all play
decks, two players could easily collude and discover (or even choose!) the order of the
cards they will draw. This can be done by a simple collusion between the owner of the
deckPi (who knows how to unmask any card fromPilei) and the last player shuffling
the deck (who, ultimately, is the sole responsible for determining the order of the cards in
Pilei). In addition, if the final shuffler leaves the game, it is unclear how Match+Guardian
would allow the match to continue. It might be possible to usethe order of the cards from
the previous shuffler, but that would create a mismatch between cards already drawn and
those that are still in the deck. The shuffling mechanism of FairShuffle, on the other hand,
involves commitments from all (remaining) players, thus preventing collusion attempts
and providing tolerance to dropouts.
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8. Conclusions

The deployment of effective cheating-detection mechanisms is an important requirement
for the success of multiplayer online games, especially when a P2P-based architecture is
adopted.

In this paper, we present and analyze FairShuffle, a proposalfor detecting cheating
attempts in a type of game that has strong synergy with the distributed nature of P2P
scenarios: multiplayer online card games where the playersuse their own decks to play,
such as Collectible Card Games (TCGs). The proposed solution employs commitment
mechanisms based essentially on hash functions, exposing aplayers’ dishonest behavior
in commonplace and cheating-prone situations, such as drawing and revealing cards. This
adoption of very lightweight cryptographic tools allows its adoption in a wide range of
platforms, including resource-constrained ones. At the same time, FairShuffle provides a
wide number of interesting features required in online TCGs,such as tolerance to player
dropout, support for multiple players and independence of atrusted third party (TTP)
during matches.
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