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Abstract. We present FairShuffle, a solution that allows players parétng
in Trading Card Game (TCG) match to detect cheating attemgjfist iwvhen
they occur, and without the intervention of trusted thirdtggfTTP). The pro-
tocol relies basically on commitment protocols built ushragsh functions, thus
displaying a reduced computational cost. In addition, gglays many appeal-
ing characteristics, such as: support to multiple playerdgrance to players’
dropouts during a match; resistance to collusion among amylimer of play-
ers. As such, FairShuffle is well-adapted for securing TCG gapheeyed in a
peer-to-peer (P2P) environment.

1. Introduction

Online gaming is today a very lucrative market, with millsoof users all around the globe.
Namely, the retail value of online games was U$ 3 billion i1 20D2D 2012], and ana-
lysts believe that this industry’s global revenue will groywmore than 10% per year until
2016 [yStats 2012]. This growth is boosted by factors su¢h@asxpansion of broadband
Internet access all around the world [Hsu and Lu 2007] andheybntinuous increase in
the number of users that play games on their mobile devickgEkwecently surpassed the
100 million mark in USA [Newzoo 2012]). Meanwhile, many gaseve lead to the for-
mation of very dynamic communities and even to in-game ecoe® whose items have
real-world value [Salomon and Soudoplatoff 2010]. At theaedime, the increasing pop-
ularity and complexity of such games implies the need of @gph cheating-detection
mechanisms for ensuring the continuous interest of horestsun playing. However,
the development of secure and efficient solutions for onjjames is a challenging is-
sue. Although the straightforward approach of relying oruated third party (TTP) for
handling the data from all players at all times can solveigsae, this approach displays
low scalability, which motivates the development of sa@us game architectures based
on peer-to-peer (P2P) [Jardine and Zappala 2008, Fan é2H)].20n the other hand, the
inherent scalability of peer-to-peer (P2P) environmepise&s with a price: the lack of
a central trusted entity monitoring the game greatly featiis the activity of malicious
players.

A popular multiplayer online game genre with potential feptbyment in a P2P
architecture is the so-called Trading Card Game (TCG), alswhkras Collectible Card
Game (CCG), a category that includes titles suciMagjic: The Gathering, Lord of
the Rings TC& andDuels Warstorr, to cite a few. Unlike traditional card games (e.g.,

lwizards of the Coastht t p: / / www. wi zar ds. con? magi conl i ne/
2Decipher Inc. —ht t p: / /1 ot ronl i ne. deci pher. cont
3Challenge Gamesht t p: / / www. war st or m cont
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poker) in which all players share a common and fixed set of Efscalayersin a TCG use
their own decks of cards, acquired through trading or pusiciga when playing against
each other. Personal decks are built from a very large pocduafs, which grows period-
ically with new releases from the game provider. This diigiis undoubtedly one of the
most attractive features in this genre of game, but, unf@atiely, it also creates additional
opportunities for cheating: since the players are not rescdyg aware of the composition
of their opponents’ decks, it becomes more difficult to deiae (1) if a card played was
actually part of that deck when the match started, (2) if teak was fairly shuffled and
(3) if the order of the cards was not manipulated during theema

Aiming to tackle the above issues, this paper proposes ka8, a solution for
preventing cheating in P2P multiplayer online card gamewhich each player uses
his/her own deck of cards, such as TCGs. FairShuffle supparlspie players while
preventing collusion attempts among them. It is also robastugh to allow any number
of players to leave the match without affecting the remaiudi@yer’s experience. In ad-
dition , FairShuffle has a reduced computational cost, a&elidy the use of lightweight
cryptographic methods (namely, hash functions), being trasily implementable even
in constrained (e.g., mobile) devices. Finally, as disedse section 7, FairShuffle is to
the best of our knowledge the first protocol able to preveaatihg and collusion in TCG
matches involving more than two players.

2. Scenario description

As discussed in [Pittman and GauthierDickey 2013], theaiVarchitecture of P2P Trad-
ing Card Games is composed by two main entities : the gamedadsiserver and the
players.

2.1. Game Server

The game server is responsible for defining which cards aiéaéne in the game, inform-
ing the users of new editions when they are released, andalsnanaging the users’
accounts. However, the server’s interactions with plagésuld ideally occur only be-
tween matches, while the matches themselves should bedubindd purely P2P manner.
More specifically, the game server in a P2P TCG assumes tlosvioll responsibilities:
generation of unique IDs for playerg;;) and cardsd,;,); signature of player identities
and card ownership; card trading intermediation.

2.2. Players and decks

As briefly discussed in section 1, online TCGs are usuallygqudyy two or more players
and they connect each other by P2P or TTP connections. Arghiine provider’s server
can offer rendezvous point as mentioned in section 2.1.

Each player uses his/her own deck built from a large pool mismade available
by the game provider. The cards can be obtained via tradinguahasing during the
interval between matches. Following the notation of [Patnand GauthierDickey 2013],
we call the set of all cards available tbmiversal Deck(D,), the set of cards the player
is authorized to use thBase DecKD,) and the set of cards actually used in a match the
Play Deck(D,), so thatD, ¢ D, C D, (see Figure 1). As pointed out in section 2.1,
each player is identified by a unique ID and each card in a piapase deck is bound
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Figure 2. Typical turn dynamics of
aTCG.

to that player’s ID. This allows the players to design pessqtay decks from their own
base decks for competing with other players. The exact siaeptay deck constructed
from the base deck may vary from game to game, and in some itasayg be arbitrarily
chosen by each player. Moreover, most TCGs allow players e hepeated cards in
their decks, albeit such repetitions may be limited in numbe

2.3. Game Dynamics

After the play deck is built, the actual match can begin. Asiynaaditional card games,
TCGs are played in turns. In this context, the larger the nurobglayers in a same game
instance, the longer they have to wait for their own changaldg. For this reason, the
“massive” nature of TCGs typically comes from the large nunmddeusers participating

in different matches rather than playing in a single match.

The turn dynamics depends on the rules of each specific TCGiditi@n, this
dynamics can be changed by some card placed into play, whagthawe particular abil-
ities such as: forcing all players to randomly remove a aertamber of cards from their
hands or play decks; allowing a player to peek at the cardsathar player’s hand or play
deck; allowing a player to draw extra cards; and many othausual” effects. Despite
this variability, the typical actions that can be perfornisdthe turn’s active player are
the following (see Figure 2):

e Draw cards: the active player takes a certain number of daods his/her own
play deck and place them in his/her hand without disclodiegtto other players.

e Reveal cards: the players reveal some of the cards from taedd) putting them
into the battlefield if the card’s effect is permanent, or inliscard pile if the
card’s effect is only temporary. Rules may apply regarding wan reveal cards
in each turn, although usually every player is allowed teeada card in response
to actions of the active player.

e Use the cards in play: permanent cards in the battlefield earsed repeatedly by
their owner (e.g., to attack an adversary), until they aneone=d according to the
game rules.
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The match ends when a player achieves some goal, such asgthe number
of “life points” of all other players participating in the rith to zero.

3. Preventing cheating in TCGs: system requirements

In the scenario described in section 2, the violation of sgarae rules involving a card
that has already been revealed may be easily detected byptdlgers: after all, any player
can verify if its effect over the game is the one defined by #t@sgame rules. The same
does not apply, however, to the detection of cheating atiengtated to the cards in the
player’s hand or play deck. With this issue in mind, and usimge of the ideas introduced
by Crepeau [Cepeau. 1985] in the context of mental poker [Shamir et al81aid also
from [Pittman and GauthierDickey 2013] in the context of TC@® can identify the
following generic security requirements that apply to aewariety of TCGs and are the
focus of this work:

1. Cheating detection independent of a trusted third party ()l e security of the
game should not depend on the intervention of a trusted.party

2. Deck consistencyeven though players in a TCG may build their own play decks,
the cards in a play deck cannot be modified after the start cdtahm

3. Uniform random distribution of cardsach player’s hand must depend on contri-
butions from all players, in such a manner that none of theais to predict or
control the order in which cards are drawn by any given player

4. Complete confidentiality of cardeaormally, players are only allowed to learn the
cards they hold in their own hands, not the cards faced downyrdeck or in an
opponent’s hand.

5. Minimal effect of coalitionsin matches involving more than two players, some of
them can decide to establish a parallel communication eiamd then exchange
information about the match (e.g., the cards in their haondsgbout the game
protocol (e.g., a secret key). If this happens, the amoumifofmation gained
by those players should be equivalent to what they know sgglgr for example,
they can share information about their own hands, but thepadearn anything
about the cards in an honest player’s deck or hand as a réshis @oalition.

6. Cheating detection with very high probabilitgny attempt of cheating must be
detected by the solution, either at the end of the game denatay, at the moment
it happens.

We note that general security measures such as establskEgure communica-
tion are not made explicit in the above requirements, sineg tan be easily solved using
standard mechanisms such as SSL/TLS [IETF 2008].

In addition to security, the following efficiency and fleXiby features also apply:

1. Reduced computational coghe protocol should have low dependency of costly
operations, such as those commonly involved in asymmetytagraphic algo-
rithms. Moreover, the players should not need to store ldag@ structures during
the game. Finally, the protocol should not involve a larg@am of communica-
tion between players.

2. Scalability and support for multiple playerthe protocol must be flexible enough
to support two or more simultaneous players in the same match
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3. Tolerance to player dropoutf a player leaves the game, either intentionally or by
accident, the remaining players should be able to contifexgng [Roca 2005].
This is a crucial requirement in the context of online gansas;e a player may
be suddenly disconnected due to network problems or simgbliminated from
the match after being defeated.

4. Proposed Solution: FairShuffle

In what follows, we describe how FairShuffle can be used fevg@nting cheating attempts
from going unperceived during a game involving the element$ dynamics described
in section 2. For this, we decompose the match in two phasés.fiist is the match
Initialization, in which FairShuffle ensures that the cards picked by eaJepfor his/her
own play deck remain confidential but cannot be changedvediel. The basic idea is that
all players commit to the cards in their own decks, in a giveteg and also to a sequence
of pseudo-random numbers that guarantees that all plagards will be drawn in an
unpredictable manner. The second refers to the actions tkeng the actual match,
namelyCard DrawingandCard Revealingln this case, FairShuffle provides methods for
verifying cheating attempts when a player draws or reveasd, which is accomplished
by analyzing whether the action violates the commitmentviged during the match
Initialization. Even though the exact action to be takenammhcheating attempts is out of
the scope of the protocol, its design is flexible enough tmathany different approaches,
such as asking the cheating player to undo his/her move,itgtimat player from the
match, or ending the match itself.

4.1. Preliminaries and notation

Consider a match witp players, each of which having a unique identifie (1 < i < p)
and a deck of/; cards. Consider also that all players agree on the adoptiarsoitable
hash functiomash of lengthh,.,, (e.g., SHA-256 [NIST 2008]), as well as on a pseudo-
random functiomprf (e.g., one of the hash-based functions described in [NISBRO

Without loss of generality, we assume that the turn sequendefined by the
indexi. In other words P is the first to play, followed by?, and so on untiP,’s turn,
after whichP; becomes the active player once again.

The set of card identifiers irP;’s play deck is denoted byID!, ..., ID%},
where [D{ unequivocally identifies a card and its underlying progsitias well as
its owner. For example, for identifying cards in an officiabtch, one could make
ID = (cyia, Puia, sign), Wheresign is the server digital signature linking the player iden-
tified by P,,4 to the card identified by,;,. In informal matches, in which the players are
more interested in testing generic decks of freely chosatsaather than using the cards
they actually own, makingD = c¢,;; would be enough.

4.2. Match initialization and construction of play deck

For the construction of the play deck, right before the stérthe match, the players
perform the followinginitialization protocol which is also illustrated in Figure 3:

1. After P, chooses atotal af; cards from his/her own base deck, that player needs to
associate each of those cards to.a-long secret random numberask; (1 < j <
d;). Each card inP;’s play deck is then represented@s= (mask], ID]), while
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Figure 3. Initialization protocol.

the corresponding play deck is represented by the sequende = [¢/, ..., cidi].
The Deck; array is stored by, and all of its contents are kept secret until it is
time to reveal some card (e.g., when the card is placed iatg pl

2. P; then computes the hash of each of the cards in his/her own desecting
the previously chosen (arbitrary) order, thus generatireg sSequence’ile; =
[hl, ..., h%], whereh! = hash(mask! || ID?). The bit-length ofh?, h;.,,, must be
large enough so that every card frdbeck; will have a unique correspondent in
Pile; with overwhelming probability; otherwise, the correspmagpdcards become
exchangeable, opening way for cheating.

3. Every P, then broadcasts a message containfti¢g; and d; to all other play-
ers, committing themselves to the corresponding cards esuaesice in their play
decks.

4. After the reception of the messages from all other playéysgenerates and
stores a,.,,-long random value denotededC;, which remains secret during the
whole duration of the game. That player then computes amdssehash chain
[Lamport 1981] of length’; = 1+ >, d, as follows: first,P; sets the chain
anchorlink? to seedC;, and after that computes the remainder 1 chain values
aslinkf = hash(linkF=1), 1 <k < ;.

. Every playerP, then broadcasts the last value in his/her chaiil; = link!'.

Finally, 7; locally stores the following information for every playéy,..;: P,’s

chain tail,tail,; the sequence of hashes for the cards in that player’s d&ék,;

the hashes for the cards in that player's haHaynd,, which is initially empty;
and the set of hashes for cards already revealed by thatrplayed,, which is
also initially empty.

o o

In this protocol, the values of.ask generated in step 1 are used to mask the real
IDs of the play deck cards, while still allowing any playewnerify that a card was indeed
part of the deck by means of the commitment broadcast in stefece;nask must be
kept secret until the corresponding card is revealed, Wiseralue is then used to verify
attempts of cheating (see section 4.4).

4.3. Drawing a card

Suppose thaP, wants to draw a card. Obviously, cannot just choose any card from
Pile,. Instead, the followingcard Drawing protocotakes place for determining, in a fair
(i.e., uniform and random) manner, which is the next dgranust draw (see Figure 5):
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Figure 4. Revealing a card: P,

reveals a card from his/her hand, Figure 5. Drawing a card: after the in-

which is then verified by the teractions shown, P, draws a randomly

other players. chosen card.

1. Each player, except fd?,, broadcasts his/her next chain valéek? to all other

2.

players.

All players verify if the data broadcast correspond todvahain values, i.e., if the
value oflink? informed byP; (i # a) in the previous step satisfiéash(linkF) =
linkF™, wherelink " is the chain value currently associatedo If this is the
case, every playef; (1 < j < p), updates the chain values for the other players,
replacinglink*! by the recently revealeldnk’; otherwise, they run an adequate
mechanism for dealing with cheating, ending the Card Drayiagocol.

In order to determine the index of the card to be drawn, la}ygrs employ the
received chain links as follows: supposing tit still has a total ofé, cards
in his/her deck, the index of the card drawn frdhile, is computed agpos =
hash(linky || ... || linkk_, || link} ., || ... || link}) mod d,.

. All players update the information &f,, removingh2°® (which corresponds to the

card drawn) fromPile,, and adding that same value Mund,,.

The resulting procedure imposes no restrictions on therandehich the players

draw cards. For example, suppose all players need to drame samber of cards at the
beginning of the game. In this case, the protocol describedsa player to draw his/her
full hand before the next player starts drawing, or one caedimne (taking turns with the

other players) until all hands are full, or any other methedikd.

4.4. Revealing a card

Suppose thaP, wants to reveal a card to the other players, placing it ineoghme.
Obviously, P, cannot play any card, but only one of those in his/her own Iteed in the
setHand,). In the proposed solution, all players can verify the hones P, during this
process using the followinGard Revealing protocdkee Figure 4):

1.

In order to play the card whose identification 3/, P, reveals the value af/ =
(mask?, ID?) to all other players, defining the corresponding game-degen
parameterparams of that card (e.g., its target).

All players computé) = hash(mask’, ID?), and check if the result corresponds
to one of the cards it/ and,. If the previous verifications are successful for all
players, no cheating attempt is detected; otherwise, thygepd run an adequate
mechanism for dealing with cheating, ending the protocol.
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3. The players remove the value igf from Hand,, which is then placed i/ sed,
to indicate that this card was already usedryy

5. Security analysis

In this section, we analyze the proposed cheating-deteatiechanism taking into ac-
count the security requirements presented in section 3.

5.1. Cheating detection independent of trusted third party(TTP)

The proposed solution does not require the intervention wéisted third party (TTP)
during the whole match. More specifically, the activitieattimvolve the game provider’s
server are restricted to transactions that take place déher match starts, such as card
trading and purchasing.

5.2. Deck consistency

By revealing the hash values of all cards during step 3 of tli@lization protocol,
the players commit to the cards in their decks and also to tderan which they are
organized. Therefore, unless a dishonest playeis able to compute aj’ satisfying
hash(cg') = hash(c;) for somej, violating the security properties of the hash function,
P, cannot modify the data in the locally stored arrdysck, and Pile, without creating
inconsistencies with the arrays stored by other playersh $wonsistencies can then be
easily detected during the Card Revealing protocol: wRgwould try to placecj" into
play, the other players would be able to verify thatsh(cj') does not appear in their own
versions ofH and,.

5.3. Uniform random distribution of cards

The order in which the cards are drawn by playgultimately depends on thes vari-
able computed in step 3 of the Card Drawing protocol. Thisadei follows a uniform
distribution, since it is computed from the application lod hash function over the chain
links provided by all players except,. Therefore, as long as the input to the hash function
is not manipulated, each card has the same probability afbdiawn. In the proposed
solution, this input manipulation is infeasible due to tlse wf hash chains: all players
revealtail during step 3 of the Initialization phase, thus becoming waed to a given
sequence of pseudo-random contributions for the computafipos.

It is instructive to note that the absence of such commitmesthanism would
allow undesirable situations such as the following: wheayet P, needs to draw a card,
a dishonest playeP,; could wait until all other players disclose their contribuat in
step 1 of the Card Drawing protocol, and then choose a valugitheombination with
the previously revealed contributions, results in soméreégard index. This maneuver
would not benefitP, directly, since the contributions from that player are mayged to
determine the cards drawn by him/her, but two play@raend P, could collude in order
to place some interesting cards in each other’s hands.

In summary, the Card Drawing protocol achieves a similarltesu‘re-shuffling
the deck following each card drawing”: after the playersesha chain link, they are un-
able to determina priori which will be the index of the next card drawn by themselves
or by their opponents, as each card is once again equipeb&blen if some players
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collude, they would be unable to circumvent this propertioag as there is at least one
honest player in the game, whose contribution to the contipataf pos would still intro-
duce the necessary randomness to the drawing processlyFavah though a collusion
involving all players excepP, does allow the computation pbs beforehand, it does not
unveil any useful information becausg is the only one who knows the real card IDs
corresponding to the hash valuesitie,.

5.4. Complete confidentiality of cards

The irreversibility of the hash function ensures that krayvk! alone does not allow
a player to compute the corresponding valuérafisk!, ID?). Concatenating a random
mask; to the card ID is required because, in the absence of suck:vao cards with the
same ID would map to the sarhé, revealing the existence of repeated cards in a player’s
deck; a player?; who knows which cards are ift;’s deck (e.g., from a previous game
against that deck) could simply compute the hash of each kri®4 and try to match the
results to the revealed hash valuediie;, promptly identifying those cards. Moreover,
the non-repetition ofnask{ used together with each card is in the best interes®;pf
since using a same value for the same card in different garoeklallow adversaries to
recognize those cards from their respectijenclosed inPile;, not bringing any benefit
to P,.

5.5. Minimal effect of coalitions

Players in a coalition cannot gain any useful informatiomwbthe cards in a non-

colluding player’'s hand or deck, since all players have ss@nly to their own cards.

Moreover, as discussed in subsection 5.3, colluding ptagannot subvert the unpre-
dictable nature of the card drawing process as long as thexeléast one honest player
participating in the match.

5.6. Cheating detection with very high probability

The proposed solution prevents players from learning edlobr's hands or decks, or
determining the cards drawn by some player (including tledwes) beforehand. On the
other hand, dishonest players could try to take advantatfeeoksulting secrecy in order
to: manipulate the order in which cards are drawn; place ptey a card that is not in

their hands; build a deck that violates some of the game.rules

Such cheating attempts are nevertheless easily detechadl® the commitment
mechanism adopted in FairShuffle, meaning that players wham@able to violate the
security properties of the hash function employed canneatkxcept for an arbitrarily
low probability (which depends on the hash length adopte)eed, a cheating attempt
of the first type mentioned above can be detected at the mabhwadurs, in step 2 of the
Card Drawing protocol. The second kind of cheating can alsddbected right away, in
step 2 of the Card Revealing protocol; Finally, third cheatiategory is detectable after
the match ends, when all players reveal the secret infoomated to conceal their cards
and the play decks can be fully analyzed.

6. Performance Analysis

In what follows, we evaluate the proposed solution congidethe efficiency and flexi-
bility requirements presented in section 3.
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6.1. Computational cost

Most of the communication overhead introduced by FairSau#flconcentrated in its
Initialization protocol, in whichP; broadcastg; x h,., bits corresponding t@ile; and
hier bits fortail;. In comparison, the Card Drawing protocol requires every-ai@wing
player to broadcast,.,, bits, corresponding to a single link from his/her own haséiich
Finally, the FairShuffle-specific information broadcasttine Card Revealing protocol
corresponds only to the card itsetf(, bits). The first column of Table 1 summarizes the
communication cost of FairShuffle.

In terms of processing, the Initialization protocol reggileach playeP; to gen-
erate one random nonce #rask, — and compute one hash for each of thecards
¢; in his/her own deck. In addition, that player must also @eahash chain of length
l; =1+ Zﬁﬁ d;. Therefore, for a game in which a total bfcards exist, this proto-
col involves approximately, hash computations. During the actual match, every player
needs to performp+ 1 hash computations whenever a card is drawn for verifyindndsh
links informed and for computingos. When P, reveals a card, all other players need to
perform one hash computation for verifying if the card réedas indeed in that player’s
hand. The second column of Table 1 summarizes the processstgjof FairShuffle’s pro-
tocols, assuming that all random numbers are generateg t@pseudorandom function
prf.

In terms of memory usage, and again for a game involvingards, the total
overhead for playeP; is composed by the following elements. From the Initialaat
protocol, that player must first store his/her own informat— namelyd; x ¢, bits for
Deck; and the memory associated to his/her own hash chain — tageitiehis/her op-
ponents’ information —{t. — d;) x hy, bits for the committed play deckBile,; and
(p — 1) X Ry, bits for the committed chain tails. It is worth noticing titae memory
required by the hash chain itself can be arbitrarily redwatetie cost of extra processing:
since any chain linkink! can be computed from the anchiork? by the repeated applica-
tion of the hash function, onliink! actually needs to be stored; some intermediary chain
links may be stored, though, in order to reduce the numbeasi ltomputations during
the match. The third column of Table 1 shows the overall mgrowerheads involved in
FairShuffle, summarizing the discussion above.

In order to give a more concrete insight on the total companat cost of Fair-
Shuffle, the algorithms involved were evaluated on a Motoidilestone 2, a reason-
ably high-end mobile device equipped with a 1 GHz proces8d5iB internal flash
memory, 512 MiB of RAM. Specifically, we evaluate the SHA-256 hash function
[NIST 2008], which provides a 128-bit security level anddda h,.,, = 256 bits. As
pseudorandom function, we use the HMAC-based construcésaribed in [NIST 2009].
All implementations are taken from the publicly available RE cryptography library
[Aranha and Gouda 2012]. The results are summarized in Table 2. This tabisiders
that the base and play decks contain, respectibely, = 100 andd_60 cards, which are
reasonable values fddagic: The Gatheringournaments [Wizards of the Coast 2009]. It
also assumes a format &b that leads ta;.,, = 200 bytes.

Since each execution of SHA-256 takes on the order gfsl0t is easy to see that

4Source:ht t p: / / www. gsmar ena. conl ot or ol a_mi | est one_2- 3495. php
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Table 1. Computational overhead per player in FairShuffle. W
<cost for active player / cost for other players

e use the notation

> when these costs differ.

Communication (bits) Processing Memory (bits)
di X Clen+
e hien X (dz) prf
Initialization ‘ (p—1) X hjen+
(d; +1) (t.) hash (te — di) X hyon
Card Drawing <0/ hijen > (1+p) x hash 0
Card Revealing <Clen /0> <0 /1> x hash 0

Table 2. Benchmarking FairShuffle on the Motorola Milestone 2.

Communication (bytes Processing (ms) | Memory (bytes)
Initialization 1952 6.2+04 27648
Card Drawing <0/32> <0.08£0.01 /0> 0
Card Revealing <200 /0> <0/0.012 £ 0.001 > 0

the resulting FairShuffle is very lightweight.

6.2. Scalability and support for multiple players

As discussed in section 6.1, the total computational cestwed in the proposed solution
grows linearly with the total number of cards and playeroived in the match. The
maximum number of players in a same match is, thus, limitdg by the amount of
resources available at the players’ devices, while theopobtitself allows anyp > 2.
Considering that the turn-based nature of TCGs is likely tal kaa small number of
players and cards per match (as discussed in section 263),ayers participating in
many simultaneous matches should be able to keep theirroesatilization in a low
level. For example, in a match with 10 players and 600 cardb@®ne described in
section 6.1, both the amount of data stored or exchangecebatplayers is expected to
remain below 4 KiB for the whole match (see Table 2).

6.3. Tolerance to player dropout

If a player P, suddenly leaves the match, either after being defeated etaunetwork
problems, the impact over the proposed protocol is minitdaimely, the only modifica-
tion necessary applies to the Drawing protocol, during Wile remaining players must
not use nor wait forP,’s contribution when computingos. Therefore, the remaining
players can continue playing normally after they all defe¢t dropout.

7. Related Work

Many solutions for the mental poker problem have been prgbasce its first appear-
ance in [Shamir et al. 1978] (for a survey, see [Roca 2005}, some techniques for
preventing cheating in such games can also be used in thextaosft online TCGs.
Commitment mechanisms, for example, have been proposee ipatst for preventing
cheating in online gambling scenarios [Showers et al. 200@pwever, existing men-
tal poker protocols usually rely on a trusted third part (JTFortune and Merritt 1984,
Showers et al. 2000], make intense use of costly algorithms ghuffling and
drawing cards [Barnett and Smart 2003,eeau. 1986, Goldwasser and Micali 1982,
Kurosawa et al. 1997], or both [Chou and Yeh 2002, OppligerNwitiaris 1997]. In
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FairShuffle, we explore some important characteristics ©G$ that are not present in
mental poker, such as the existence of separated decks tlasimea single shared deck
and the fact that cards are revealed during the game rataerathits end. This allows
the construction of a cheating-detection solution moré&ble for TCGs, which is more
efficient than existing mental-poker proposals and also-Trée.

In [Yeh 2008], the authors propose a TTP-free shuffling protavhich uses
only symmetric operations (modular additions and pernarta) for distributing secret
shares among players; during the game, these shares al@sédsto the appropriate
players, which can then recover the value of the cards. Hekyveahe proposal re-
quires at least three players and is not collusion-redistnce two colluding players
may be able to discover all cards in the deck. Another P2&nted solution that relies
on secret shares and lightweight operations is the protocd?2P Scrabble described
in [Wierzbicki and Kucharski 2004]. Interestingly, thislstion employs a commitment
mechanism in order to verify if a card played was actuallyardy the corresponding
player. Notwithstanding, this scheme also displays lolus@n resistance: the secret
shares are built by distribution players, which may colludéh other players in order
to recover some or even all secrets; moreover, the commitmenhanism depends on
an arbiter (another player), which may also collude witheotblayers in order to influ-
ence the drawings. Indeed, the secret sharing mechanistoysdgdor shuffling a deck
before the match requires the distribution players to knoe deck beforehand, which
goes against one of the main requirements of TCG games: thieleomality of cards in
each player’s play deck. FairShuffle, on the other hand,igesvsuch mechanisms and
includes a stronger method against collusion attemptsirengsthe fairness of the cards
drawn and played as long as there is at least one honest plansteipating in the match.

To the best of our knowledge, the only cheating-detectiooppsal focused
specifically on P2P online TCGs is the recently proposed MdEelardian protocol
[Pittman and GauthierDickey 2013]. Nonetheless, it alspldiys some important lim-
itations. The most important is that Match+Guardian wasghes! for matches involving
only two players and, hence, it does not take into accounirgg@gainst collusion or tol-
erance to player dropout. For example, Match+Guardiani#flsty mechanism consists
basically in allowing opponents to shuffle each othétiée array, changing the index of
the underlying cards, and then only revealing the next cathis shuffled deck when
requested by the deck’s owner or due to some card effecte ifdime concept is applied
to a match with three or more players, allowing every plageatdratively shuffle all play
decks, two players could easily collude and discover (on@loose!) the order of the
cards they will draw. This can be done by a simple collusiofwben the owner of the
deck P; (who knows how to unmask any card froRile;) and the last player shuffling
the deck (who, ultimately, is the sole responsible for dateing the order of the cards in
Pile;). In addition, if the final shuffler leaves the game, it is waclhow Match+Guardian
would allow the match to continue. It might be possible totlseorder of the cards from
the previous shuffler, but that would create a mismatch betveards already drawn and
those that are still in the deck. The shuffling mechanism oBSFaiffle, on the other hand,
involves commitments from all (remaining) players, thusventing collusion attempts
and providing tolerance to dropouts.
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8. Conclusions

The deployment of effective cheating-detection mechasisnan important requirement
for the success of multiplayer online games, especiallynweh®2P-based architecture is
adopted.

In this paper, we present and analyze FairShuffle, a proparsdd¢tecting cheating
attempts in a type of game that has strong synergy with theldised nature of P2P
scenarios: multiplayer online card games where the playsggheir own decks to play,
such as Collectible Card Games (TCGs). The proposed solutiptogscommitment
mechanisms based essentially on hash functions, expogilayers’ dishonest behavior
in commonplace and cheating-prone situations, such asriyamd revealing cards. This
adoption of very lightweight cryptographic tools allows @doption in a wide range of
platforms, including resource-constrained ones. At tmeesame, FairShuffle provides a
wide number of interesting features required in online TCSBsh as tolerance to player
dropout, support for multiple players and independence wiisted third party (TTP)
during matches.
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