
 

 

 

 

A Survey on Tools and Techniques for the Programming 

and Verification of Secure Cryptographic Software 

Alexandre Braga
12

, Ricardo Dahab
2
 

1
Instituto de Computação – Universidade Estadual de Campinas (UNICAMP) 

Av. Albert Einstein, 1251 – 13083-852 – Campinas – SP – Brazil 

2
Centro de Pesquisa e Desenvolvimento em Telecomunicações (Fundação CPqD) 

R. Dr. Ricardo Benetton Martins, S/n – 13086-902 – Campinas – SP – Brazil 

ambraga@cpqd.com.br, rdahab@ic.unicamp.br

Abstract. This paper contributes to broaden the discussion on tools and 

techniques in cryptographic programming and verification. The paper 

accomplishes three goals: (i) surveys recent advances in supporting tools for 

cryptographic software programming and verification; (ii) associates these 

tools to current security practices; and (iii) organizes their use into software 

programming and verification steps. The paper concludes that there is no 

single tool for secure development of cryptographic software. Instead, only a 

well-crafted toolkit can cover the whole landscape of secure cryptographic 

software coding and verification. 

1. Introduction 

Today’s software systems exist in a world full of massively available, cloud-based 

applications (e.g., mobile apps) that are always on-line, connected to whatever servers 

are available, and communicating to each other. In this world, as more private aspects of 

life are being carried out through mobile devices, apps act on behalf of their users as 

proxies of their identities in everyday activities, processing, storing and transmitting 

private or sensitive information. An increasing number of threats to this information 

make computer security a major concern for government agencies, service providers, 

and even ordinary people, the consumers of modern gadgets and digital services. 

 In these circumstances, it is quite natural to observe a rise in the use of security 

functions based on cryptographic techniques in software systems. Moreover, the scale of 

encryption in use today has increased too, not only in terms of volume of encrypted data 

(the newest smartphones have encrypted file systems by default), but also relating to the 

amount of applications with cryptographic services incorporated within their functioning 

(for instance, an app store has hundreds of apps advertising cryptographic protections, 

see https://play.google.com/store/search?q=cryptography&c=apps). In addition to the 

traditional use cases historically associated to stand-alone cryptography (e.g., 

encryption/decryption and signing/verification), there are several new usages strongly 

related to final user’s needs, transparently blended into software functionalities, and 

bringing diversity to the otherwise known threats to cryptographic software. 

XV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2015

30 c©2015 SBC — Soc. Bras. de Computação



 

 

 

 

  In spite of Cryptography’s popularity, however, we believe that the software 

industry lacks an approach for building secure cryptographic software in common 

software factories, which could be used by ordinary programmers. This paper 

contributes to remedy this situation, broadening the discussion on the development of 

secure cryptographic software by addressing the use of security tools and techniques 

during the various stages of cryptographic programming. It also contributes to widen the 

scope of single tools, by providing a more comprehensive view of the landscape of tools 

and techniques in cryptographic programming. The paper accomplishes its objectives in 

three ways: (i) surveying recent advances in supporting tools for cryptography 

programming; (ii) associating these tools to current security practices whenever 

possible; and (iii) organizing their use into the current stages of software programming 

and verification.  

 The text is organized as follows. Section 2 offers background and motivation. 

Section 3 surveys tools and techniques for cryptographic programming and verification. 

Section 4 organizes the surveyed tools and techniques into the stages of software 

development. Section 5 concludes this paper and discusses future work. 

2. Background and motivation 

In this text, cryptographic software is one that has as its very purpose a true need for 

securing or preserving some of the information security’s main goals (namely integrity, 

authenticity, confidentiality, and non-repudiation) through the use of cryptographic 

technology. To accomplish these goals, the software can use cryptography directly, by 

means of proprietary implementations, or through reusable libraries and frameworks. 

Either way, implementations of cryptographic algorithms must be carefully constructed 

to be free of problems that compromise software security. Also, these secure 

implementations have to be securely used by application programmers, who take for 

granted the quality of the algorithms’ internals. 

 In spite of the four decades since the golden rules of software security were 

published by Saltzer and Schroeder [1], secure software engineering [2][3] seems not to 

directly address the issue of cryptographic security. Actually, for almost twenty years, 

studies have shown that vulnerabilities in cryptographic software have been mainly 

caused by software defects and poor management of cryptographic parameters and other 

sensitive material [4][5][6][7][8].  

 Furthermore, recent studies [9][10][11][12][13][14][15] showed the recurring 

occurrence of well-known bad practices of cryptography usage in various software 

systems (mobile apps in particular). In fact, since 2012, the interest of academia in “Real 

World Cryptography” [16] has become explicit and is gaining momentum.  

 It is important to differentiate secure (or defensive) programming of 

cryptographic software from programming secure cryptographic software. The former is 

related to the use of general secure coding techniques during the programming of 

cryptographic software. The latter starts at the point where the former stops, and 

embraces specific secure coding techniques and programming countermeasures to better 

defend cryptographic software against particular misuses as well as bad construction of 

cryptographic techniques. 

XV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2015

31 c©2015 SBC — Soc. Bras. de Computação



 

 

 

 

 Today, cryptographic software of recognized quality is generally treated as a 

"work of art", whose constructive process can hardly be reproduced by the average 

programmer. For the diligent observer, there is a proliferation of bad implementations as 

well as lack of good ones. A number of modern examples support this statement: 

 The inadequacy of current software tools (e.g., SDKs, programming languages, 

and compilers, etc.) to cope with security issues in cryptographic programming. 

For instance, see the recent occurrences of well-known vulnerabilities in 

cryptographic software (e.g., HeartBleed [17] and Apple’s GoTo Fail bug [18]). 

 Low-level cryptographic services have been misused by ordinary programmers 

without proper instrumentation or education. Basic cryptographic processes are 

not being effectively learned by programmers [10][11][14][15], who make the 

same mistakes over and over. 

 Sophisticated security concepts are not being well presented by existing 

frameworks. For instance, validation of digital certificates forces unnecessary 

complexity onto programmers due to misunderstanding of how cryptographic 

frameworks should be shaped [9][12][13].  

 Vulnerabilities ultimately related to architectural aspects of cryptographic 

services and API design can expose unexpected side-channels and leak 

information. For instance, Padding Oracles [19] can occur due to inappropriate 

error handling at upper layers when orchestrating cryptographic services and 

potentially leak information [20][21][22]. 

2.1. Recent studies on cryptographic bad practices 

This section analyzes recent studies on misuse commonly found on cryptographic 

software. According to recent studies by Egele et al [11] and Shuai et al [14], the most 

common misuse is the use of deterministic encryption, where a symmetric cipher in 

Electronic Code Book  (ECB) mode appears mainly in two circumstances: AES/ECB 

and 3DES/ECB. There are cases of cryptographic libraries in which ECB mode is the 

default option, automatically selected when the operation mode is not explicitly 

specified by the programmer. A possibly worse variation of this misuse is the RSA in 

Cipher Block Chaining (CBC) mode without randomization, which is also available in 

modern libraries, despite of being identified more than 10 years ago by Gutmann [5]. 

 Another frequent misuse is hardcoded initialization vectors (IVs), even with 

fixed or constant values [11]. Initialization vectors, in almost all operation modes of 

block ciphers, must be both unique and unpredictable. The exception is the CTR mode, 

which requires unique IVs (without repetition). This requirement is extended to the 

authenticated encryption mode GCM. A related misuse is the use by the ordinary 

programmer of hardcoded seeds for PRNGs [11]. A common misunderstanding 

concerning the correct use of IVs arises when (for whatever reason) programmers need 

to change operation modes of block ciphers. For instance, the Java Cryptographic API 

[23] allows operation modes to be easily changed, without considering IV requirements. 

 The validation of digital certificates in web browsers is relatively well built and 

reliable, despite the fact that users usually ignore the warnings referring to invalid 

XV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2015

32 c©2015 SBC — Soc. Bras. de Computação



 

 

 

 

certificates. In software other than web browsers, especially in mobile apps, there is a 

wide range of libraries for handling SSL/TLS connections. Recent studies by Georgiev 

et al [12] and Fahl et al [13][24] show that all of these allow the programmer to ignore 

some step in certificate verification in order to further usability or performance, but 

introducing vulnerabilities. Especially, a failure in signature verification or in domain-

name verification favors the Man-in-the-Middle (MITM) attack. 

 Finally, a recent study by Lazar et al [15] show, from an analysis of 269 

cryptography-related vulnerabilities, that just 17% of the bugs are in cryptographic 

libraries, and the remaining 83% are misuses of cryptographic libraries by applications. 

3. Tools and techniques for secure cryptographic software 

This section surveys tools and techniques for assisted programming and verification of 

cryptographic software. The set of tools and techniques were divided in two categories: 

secure cryptographic programming and security verification of cryptographic software.  

3.1. Secure cryptographic programming 

Secure programming tools of cryptographic software consist of specific programming 

languages, tools for automated code generation, cryptographic APIs, and frameworks. 

3.1.1. Cryptographic programming languages 

The use of specific programming languages is not standard practice in secure software 

development. On the other hand, experts, such as cryptologists, usually prefer their 

knowledge expressed in its own syntax by domain-specific languages [25][26][27][28]. 

 cPLC [25] is a cryptographic Programming Language and Compiler for 

generating Java implementations of two-party cryptographic protocols, such as Diffie-

Hellman. cPCL’s input language is strongly inspired by the standard notation for 

specifying protocols and is, allegedly, the first tool which can be used by 

cryptographically untrained software engineers to obtain sound implementations of 

arbitrary two-party protocols, as well as by cryptographers who want to efficiently 

implement their protocols designed on paper. 

 Barbosa, Moss, and Page [26] have worked with the CAO programming 

language to provide a cryptography-aware domain-specific language and associated 

compiler intended to work as a mechanism for transferring and automating the expert 

knowledge of cryptographers into a form which is accessible to anyone writing security-

conscious software. CAO allowed the description of software for Elliptic Curve 

Cryptography (ECC) in a manner close to the original mathematics, and its compiler 

allowed automatic production of executable code competitive with hand-optimized 

implementations. Recently, CAO’s typing system (the set of rules to assign types to 

variables, expressions, functions, and other constructs on a programming language) was 

formally specified, validated and implemented in a way to support the implementation 

of front-ends for CAO compilation and formal verification tools [29]. Finally, a 

compiler for CAO was released [30]. The tool takes high-level cryptographic algorithm 

specifications and translates them into C implementations through a series of security-

aware transformations and optimizations. 

XV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2015

33 c©2015 SBC — Soc. Bras. de Computação



 

 

 

 

 Cryptol [27] is a functional domain-specific language for specifying 

cryptographic algorithms. The language works in such a way that the implementation of 

an algorithm resembles its mathematical specification. Cryptol can produce C code, but 

its main purpose is to support the production of formally verified hardware 

implementations. Cryptol is supported by a toolset for formally specifying, 

implementing, and verifying cryptographic algorithms [31].  

 The last work worth mentioning is a domain-specific language for computing on 

encrypted data [28], which can be called Embedded Domain-Specific Language for 

Secure Cloud Computing (EDSLSCC). The language was designed for secure cloud 

computing, and it is supposed to allow programmers to develop code that runs on any 

secure execution platform supporting the operations used in the source code. 

3.1.2.  Automated code generation 

Automated code generation is not a common practice in secure coding. In spite of that, it 

has been successfully used to generate cryptographic-aware source code. A recent work 

of Almeida et al [32] extend the CompCert certified compiler with a mechanism for 

reasoning about programs relying on trusted libraries, as well as translation validation 

based on CompCert's annotation mechanism. These mechanisms, along with a trusted 

library for arithmetic operations and instantiations of idealized operations, proved to be 

enough to preserve both correctness and security properties of a source code in C when 

translated down to its compiled assembly executable. 

 Another category of tools transforms code by inserting secure controls. Two 

recent works by Moss et al [33][34] describe the automatic insertion of Differential 

Power Analysis (DPA) countermeasures based on masking techniques. Another work by 

Agosta et al [35] performs security-oriented data-flow analysis and comprises a 

compiler-based tool to automatically instantiate the essential set of masking 

countermeasures. 

3.1.3. Advanced cryptographic APIs 

An application programming interface (API) is the set of signatures that are exported 

and available to users of a library or framework [36]. This section shows cryptographic 

libraries that go beyond the ordinary cryptographic API by either presenting 

differentiated software architectures or offering services in distinguished ways, 

resembling software frameworks. 

 Two recent studies by Braga and Nascimento [37] and González et al [38] have 

shown that, in spite of the observed diversity of cryptographic libraries in academic 

literature, these libraries are not necessarily publicly available or ready for integration 

with third party software. In spite of many claims of generality, almost all of them were 

constructed with a narrow scope in mind and prioritize academic interests for non-

standard cryptography. Furthermore, portability to modern platforms, such as Android, 

used to be a commonly neglected concern in cryptographic libraries [37]. So much so, 

that modern platforms only offer  by default to the ordinary programmer a few options 

of common cryptographic services [38].  

XV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2015

34 c©2015 SBC — Soc. Bras. de Computação



 

 

 

 

 Gutmann’s Cryptlib [39] is both a cryptographic library and an API that 

emphasizes the design of the internal security architecture for cryptographic services, 

which are wrapped around an object-oriented API, providing a layered design with full 

isolation of architecture internals from external code. Nevertheless, Cryptlib still looks 

like a general-purpose cryptographic API (although an object-oriented one), presenting a 

collection of services encapsulated by objects. Also, it does not remove the need for 

cryptographic expertise, especially when composing services. The problems faced when 

using Cryptlib in real-world applications have already been documented [5]. 

 NaCl, proposed by Bernstein, Lange, and Schwabe [40], stands for “Networking 

and Cryptography Library.” NaCl offers, as single operations, compositions of 

cryptographic services that used to be accomplished by several steps. For instance, with 

NaCl, authenticated encryption is a single operation. The function c = crypto_box(m, n, 

pk, sk), where sk is sender’s private key, pk is the receiver’s public key, m is the message 

and n is a nonce, encapsulates the whole scenario of public-key authenticated encryption 

from the sender’s point of view. The output is authenticated and encrypted using keys 

from the sender and the receiver.  

 The crypto_box function has its advantages. With most cryptographic libraries, 

writing insecure programs is easier than writing programs that include proper 

authentication, because adding authentication signatures to encrypted data cannot be 

accomplished without extra programming work. Unfortunately, NaCl does not offer a 

solution to one of the most common sources of errors in the use of cryptography by 

ordinary programmers, namely the generation and management of nonces. NaCl leaves 

nonce generation and management to the function caller, under the argument that nonces 

are integrated into high-level protocols in different ways [40]. This issue was addressed 

in part by libadacrypt [41], a misuse-resistant cryptographic API for the Ada language. 

3.1.4. Cryptographic frameworks 

According to Fayad and Schmidt [42], an application framework is a reusable, “semi-

complete’’ software application that can be specialized to produce custom applications. 

Johnson [43] argues that, in contrast to class libraries, frameworks are targeted for 

particular application domains because a framework is a reusable design of a system, or 

a skeleton that can be customized by an application developer, providing reusable use 

cases. Application frameworks for cryptography have the potential for reducing coding 

effort and errors for complex use cases, such as certification validation, IV management, 

and authenticated encryption.   

 Nowadays there are many SSL libraries that aim at making the integration of 

SSL into applications easier. However, as recent studies by Georgiev et al [12] and Fahl 

et al [13] have shown, many of these libraries are either broken or error-prone, so that 

incorrect SSL validation is considered a widespread problem, and mere simplifying SSL 

libraries or educating developers in SSL security has not been favored  as a solution to 

the problem [24]. Instead, the ideal solution would be to enable developers to use SSL 

correctly without coding effort, thus preventing the breaching of SSL validation through 

insecure customizations. 

XV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2015

35 c©2015 SBC — Soc. Bras. de Computação



 

 

 

 

 A recent work by Fahl et al [24] proposes a paradigm-shift in SSL usage: instead 

of letting developers implement their own SSL linking code, the main SSL usage 

patterns should be provided by operating systems’ services that can be added to apps via 

configuration, instead of implementation. Following the intent of this new paradigm, a 

proposed SSL framework automates the steps in certificate validation as well as makes 

changes to the way SSL is currently used by mobile apps [24]. It substitutes, by 

configuration options, the need for writing SSL code in almost all use cases, inhibiting 

dangerous customizations. Also, during software development, it makes a distinction 

between developer devices and end-user devices, allowing self-signed certificates. 

Finally, problems with SSL that could result in MITM attacks are reliably informed by 

unavoidable OS warnings. 

 The idea of providing cryptography-related functions as operating system 

services is not new and has been already proposed for performance reasons [44][45]. 

The innovation in the SSL framework resides in the usability aspect, from the 

programmer’s point of view, of having high-level SSL functionality, instead of primitive 

cryptography functions, as configurable OS services. 

3.2. Cryptographic security verification  

Security verification tools include static and dynamic analysis (testing) tools. Static 

analysis tools perform syntactical and semantic analysis on source code without 

executing it. On the other hand, testing (dynamic analysis) tools perform dynamic 

verifications of a program’s expected behaviors on a finite set of test cases, suitably 

selected from the usually infinite execution domain.  

3.2.1. Static analysis tools 

The use of automatic tools for static analysis of code is quite common in secure 

programming and can be considered a standard best practice. It seems quite natural that 

the practices of secure coding were ported to cryptographic programming as well. In 

fact, most coding standards [46][47] do contain simple rules concerning cryptography 

usage that can be easily automated by ordinary static analysis tools. For example, such 

tools can warn when deprecated cryptographic functions are used: uses of MD5, SHA-1, 

and DES can be automatically detected as bad coding, as well as the use of short keys 

(e.g., 128-bit key for AES or 512-bit key for RSA).  

 Unfortunately, there are cryptographic issues that cannot be detected by ordinary 

tools and simple techniques [48]. These issues have been addressed by advanced tools in 

academic research [11][14][49][50][51][52]. The CryptoLint [11] tool takes a raw 

Android binary, disassembles it, and checks for typical cryptographic misuses. The 

Cryptography Misuse Analyzer (CMA) [14] is an analysis tool for Android apps that 

identifies a pre-defined set of cryptographic misuse vulnerabilities from API calls.  

 The Side Channel Finder (SCF) [49] is a static analysis tool for detection of 

timing channels in Java implementations of cryptographic algorithms. These side-

channels are often caused by branching of control flow, with branching conditions 

depending on the attacked secrets. The Sleuth [50] tool is an automatic verification tool 

attached to the LLVM compiler, which can automatically detect several examples of 

XV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2015

36 c©2015 SBC — Soc. Bras. de Computação



 

 

 

 

classic pitfalls in the implementation of DPA countermeasures. CacheAudit [51] is an 

analysis tool for automatic detection of cache-side channels. It takes as input a binary 

code and a cache configuration and derives security guarantees based on observing 

cache states, traces of hits and misses and execution times. CAOVerif [52] is a static 

analysis tool for CAO [30] and has been used to verify NaCl code [40]. 

 It is important to differentiate the scope of these tools. While CAOVerif, SCF, 

Sleuth, and CacheAudit work inside a cryptographic implementation, looking for 

specific types of side channels and other issues, CryptoLint and CMA work outside the 

bounds of cryptographic APIs and identify known misuse of cryptographic libraries. 

3.2.2. Functional security tests 

In cryptography validation [53], test vectors are test cases for cryptographic security 

functions and have been used for years in validation of cryptographic implementations, 

mostly for product certification post construction. According to Braga and Schwab [54], 

test vectors can also be used for validation during software development and 

accomplished by automated acceptance tests. Acceptance tests verify whether a system 

satisfies its acceptance criteria by checking its behaviors against requirements [36]. 

 Test vectors are good acceptance tests because they stand halfway between 

cryptologists and developers [54]. Test vectors are test cases provided by cryptologists 

and are substitutes for requirement specifications as well as independent checks that the 

cryptographic software has implemented the requirements correctly. Based upon test 

vectors, developers  can write unit tests prior to the writing of the cryptographic code to 

be tested. Then, test vectors can be used to evaluate the correctness of implementations, 

not their security. Functional correctness is a condition for security, since incorrect 

implementations are unreliable and insecure.  

 There are publicly available test vectors (e.g., [53]) which are constructed using 

statistical sampling. The successful validation with a statistical sample only implies 

strong evidence but not absolute certainty of correctness. To be statistically relevant, 

even small data sets possess thousands of samples, so automation is required. Once 

automated tests are available for cryptographic implementations, further improvements 

on the code can take place in order to address industry concerns like performance 

optimizations, power consumption and protections against side-channel attacks and 

other vulnerabilities. Even after all those transformations, acceptance tests preserve trust 

by giving strong, albeit informal, evidence of correctness [54]. 

3.2.3. Security testing tools 

Security testing focuses on the verification that the software is protected from external 

attacks [36]. Usually, security testing includes verification against misuse and abuse of 

the software or system [36]. Security tests are as diverse as the number of exploitable 

vulnerabilities, and can be considered a common best practice in secure software 

development. It is worth mentioning the industry’s current practice on cryptography 

testing for web applications [55][56][57] and cryptographic modules [58]. This section 

presents three test types and the corresponding tools, which are believed to be good 

representatives of current trends on security tests for cryptographic software. 

XV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2015

37 c©2015 SBC — Soc. Bras. de Computação



 

 

 

 

 In web application security, automated tests for SSL connections have been used 

for detection of HTTPS misconfiguration [56]. Recently, this type of test has moved to 

mobile applications with MalloDroid [13], a tool to detect potential vulnerabilities 

against MITM attack of SSL implementations on Android applications. MalloDroid 

performs static code analysis over compiled Android applications in order to fulfill three 

security goals: extract valid HTTP(S) URLs from decompiled apps by analyzing calls to 

networking API; check the validity of the SSL certificates of all extracted HTTPS hosts; 

and identify apps that contain abnormal SSL usage (e.g., contain non-default trust 

managers, SSL socket factories, or permissive hostname verifiers). 

 Padding Oracle Exploitation Tool [20] (POET) is a tool that finds and exploits 

padding oracles automatically. Tests against padding oracle attacks are usually hard to 

be performed manually due to the large number of iterations (ranging from many 

hundreds to a few thousand) performed to decrypt a single block of ciphertext [19]. 

Once a padding oracle is discovered, its exploitation can be automated by well-

documented algorithms [22]. POET has been successfully used to exploit padding 

oracles in web technologies [20] (e.g., XML encryption [21] and ASP.NET [22]). 

 Finally, fault injection is a kind of fuzz testing that can be used for security 

testing of cryptographic devices [59]. Fuzz testing [36] is a special form of random 

testing (where test cases are generated at random) aimed at breaking the software. A 

fault-injection attack, automated by a Fault Injection Attack Tool (FIAT) is a type of 

side-channel attack realized through the injection of deliberate (malicious) faults into a 

cryptographic device and the observation of the corresponding erroneous outputs. Fault 

injection attacks have been shown [59] to require inexpensive equipment and a short 

amount of time, when compared to tests against side-channels of power consumption or 

electromagnetic emanations, which usually require an expensive setup. 

 

Figure 1: Automated tools in cryptographic software programming and testing. 

XV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2015

38 c©2015 SBC — Soc. Bras. de Computação



 

 

 

 

4. Assembling a toolkit for programming cryptographic software 

According to McGraw [3], there is no absolutely secure software, in the sense that the 

confidence in the so-called secure software is always relative to the assurance methods 

in use, and has to be justified by the structured use of appropriate tools and techniques.  

 That way, the tools and techniques discussed so far can be put together in a 

simple sequence of steps for programming of secure cryptographic software. Such a 

sequence of steps is illustrated in Figure 1 and, if put in practice, would be able to 

increase the confidence in the resulting cryptographic software by providing strong 

evidence of security. It is interesting to observe that none of the tools and techniques can 

alone satisfy the whole process, which can only be covered by jointly use of several 

tools and techniques. 

 The sequence has three main steps that can be performed iteratively: library 

programming and verification, cryptographic software programming and verification, 

and cryptographic software testing. In each step, appropriate tools and techniques can be 

placed to accomplish the required assurance. Although many tools and techniques can 

be used in more than one step, the major benefit can be obtained when they are used in 

specific (preferred) places. For instance, secure languages, secure compilation, and 

secure code generation are appropriate for programming of cryptographic libraries. On 

the other hand, static analysis tools, (automated) functional tests, and frameworks are 

suitable for cryptographic software programming. Finally, dynamic analysis, fault 

injection, (SSL) penetration tests, padding oracles tests, and monitoring are better suited 

for verifications. 

5. Concluding remarks 

Traditionally, cryptography has been considered by software developers one of the most 

difficult to understand security controls. Programmers were used to rely on simple APIs 

to grant the effectiveness of cryptography over security-related functionality, while the 

correctness of its internals was always taken for granted. However, the increasing 

complexity of software has negatively affected cryptography, leading to its misuse by 

programmers and ultimately resulting in insecure software. 

 It is now time to come up with new ways of building modern cryptographic 

software, by looking for benefits from recent advances on tool support for software 

security. The main conclusion of this paper is that there is no ultimate tool for 

programming secure cryptographic software. Instead, only a well-crafted set of tools 

seems to be able to cover the whole landscape of cryptographic software programming. 

 The programming of secure cryptographic software, the way it is proposed in 

this text, is an emerging discipline in the practice of cryptographic software 

programming. At the time of writing, only a few tools and techniques were actually 

available to the ordinary programmer. Most of tools are prototypes of academic interest 

and cannot be put to compete with commercial, off-the-shelf security tools. On the other 

hand, the software industry has a successful history of innovation in bringing new 

quality assurance technologies to the average programmer. So there is hope that in the 

XV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2015

39 c©2015 SBC — Soc. Bras. de Computação



 

 

 

 

near future, a new generation of tools for software security could bring to daily practice 

all the academic advances mentioned so far. 

 The current research points to several opportunities for future work. The 

modeling of processes for the development of secure cryptographic software could help 

to find better ways of using all these tools. Also, performing experimentation with 

specific security tools during development of cryptographic software could provide a 

means to evaluate their effectiveness in reducing cryptographic vulnerabilities. The 

development of better software abstractions to facilitate the use of advanced 

cryptographic concepts by ordinary programmers is another alternative course of 

research. Finally, the collection and analysis of data concerning the real programming 

habits of developers responsible for coding cryptographic primitives could encourage 

further studies to better understand how programmers misuse cryptography. 

Acknowledgements. Alexandre Braga would like to thank Fundação CPqD for the 

institutional support given to employees on their academic activities. Ricardo Dahab 

thanks FAPESP, CNPq and CAPES for partially supporting this work. He also thanks 

the University of Waterloo, where he is on a leave of absence from UNICAMP. 

6. References 

[1] J. Saltzer and M. Schroeder, “The protection of information in computer systems,” 

Proc. of the IEEE, vol. 63, no. 9, pp. 1278–1308, 1975. 

[2] R. Anderson, “Security engineering,” 2001. 

[3] G. McGraw, Software Security: Building Security in. 2006. 

[4] B. Schneier, “Cryptographic design vulnerabilities,” Comp., Sep., pp.29–33, 1998. 

[5] P. Gutmann, “Lessons Learned in Implementing and Deploying Crypto Software,” 

Usenix Security Symposium, 2002. 

[6] R. Anderson, “Why Cryptosystems Fail,” in Proc. of the 1st ACM Conf. on 

Computer and Comm. Security, 1993, pp. 215–227. 

[7] B. Schneier, “Designing Encryption Algorithms for Real People,” Proc. of the 

1994 workshop on New security paradigms., pp. 98–101, 1994. 

[8] A. Shamir and N. Van Someren, “Playing ‘hide and seek’with stored keys,” 

Financial cryptography, pp. 1–9, 1999. 

[9] D. Akhawe, B. Amann, M. Vallentin, and R. Sommer, “Here’s My Cert, So Trust 

Me, Maybe?: Understanding TLS Errors on the Web,” in Proc. of the 22Nd Intn’l 

Conf. on World Wide Web, 2013, pp. 59–70. 

[10] E. S. Alashwali, “Cryptographic vulnerabilities in real-life web servers,” 2013 

Third Intn’l Conf. on Comm. and Inform. Technology (ICCIT), pp. 6–11,  2013. 

[11] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical study of 

cryptographic misuse in android applications,” Proc. of the 2013 ACM SIGSAC 

Conf. on Computer & Comm. security - CCS ’13, pp. 73–84, 2013. 

[12] M. Georgiev, S. Iyengar, and S. Jana, “The most dangerous code in the world: 

validating SSL certificates in non-browser software,” in Proc. of the 2012 ACM 

Conf. on Computer and Comm. security - CCS ’12 (2012), 2012, pp. 38–49. 

XV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2015

40 c©2015 SBC — Soc. Bras. de Computação



 

 

 

 

[13] S. Fahl, M. Harbach, and T. Muders, “Why Eve and Mallory love Android: An 

analysis of Android SSL (in) security,” Proc. of the 2012 ACM Conf. on Computer 

and Comm. security, pp. 50–61, 2012. 

[14] S. Shuai, D. Guowei, G. Tao, Y. Tianchang, and S. Chenjie, “Modelling Analysis 

and Auto-detection of Cryptographic Misuse in Android Applications,” in IEEE 

12th Intn’l Conf. on Dependable, Autonomic and Secure Computing (DASC), 

2014, pp. 75–80. 

[15] D. Lazar, H. Chen, X. Wang, and N. Zeldovich, “Why Does Cryptographic 

Software Fail?: A Case Study and Open Problems,” in Proc. of 5th Asia-Pacific 

Workshop on Systems, 2014, pp. 7:1–7:7. 

[16] “Real World Cryptography Workshop Series.” [Online]. Available: 

http://www.realworldcrypto.com. 

[17] “The Heartbleed Bug.” [Online]. Available: http://heartbleed.com/. 

[18] “Apple’s SSL/TLS ‘Goto fail’ bug.” [Online]. Available: 

www.imperialviolet.org/2014/02/22/applebug.html. 

[19] S. Vaudenay, “Security Flaws Induced by CBC Padding—Applications to SSL, 

IPSEC, WTLS...,” Advances in Cryptology—EUROCRYPT 2002, no. 1, 2002. 

[20] J. Rizzo and T. Duong, “Practical padding oracle attacks,” Proc. of the 4th 

USENIX Conf. on Offensive technologies (2010), pp. 1–9, 2010. 

[21] T. Jager and J. Somorovsky, “How to break XML encryption,” Proc. of the 18th 

ACM Conf. on Computer and Comm. security - CCS ’11, p. 413, 2011. 

[22] T. Duong and J. Rizzo, “Cryptography in the Web: The Case of Cryptographic 

Design Flaws in ASP.NET,” IEEE Symp. on Sec. and Priv., pp. 481–489, 2011. 

[23] “Java Cryptography Architecture (JCA) Reference Guide.” [Online]. Available: 

docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html. 

[24] S. Fahl, M. Harbach, and H. Perl, “Rethinking SSL development in an appified 

world,” Proc. of the 2013 ACM SIGSAC Conf. on Computer & Comm. security - 

CCS ’13 (2013), pp. 49–60, 2013. 

[25] E. Bangerter, S. Krenn, M. Seifriz, and U. Ultes-Nitsche, “cPLC — A 

cryptographic programming language and compiler,” Information Security for 

South Africa, pp. 1–8, Aug. 2011. 

[26] M. Barbosa, A. Moss, and D. Page, “Constructive and Destructive Use of 

Compilers in Elliptic Curve Cryptography,” Journal of Cryptology, vol. 22, no. 2, 

pp. 259–281, 2008. 

[27] “Cryptol.” [Online]. Available: http://www.cryptol.net. 

[28] A. Bain, J. Mitchell, R. Sharma, and D. Stefan, “A Domain-Specific Language for 

Computing on Encrypted Data (Invited Talk).,” FSTTCS, 2011. 

[29] M. Barbosa, A. Moss, D. Page, N. F. Rodrigues, and P. F. Silva, “Type checking 

cryptography implementations,” in Fundamentals of Software Engineering, 

Springer, 2012, pp. 316–334. 

[30] M. Barbosa, D. Castro, and P. Silva, “Compiling CAO: From Cryptographic 

Specifications to C Implementations,” Principles of Security and Trust, 2014. 

XV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2015

41 c©2015 SBC — Soc. Bras. de Computação



 

 

 

 

[31] J. Lewis, “Cryptol: Specification, Implementation and Verification of High-grade 

Cryptographic Applications,” in Proc. of the 2007 ACM Workshop on Formal 

Methods in Security Engineering, 2007, p. 41. 

[32] J. J. B. Almeida, M. Barbosa, G. Barthe, and F. Dupressoir, “Certified computer-

aided cryptography: efficient provably secure machine code from high-level 

implementations,” in ACM Conf. on Comp. & Comm. Sec. (SIGSAC), 2013, pp. 

1217–1229. 

[33] A. Moss, E. Oswald, D. Page, and M. Tunstall, “Automatic Insertion of DPA 

Countermeasures.,” IACR Cryptology ePrint Archive, vol. 2011, p. 412, 2011. 

[34] A. Moss, E. Oswald, D. Page, and M. Tunstall, “Compiler assisted masking,” in 

Cryptographic Hardware and Embedded Systems (CHES), 2012, pp. 58–75. 

[35] G. Agosta, A. Barenghi, M. Maggi, and G. Pelosi, “Compiler-based side channel 

vulnerability analysis and optimized countermeasures application,” in Design 

Automation Conf. (DAC), 2013 50th ACM/EDAC/IEEE, 2013, pp. 1–6. 

[36] P. Bourque and R. Fairley, Eds., Guide to the Software Engineering Body of 

Knowledge (SWEBOK), Version 3. IEEE Computer Society, 2014. 

[37] A. Braga and E. Nascimento, “Portability evaluation of cryptographic libraries on 

android smartphones,” Cyberspace Safety and Security, pp. 459–469, 2012. 

[38] D. González, O. Esparza, J. Muñoz, J. Alins, and J. Mata, “Evaluation of 

Cryptographic Capabilities for the Android Platform,” in Future Network Systems 

and Security SE - 2, vol. 523, Springer, 2015, pp. 16–30. 

[39] P. Gutmann, “The design of a cryptographic security architecture,” Proc. of the 

8th USENIX Security Symposium, 1999. 

[40] D. Bernstein, T. Lange, and P. Schwabe, “The security impact of a new 

cryptographic library,” Progress in Cryptology – LATINCRYPT 2012 (LNCS), vol. 

7533, pp. 159–176, 2012. 

[41] C. Forler, S. Lucks, and J. Wenzel, “Designing the API for a Cryptographic 

Library: A Misuse-resistant Application Programming Interface,” in Proc. of the 

17th Ada-Europe Intn’l Conf. on Reliable Software Technol., 2012, pp. 75–88. 

[42] M. Fayad and D. C. Schmidt, “Object-oriented application frameworks,” Comm. 

of the ACM, vol. 40, no. 10, pp. 32–38, Oct. 1997. 

[43] R. E. Johnson, “Frameworks = (components + patterns),” Comm. of the ACM, vol. 

40, no. 10, pp. 39–42, Oct. 1997. 

[44] A. D. A. Keromytis, J. L. J. Wright, T. De Raadt, and M. Burnside, “Cryptography 

As an Operating System Service: A Case Study,” ACM Trans. Comput. Syst., vol. 

24, no. 1, pp. 1–38, 2006. 

[45] A. D. A. Keromytis, J. L. J. Wright, T. De Raadt, and T. De Raadt, “The Design 

of the {OpenBSD} Cryptographic Framework.,” in USENIX Annual Technical 

Conf., General Track, 2003, pp. 181–196. 

[46] “Secure Coding Practices,” OWASP. [Online]. Available: https://www.owasp.org/ 

index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide. 

XV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2015

42 c©2015 SBC — Soc. Bras. de Computação



 

 

 

 

[47] SANS/CWE, “TOP 25 Most Dangerous Software Errors.” [Online]. Available: 

www.sans.org/top25-software-errors. 

[48] “Cryptography Coding Standard.” [Online]. Available: cryptocoding.net/ 

index.php/Cryptography_Coding_Standard. 

[49] A. Lux and A. Starostin, “A tool for static detection of timing channels in Java,” 

Journal of Cryptographic Engineering, vol. 1, no. 4, pp. 303–313, Oct. 2011. 

[50] A. G. Bayrak, F. Regazzoni, D. Novo, and P. Ienne, “Sleuth: Automated 

verification of software power analysis countermeasures,” in Cryptographic 

Hardware and Embedded Systems-CHES 2013, 2013, pp. 293–310. 

[51] G. Doychev, B. Köpf, L. Mauborgne, and J. Reineke, “CacheAudit: A Tool for the 

Static Analysis of Cache Side Channels,” ACM Trans. Inf. Syst. Secur., vol. 18, 

no. 1, pp. 4:1–4:32, 2015. 

[52] J. B. Almeida, M. Barbosa, J.-C. Filliâtre, J. S. Pinto, and B. Vieira, “CAOVerif: 

An open-source deductive verification platform for cryptographic software 

implementations,” Science of Computer Prog., vol. 91, pp. 216–233, 2014. 

[53] NIST, “Cryptographic Algorithm Validation Program (CAVP).” [Online]. 

Available: csrc.nist.gov/groups/STM/cavp/index.html. 

[54] A. Braga and D. Schwab, “The Use of Acceptance Test-Driven Development to 

Improve Reliability in the Construction of Cryptographic Software,” in The Ninth 

Intn’l Conf. on Emerging Security Information, Systems and Technologies 

(SECURWARE 2015). Accepted., 2015. 

[55] OWASP, “Testing for Padding Oracle.” [Online]. Available: 

www.owasp.org/index.php/Testing_for_Padding_Oracle_(OTG-CRYPST-002). 

[56] OWASP, “Top10 2013 (A6 - Sensitive Data Exposure).” . 

[57] OWASP, “Key Management Cheat Sheet.” [Online]. Available: 

www.owasp.org/index.php/Key_Management_Cheat_Sheet. 

[58] NIST, “Cryptographic Module Validation Program (CMVP).” [Online]. 

Available: http://csrc.nist.gov/groups/STM/cmvp/index.html. 

[59] A. Barenghi, L. Breveglieri, I. Koren, D. Naccache, B. A. Barenghi, L. 

Breveglieri, I. Koren, F. Ieee, D. Naccache, and A. Barenghi, “Fault injection 

attacks on cryptographic devices: Theory, practice, and countermeasures,” in 

Proc. of the IEEE, 2012, vol. 100, no. 11, pp. 3056–3076.  

 

XV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2015

43 c©2015 SBC — Soc. Bras. de Computação


	Artigos Completos
	A Survey on Tools and Techniques for the Programming and Verification of Secure Cryptographic Software.A. Braga (CPqD, UNICAMP), R. Dahab (UNICAMP)


