
A secure protocol for exchanging cards in P2P trading card
games based on transferable e-cash

Marcos V. M. Silva1, Marcos A. Simplicio Jr.1

1Escola Politécnica – Universidade de São Paulo

{mvsilva,mjunior}@larc.usp.br

Abstract. Trading card games (TCG) distinguish from traditional card games
mainly because the cards are not shared between players in a match. Instead,
users play with the cards they own (e.g., purchased or traded with other play-
ers), which corresponds to a subset of all cards produced by the game provider.
Even though most computer-based TCGs rely on a trusted third-party (TTP)
for preventing cheating during trades, allowing them to securely do so without
such entity remains a challenging task. Actually, potential solutions are related
to e-cash protocols, but, unlike the latter, TCGs require users to play with the
cards under their possession, not only to be able to pass those cards over. In
this work, we present the security requirements of TCGs and how they relate to
e-cash. We then propose a concrete, TTP-free protocol for anonymously trading
cards, using as basis a secure transferable e-cash protocol.

1. Introduction
A trading card game (TCG) is a type of card game in which, instead of using a fixed
deck, each player creates his/her own deck from a subset of all cards made available by
the game provider [Simplicio et al. 2014]. During a match, players usually do not share
their cards with their opponents; hence, as any different cards may exist, part of the game
is to build decks that support a target strategy or game style. To build better decks, users
may either trade cards with other users or purchase them directly from the game provider.
To improve their revenue, in the last years some providers have expanded their markets
beyond the realm of physical cards, including digital versions of their games. This is the
case, for example, of “Magic: the GatheringTM”, one of the first TCGs ever released1.

To set matches and avoid cheating, digital TCGs typically use a client-server archi-
tecture, where the centralized system acts as card market and referee for the matches be-
tween players. When considering mobile applications, however, a peer-to-peer (P2P) ar-
chitecture may present advantages over the client-server one [Pittman and GauthierDickey
2013, Simplicio et al. 2014]. The reason is that a client-server model obliges players to
have a continuous Internet connection when trading or playing, preventing them to do any
of those actions otherwise. If the game protocols are designed so it does not depend on a
trusted third party (TTP) to prevent cheating, on the other hand, then a local connection
would be enough, bringing convenience to users.

Playing traditional card games in a P2P model was firstly proposed in mental
poker [Shamir et al. 1981] and different solutions were proposed since them (for a survey,
see [Castellà Roca et al. 2006]). These works also served as basis for TTP-free solutions

1http://magic.wizards.com/en/content/magic-duels

XV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2015

184 c©2015 SBC — Soc. Bras. de Computação



for TCGs, such as Match+Guardian [Pittman and GauthierDickey 2013] and SecureTCG
[Simplicio et al. 2014], which allow the detection of cheating attempts during a match
with two or more players. Despite those advances concerning in-game cheating, such
protocols still depend on a trusted entity for each card trading event, leaving the task of
reducing this dependence as a subject for future work.

Trading cards in a TTP-free manner is a problem that resembles that tackled by
transferable e-cash protocols [Chaum and Pedersen 1993, Camenisch et al. 2005], where
the cards replace the digital money. For example, as in e-cash, a player should be able
to anonymously trade cards with other players without the need of a TTP for mediat-
ing the transactions; however, if he/she sends the same card to two or more players (i.e.,
“double-spends” it), this should be detectable and the transgressor’s anonymity should
be revoked.Nevertheless, TCGs also have additional requirements, as there is no concept
similar to “playing with owned cards” in the context of e-cash. To the best of our knowl-
edge, there is no definition in the literature of the full set of security requirements that
apply to card trading, which hinders further progress in this area.

Aiming to tackle the above issues, in this work we: (1) define the requirements
for secure card trading; and (2) instantiate a protocol that fulfills those requirements,
allowing players to detect cheating attempts when exchanging cards which each other
even before a match starts. The propose scheme is based on existing transferable e-cash
protocols (namely, [Camenisch et al. 2005] and [Belenkiy et al. 2009]), with the re-
quired adaptations for allowing players to: (1) purchase cards from the game provider in
a privacy-preserving manner, meaning that a card cannot be linked to any user unless its
owner generates a proof of ownership; (2) use the cards they own in a match; (3) trade
cards with other players; (4) verify the validity of the card without the intervention of a
TTP, independently of the number of previous owners the card has ever had; (5) let the
game provider know about cheating events, such as a user playing with a card that has
already been handed over to another user. Since the resulting protocol is transparent to
how the matches themselves are handled, it can also be integrated with in-game cheating-
detection mechanisms such as the aforementioned Match+Guardian or SecureTCG, thus
allowing the construction of secure P2P-based TCG environment.

The rest of this document is organized as follows. Section 2 discusses the charac-
teristics of TCGs, describing its security requirements compared to those of e-cash proto-
cols. Section 3 presents the notation and the building blocks of the proposed protocol, as
well as the corresponding security assumptions. Section 4 then uses these building blocks
to describe a concrete instantiation of the proposed protocol. Finally, Section 6 presents
our final considerations.

2. Background

This section presents the basic concepts related to TCGs, including the game architecture,
the representation of the cards, and the corresponding security requirements and threats.

2.1. Architecture

Following the notation of [Pittman and GauthierDickey 2013, Simplicio et al. 2014], the
architecture of a P2P TCG encompasses a game server and the players.

XV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2015

185 c©2015 SBC — Soc. Bras. de Computação



The game server is responsible for any action that requires a trusted authority or
centralized information storage. One of its primary roles is to serve as a registration
center for players: to enroll in the system, a user must register with a unique identifier
(e.g. e-mail or social security number) and provide his/her public key; the game server
then generates a digital certificate to assert this information, allowing anyone to verify
who are the system’s authorized users.

The game server also acts as a card market, being responsible for selling and
digitally signing cards, so the buyer can prove that a card is valid as well as its ownership.
As a result, the server does not need to keep record of the cards possessed by each player,
as ownership varies with time and, as proposed in this work, trading may occur without
the server’s knowledge. The server is also responsible for informing players of the cards
available in the game, as new releases usually add several new cards to the game.

Finally, the server is also the entity that plays the role of game auditor, verifying
claims regarding cheating attempts and eventually punishing those responsible for mis-
behavior. For example, in [Pittman and GauthierDickey 2013, Simplicio et al. 2014], the
players may send after-match information to the server to prove that a user cheated, e.g.,
by modifying the sequence or contents of their deck during a match. If a player sends to
the server the list of cards employed by an adversary, the server should also be able to
verify the usage of cards that were not under a malicious player’s possession at the time
of the match (e.g., because he/she traded it earlier). Providing such after-match data is
actually very common, as this information is normally required to rank players depending
on the number of victories in matches.

Any other action that does not require a TTP, such as playing the game or trading
cards, can be performed in purely P2P fashion and still be protected by cheating-detection
mechanisms. As in-game cheating is quite thoroughly covered in [Simplicio et al. 2014],
in this work we focus only on cheating-detection during card trading.

2.2. Representation of cards

The minimal representation of a card C in a typical TCG corresponds to a tuple C =
(ID, d, V, owner), where: ID is the card’s unique identifier; d is the card’s game-specific
information, which defines how it affects the game, which are the conditions for it to be
played, etc.; V is some validation information, which allows any player to verify that the
card was indeed issued by the game provider; and owner is the information that allows
the card’s current owner to be identified. Since V and owner are directly related to a
players’ ability to detect invalid cards or attempts to play with cards that are not actually
owned by a player, they are described in more detail later in Section 4, in which a concrete
instantiation of the proposed protocol for this purpose is described.

2.3. Comparison with e-cash

The security issues that appear when trading cards are somewhat similar to those faced
by transferable e-cash. Indeed, both systems must provide some sort of balance, so that
the number of elements (coins or cards) of the system should not grow without the central
server’s authorization. Hence, no user should be able to produce more elements than
what the central server has emitted, which could be done by forging a new element or
duplicating an existing one. Many actions supported by card trading and transferable e-

XV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2015

186 c©2015 SBC — Soc. Bras. de Computação



cash protocols are also similar: stamping new cards is similar to minting new coins, while
trading cards is equivalent to spending coins.

It is, thus, reasonable to build a secure card trading protocol from a transferable e-
cash scheme. In this case, like coins, the card’s portion that indicates ownership (owner),
grows in size with each transference [Chaum and Pedersen 1993], or need to be stored
somewhere else to prevent such growth (e.g., in a receipt [Fuchsbauer et al. 2009]). To
avoid indefinite growth, players may refresh their cards, which is equivalent to deposit a
coin and get a new, mint version of it. TTP-free transferability also raises the problem
of duplicating existing elements, an issue that cannot be prevented but can be detected
so that the culprit is identifiable when the coin is deposited at the central server. More
precisely, in case of double-spending in transferable e-cash schemes, the central server
is able to revoke the anonymity of the user responsible for misbehavior, and only of that
user, independently of how many owners the coin had before or after it was copied.

In the context of TCGs, however, the double spending problem is more compli-
cated because players may not only trade, but also use their cards without transferring its
ownership. Therefore, TCGs also need mechanisms for detecting a scenario in which a
user irregularly plays with a card that has been previously traded. As further discussed in
Section 4, this can be accomplished if the server crosses the information about refreshed
cards with those received from match reports. Hence, refreshing cards benefits both hon-
est players and the game server: the former get a shorter copy of the card, which is less
computationally expensive to verify and trade, while the latter is able to audit trades by
using the information stored in the cards submitted for refreshing. The same mutual ben-
efit applies to the match reports: honest players who win matches can raise their ranks by
informing their victories to the server; honest players who lose matches can make sure the
opponent played fairly; and the server can audit if some refreshed or traded card has been
illicitly used in a match. It should, thus, be quite easy to encourage players to provide
such information often to the server.

In summary, five types of cheating can appear when cards are traded: (1) Double-
refresh: refreshing a same card twice, obtaining several valid instances of the same card
but purchasing a single one; (2) Double-trade: sending copies of the same card to different
users; (3) Trade-then-play: playing with a card that has already been passed to another
user; (4) Refresh-then-trade: refreshing a card C to obtain a mint version of it, C ′, but
then trading copies of C with other users; and (5) Refresh-then-play: refreshing a card C
to obtain a mint version of it, C ′, but then using C in matches with other players.

2.4. System requirements
From the previous discussion, we can postulate that the following security and usability
requirements must be met in by secure P2P-based TCG system.

Verifiable stamping: The card market must stamp cards, so their validity and own-
ership can be verified without the need of contacting the central server.

TTP-free transferability: Players should be able to trade cards with each other
without the intervention of a TTP, and the new ownership can also be verified without the
need of contacting a trusted server.

Anonymity: Suppose that U0 purchases a given card C, and then that card is re-

XV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2015

187 c©2015 SBC — Soc. Bras. de Computação



peatedly traded among a set of users {U1...n} before the last owner, Un+1, informs the
server about this ownership. In this case, the server only learns the identity of Un+1, while
the C’s previous owners remain anonymous. In addition, during this process user Ui only
learns the identity of Ui−1 and Ui+1.

Balance: The number of cards in the system cannot grow unless the central server
stamps new cards, with invalid duplicates being detected and removed.

Cheat detection: Players cannot trade a card more than once without losing their
anonymity toward the server, nor play with a card after having traded it.

Exculpability: The game server, even if in collusion with users, cannot falsely
prove that an honest user has cheated, i.e., the cheating-detection mechanism only allows
identifying users who have duplicated a card (either for trading or playing with it).

3. Building blocks
This section presents the mechanisms necessary for a concrete construction of a P2P TCG
trading protocol. Specifically, the proposed scheme is based on the transferable e-cash
scheme described in [Camenisch et al. 2005] and revisited in [Belenkiy et al. 2009],
which relies on asymmetric pairings, witness-indistinguishable non-interactive proofs,
verifiable random functions and structure-preserving blind signatures.

3.1. Preliminaries and Notation

Assume three groups G1, G2 and GT of prime order q, and a map e : G1 × G2 →
GT having the following properties: (1) bilinearity: ∀G ∈ G1, H ∈ G2, a, b ∈ Zq :
e(Ga, Hb) = e(G,H)ab; (2) non-degenerative: ∀G 6= 1G1 , H 6= 1G2 : e(G,H) 6= 1GT

;
and (3) e is efficiently computable. The pairing parameters Λ = (q,G1,G2,GT , G,H, e)
are a Type-3 (or asymmetric) pairing if G1 6= G2 and there is no efficiently computable
homomorphism between G1 and G2.

In a finite set S , s $← S denotes that s is sampled uniformly at random from S.
If some protocolR is a multi-party algorithm between parties A and B, thenR

(
A(a)↔

B(b)
)

is the execution of R with inputs a from A and b from B. We also consider a
cryptographic hash function H : {0, 1}∗ → {0, 1}q (e.g., SHA-3 [National Institute of
Standards and Technology 2014]). If H has more than one input, we consider the inputs
are concatenated in the order they are presented. We also define a set of map functions
from G1, G2 and Zq to {0, 1}∗, so that group elements can be used as input to the hash
function.

A co- security assumption is the translation of an assumption from a symmetric
pairing to an asymmetric pairing. The superscript numbers in these assumptions are the
necessary number of duplicated elements from any source group of the pairing for vali-
dation of security, as discussed in details in [Abe et al. 2014].

3.2. Groth-Sahai proofs

Proofs of knowledge allow a party to prove knowledge of some secret value without
revealing it, which is done by showing a witness satisfying some relation that depends
on the secret. The most efficient proofs are usually interactive, based on a challenge-
response method. For transferable elements, however, one cannot expect any interaction

XV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2015

188 c©2015 SBC — Soc. Bras. de Computação



with the parties not directly involved in the current transference. Nevertheless, as shown
in [Groth and Sahai 2008], non-interactive proofs can still be performed in an efficient
manner when the relation to be proved is a set of equations in some defined format and
the witnesses are variables that belong to the solutions set. Such Groth-Sahai proofs
depend on a signature scheme, and the relation is defined by the verification equation.
For a structure-preserving signature, which is adopted in this article, the relation is the
following pairing product equation (PPE):

m∏

i=0

e(Xi, Bi)
n∏

j=0

e(Aj, Yj)
m∏

i=0

n∏

j=0

e(Xi, Yj)
γij = t

,

where Aj ∈ G1, Bi ∈ G2, t ∈ GT and γij ∈ Zq are constants, and Xi ∈ G1

and Yj ∈ G2 are variables. For a proof, we need 4 elements in G1 and 4 in G2 for each
equation, whereas each variable will be committed to 2 elements in their group.

The algorithms employed by a Groth-Sahai proof are: GSCommit(x, open) →
C, that commits the variables to be used in a proof; GSProve({xi in Ci}i=1..n|eq) →
φ, that creates a proof that the prover knows witnesses that satisfies the equation; and
GSV erify(φ, eq)→ {0, 1}, that verifies if the proof is valid.

We refer to [Groth and Sahai 2008] for a concrete instantiation under Symmetric
External Diffie-Hellman (SXDH) assumption [Ballard et al. 2005].

3.3. Verifiable random function

A verifiable random function (VRF) fs is a especial type of pseudorandom function that
allows anyone who knows the secret seed s to compute fs(x) for any x and also to prove
that fs(x) is indeed correct without compromising the unpredictability of fs at any point
x
′ 6= x [Micali et al. 1999]. Of especial interest to this work is the VRF instantia-

tion described in [Belenkiy et al. 2009], in which the verification of x uses the PPE
e(Y = G

1
s+x , Hs ·Hx) = e(G,H), so knowledge of s and x can be proved by the Groth-

Sahai method. This specific instantiation is secure under the q-Decisional Diffie-Hellman
inversion (q-DDHI) assumption (in G1) [Dodis and Yampolskiy 2005] and SXDH (for the
Groth-Sahai proof).

3.4. Structure-preserving blind signature

Blind signatures were originally proposed in the context of anonymous e-cash [Chaum
1983], allowing a user to obtain a valid signature on values unknown to the signer. If
transferability is required, the user doing the transfer also needs to prove knowledge of
the signed values, which can be achieved using structure-preserving (or automorphic)
signatures [Abe et al. 2010]. In such signature schemes, the verification keys lie in the
message space, the messages and signatures comprise elements of G1 and G2, and the
verification is done using a set of PPEs. Using the set of signatures, a prover can create a
non-interactive proof of knowledge that some witnesses satisfy the PPE for verification.

There are few structure-preserving blind signature schemes in the literature, and
even fewer for efficiently signing a set of messages. For the purposes of this work, we
adapt the P-signature scheme proposed by [Izabachène et al. 2011], converting it to an

XV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2015

189 c©2015 SBC — Soc. Bras. de Computação



asymmetric pairing setting by means of the method proposed in [Abe et al. 2014]. The
reason for this modification is that, even though [Izabachène et al. 2011] is quite efficient,
it uses symmetric pairing and supersingular elliptic curves, requiring fields of larger size
to achieve a security level similar to what can be obtained with an asymmetric pairing
[Barbulescu et al. 2014]. The resulting scheme comprises the following operations:

• PSetup(k) → pparams: Generates the set of public parameters pparams
for the signature, which corresponds to the parameters of Groth-Sahai proofs under an
asymmetric pairing setting. For the sake of simplicity, these parameters are omitted in the
descriptions of the remainder operations.

• PKeyGen(n) → (pk, sk): Choose α, β, γ, ω $← Z∗q and U,U0
$← G2. Com-

pute U1 = Gβ,Ω = Gω, A = Hγ , as well as ∀i ∈ [1, 2n] \ (n+ 1) : Gi = Gαi
, Hi = Hαi ,

to sign n messages. Output the private key sk = (γ, ω, β) and the public key pk =
(U,U0, U1,Ω, A, {Gi}i=1..n, {Hi}i=1..n).

• PSign(sk, ~m) → σ: For ~m = (m1, ...,mn), pick r $← Z∗q and compute K =

Hr ·∏n
j=1H

mj

n+1−j . Choose c $← Z∗q and compute: σ1 = Hγ/(ω+c), σ2 = Gc, σ3 = U c,
σ4 = (U0 ·Kβ)c, σ5 = Kc, σ6 = K, σr = r.
Output the signature σ = (σ1, σ2, σ3, σ4, σ5, σ6, σr).

• PV erifySig(pk, σ, ~m) → {0, 1}: Return 1 if and only if the following equa-
tions hold: e(G,A) = e(Ω ·σ2, σ1), e(σ2, U) = e(G, σ3), e(G, σ4) = e(σ2, U0) ·e(U1, σ5),
e(G, σ5) = e(σ2, σ6), and σ6 = Hr ·∏n

j=1H
mj

n+1−j .

• PCommit(pk, ~m) → (K, r): Choose r
$← Z∗q and compute K =

Hr ·∏n
j=1H

mj

n+1−j . Output the commitment comm = (K, r).

• PUpdateComm(pk, ~m,K)→ K ′: Compute and outputK ′ = K·∏n
j=0 H

mj

n+1−j .

• PWitGen(pk, i, ~m,K, r) → Wi: If K is a commitment to ~m with opening r,
compute and output Wi = Gr

i ·
∏n

j=1;j 6=iG
mj

n+1+i−j .

• PV erifyWit(pk, i,mi,Wi, K)→ {0, 1}: Return 1 if and only if the following
equation holds: e(Gi, K) = e(G1, Hn)mi · e(Wi, H).

• PProveCom(pk, ~m,K, r) → φK : Generate witnesses for each message com-
mitted, ∀i ∈ [1, n] : Wi = WitGen(pk, i, ~m,K, r). Generate a Groth-Sahai proof of
knowledge that the following pairing product equations are valid (group elements in bold
are constants): ∀i ∈ [1, n] : e(G−1i , K) · e(Gn, H

mi
1 ) · e(Wi,H) = 1GT

; ∀i ∈ [1, n] :
e(G1, H

mi) ·e(G−1, Hmi
1 ) = 1GT

; ∀i ∈ [1, n] : e(G2n, H
mi) ·e(G−1, Hmi

2n ) = 1GT
. Out-

put the proof φK and the complementary commitments (from the Groth-Sahai system),
∀i ∈ [1, n] : CmiH1 , CmiH , CmiH2n , CWi

;CK .

• PV erifyProofCom(φK)→ {0, 1}: Verify if the Groth-Sahai proof of knowl-
edge φK was correctly constructed.

•
(
PObtainSig(pk, ~mP )↔ PIssueSig(sk, ~mS)

)
→ σ:

– The User commits the message ~mP as (K, r′) = PCommit(pk, ~mP ), then sends
K to the Signer with a proof of knowledge φK = PProveCom(pk, ~mP , K, r

′)
that the commitment is valid.

XV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2015

190 c©2015 SBC — Soc. Bras. de Computação



Table 1. Number of elements from each group when signing n messages
Object Zq G1 G2 Object Zq G1 G2

Private key (sk) 3 0 0 Opening (open) 1 0 0
Public key (pk) 0 2 + n 3 + n Signature (σ) 1 1 5
Message (~m) n 0 0 Proof of commitment (φK) 0 4 + 2n 6 + 6n
Commitment (K) 0 0 1 Proof of signature (φσ) 0 8 + 2n 18 + 6n

– The Signer verifies the proof of knowledge PV erifyProofCom(φK), updates
the commitment to K ′ = PUpdateCom(pk, ~mS, K), and blindly signs the com-
mitment with random seeds c, r′′ $← Z∗q as: σ1 = Hγ/(ω+c), σ2 = Gc, σ3 = U c,
σ4 = (U0 · (K ′ ·Hr′′)β)c, σ5 = (K ′ ·Hr′′)c, σ6 = K ′ ·Hr′′ , and σ′r = r′′ and sends
σ′ = (σ1, σ2, σ3, σ4, σ5, σ6, σ

′
r) to the User.

– The User updates σr = r′ + σ′r and outputs σ = (σ1, σ2, σ3, σ4, σ5, σ6, σr).

• PProveSig(pk, ~m, σ) → φσ: Parse σ = (σ1, σ2, σ3, σ4, σ5, σ6, σr). Generate
witnesses for each message signed ∀i ∈ [1, n] : Wi = WitGen(pk, i, ~m, σ6, σr). Gen-
erate a Groth-Sahai proof of knowledge that the following pairing product equations are
valid (the group elements in bold are constants):

– Signature equation validation: e(Ω, σ1) · e(σ2, σ1) · e(G, A−1) = 1GT; e(σ2,U0) ·
e(U1, σ5)·e(G−1, σ4) = 1GT; e(σ2,U)·e(G−1, σ3) = 1GT; e(G, σ5)·e(σ2, σ6)−1 =
1GT .

– Message pertinence validation: ∀i ∈ [1, n] : e(G−1i , σ6)·e(Gn, H
mi
1 )·e(Wi,H) =

1GT
; ∀i ∈ [1, n] : e(G1, H

mi) · e(G−1, Hmi
1 ) = 1GT

; ∀i ∈ [1, n] : e(G2n, H
mi) ·

e(G−1, Hmi
2n ) = 1GT

.

– Equality commitment validation: e(G,A)·e(G,A−1) = 1GT
; e(G,H) = e(G,H)

Output the proof φσ and the complementary commitments (from the Groth-Sahai system)
∀i ∈ [1, n] : CmiH1 , CmiH , CmiH2n , CWi

;∀j ∈ [1, 6] : Cσj ;C−A, CG.

• PV erifyProofSig(φσ) → {0, 1}: Verify if the Groth-Sahai proof of knowl-
edge φσ was correctly constructed.

Table 1 lists the number of elements necessary for the signature scheme when
signing n messages.

3.5. Compact e-cash
The compact e-cash scheme originally described in [Camenisch et al. 2005] and revised
in [Belenkiy et al. 2009] allows a user to withdraw several coins (i.e., a wallet) within a
single message. In the context of TCGs, this scheme is interesting because it (1) allows
several seed parameters (instead of coins) to be signed altogether and (2) it provides a
direct method for identifying cheaters, who have their public key recovered, so the server
do not need to screen the whole user database in search for the culprit. The version
actually adopted in the proposed solution is based on the adaptation from [Canard et al.
2008], which achieves transferability with strong anonymity, by means of the following
operations (for a concrete instantiation and details, see [Belenkiy et al. 2009]):

• Setup: The bank generates a public/private key pair and publishes its public

XV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2015

191 c©2015 SBC — Soc. Bras. de Computação



key together with the system’s public parameters.

• Register: The user randomly generates a public/private key pair based on the
system parameters and retrieves a certificate from the bank for the public key generated
in this manner. The bank stores the user’s identity and corresponding public keys, which
allows users to be identified in case of double-spending.

• Withdraw: The user produces seed values and commits them to the bank,
which in turn blindly signs those values. This creates a new anonymous wallet with as
many coins as the number of seeds provided.

• Spend: Users may exchange either unspent coins from their wallets or coins
previously received. In the former case, the user creates a new coin from the serial seed
and treats it just like a received coin. Each time a coin is spent, a tag giving ownership of
it to the receiver is added to the coin representation, making it grow in size. All tags must
be verified by the receiver to ensure the previous transaction are valid and, thus, that the
coin actually hold value.

• Deposit: The user sends the coin to the bank, which verifies if this coin had
already been deposited. If it has, the bank verifies if this is a case of double-deposit (i.e.,
if the user is trying to deposit the same coin twice) or of double-spending (i.e., if it was
sent to two different users at some point in time).

• Identify: In case of double-spending, the bank retrieves the public key of the
perpetrator, so the required administrative penalties can be applied.

A wallet W = (skU , s, t, σ) is composed by the private key skU of the owner,
a serial seed s, a transfer seed t, and a signature σ on these values. A coin C =
(S, φS, φσ, πT = {Tj, φTj , rj, ij}) is identified by a serial number S and its proof of
validity φS , proof of knowledge on the signature of the wallet φσ, and a set πT of j
transferences. Each transference is composed by a transference tag number Tj and its
proof of validity φTj , a tag of ownership rj , and some public information ij . When a coin
is spent, a new tag indicating the transference of ownership is inserted into πT .

The serial number S is picked at random to provide a unique identifier for each
coin. It is then employed in the serial number generation function fS , a VRF that is
defined by Equation 1. In this equation, s is a seed signed in the wallet and skU is the
private key of the owner (or the index of the coin, if more than one coin can be withdrawn).

fS(skU , s) = G
1

s+skU (1)

The transference tag T identifies each transference, also picked at random. It is
then employed in a modified version of the VRF, the transference tag generation function
fT described in Equation 2. In this equation, t is a seed signed in the wallet or referenced
by previous transference, skU is the secret key of the owner andR is the hash of the private
(that contains the owner) and public (e.g., a timestamp) information of the transference.

fT (skU , t, R) =
(
GR
)skUG

1
t+skU (2)

XV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2015

192 c©2015 SBC — Soc. Bras. de Computação



Finally, the ownership tag r is a randomly-picked value used to hide the private
key of the coin’s owner. Similarly to S, it is employed in a VRF, the ownership tag
generation function fr from Equation 3, where skU is the private key of the owner and
i is some public information related to the transference. This tag is used to create the
transference tag that allows the owner of the coin to prove that the last transference was
directed to him/her, so this information is used to compute R, linking the transference tag
T to the owner, represented by r.

fr(skU , i) = G
1

skU+i (3)

The revised version also presents a proof of knowledge protocol for the serial
number generation ΦS :

(
Prove(skU , s)→ φS;V erify(φS)→ {0, 1}

)
, for the transfer-

ence tag ΦT :
(
Prove(skU , t, R) → φT ;V erify(φT ) → {0, 1}

)
and for the ownership

tag Φr :
(
Prove(r, i)→ φr;V erify(φr)→ {0, 1}

)
, based on Groth-Sahai proofs which

proves the values presented in the coin (S, T and R) were computed using the respec-
tive functions. Due to space limitation, we refer the reader to [Belenkiy et al. 2009] for
details.

4. Proposed protocol
In this section we present a concrete instantiation of the proposed scheme for secure
trading cards, using the building blocks described in Sec. 3. The roles of registration
center C, card market M and game auditor A are played by the game server G = C ∪
M ∪ A. A card C is represented by the tuple C = (ID, d, V, owner), where: ID ∈ G1

is its unique identifier; d ∈ Zq is the numeric representation of the card’s description
using some suitable encoding; V = (φID, φσ), where φID and φσ are, respectively, proofs
of knowledge of the construction of the ID and of the signature from the market; and
owner = πT = {Tj, φTj , rj, ij} corresponds to the records of all owners of the cards,
so that, for each index j in πT , Tj is the transference tag with proof of knowledge of the
construction φTj , rj is the ownership tag and ij is the public information regarding the
transference.

The operations comprised by the proposed scheme are, then:

• Setup(): The game server generates the system parameters tcgparams =
(pparamsC , pparamsM) where pparamsC and pparamsM are the parameters of two
signature schemes, the first to register new players and the second to stamp new cards.
Both of them contain parameters of a Groth-Sahai proof system, defined over an asym-
metric pairing Λ. These parameters are used by the subsequent operations and, for short-
ness, are omitted in their descriptions. The game server also generates two key-pairs:
(skC , pkC)← PKeyGen() to register players and (skM , pkM)← PKeyGen() to stamp
cards. It then publishes tcgparams, pkC and pkM .

• Register(idP [, skP ]): Player P with identity idP generates a secret key skP
$←

Zq and computes the public key pkP = e(G,H)skP . P generates a proof of knowledge
φP = GSProof

(
HskP in CskP , θ = 1|e(Gθ, HskP ) = pkP ∧ e(Gθ, H) = e(G,H)

)
.

The triple (idP , pkP , φP ) is sent to the registration center C. If the proof φP is valid, C
generates a signature σP = PSign(skC , {idP , pkP}). P can then present σP as his/her
certificate.

XV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2015

193 c©2015 SBC — Soc. Bras. de Computação



• Stamp
(
P(skP , pkM , d) ↔ M(skM , pkM , d)

)
: To purchase an instance of a

card with description d, player P generates a partial identifier seed s′ $← Zq and a
transference seed t

$← Zq, and the card market M generates the card’s partial identi-
fier component s′′ $← Zq. Both parties execute the interactive protocol to obtain a blind

signature σs =
(
PObtainSig(pkM , {skP , s′, t, 0}) ↔ PIssueSig(skM , {0, s′′, 0, d})

)

that is returned to P together with s′′. The player then generates a proof of knowledge
φσ = PProveSig(pkM , {skP , s = s′ + s′′, t, d}, σs). After that, P chooses some unique
the public information i0 ← {0, 1}∗ (e.g., a timestamp) and computes r0 = G

1
skP +H(i0)

and R0 = H(r0, i0). P then generates the unique identifier ID = fS(skP , s) and
the transference tag T0 = fT (skP , t, R0), together with proofs of knowledge φID =
ΦS.P rove(skP , s) and φT0 = ΦT .P rove(skP , t, R0) of the construction, associated with
the commitments in the proof of signature φσ. Finally, the player stores the card C =
(ID, d, φID, φσ, πT = {T0, φT0 , r0, i0}).

• Send
(
P1(skP1 , pkP2 , C) ↔ P2(skP2 , pkP1)

)
: The receiver P2 chooses some

public information i ← {0, 1}∗ and computes r = G
1

skP2
+H(i) and a proof of validity

φr = Φr.P rove(skP2 , r,H(i)). P2 then sends the tuple (i, r, φr) to the current card hold,
P1. P1 parses C = (ID, d, φID, φσ, πT = {Tj, φTj , rj, ij}j=0...h) and verifies the proof of
validity Φr.V erify(φr, pkP2). If everything is correct, P1 first sets ih+1 = i and rh+1 = r,
and then computes Rh+1 = H(rh+1, ih+1) and t = H(S, {Tj}j=0...h). Finally, P1 gener-
ates a new transference tag Th+1 = fT (skP1 , t, Rh+1) and a proof of knowledge φTh+1

=
ΦT .P rove(skP1 , t, Rh+1) of the construction. The card C ′ = (ID, d, φID, φσ, π

′
T =

{Tj, φTj , rj, φrj , ij}j=0...(h+1)) is sent to P2. Upon reception, P2 verifies the construction
of the unique identifier ID by ΦS.V erify(φID) and the tags {Tj}j=0..h by∧h+1
j=0 ΦT .V erify(φTj), as well as that the proof of ownership φrh+1

is valid in respect
to the public key pkP2 by Φr.V erify(φrh+1

, pkP2). If all proofs are correct, P2 stores the
card C ′ as his/her own.

• Play
(
P1(skP1 , C)↔ P2(pkP1)

)
: Player P1 prepares a card C = (ID, d, φID,

φσ, πT = {Tj, φTj , rj, ij}j=0..h) that has been updated h times. P1 chooses some public in-

formation ih+1 ← {0, 1}∗ and computes rh+1 = G
1

skP1
+H(ih+1) ,Rh+1 = H(rh+1, ih+1) and

t = H(S, {Tj}j=0...h). ThenP1 generates a new transference tag Th+1 = fT (skP1 , t, Rh+1),
together with proof of knowledge φTh+1

= ΦT .P rove(skP1 , t, Rh+1) of the construc-
tion. The card C is updated to C ′ = (ID, d, φID, φσ, π

′
T = {Tj, φTj , rj, φrj , ij}j=0...(h+1))

P1 also prepares two proofs of knowledge φrh = Φr.P rove(skP2 ,H(ih)) and φrh+1
=

Φr.P rove(skP2 ,H(ih+1)) to prove that the card was correctly prepared The triple (C ′, φrh ,
φrh+1

) is sent to the match’s opponent P2. Upon reception of C ′, P2 verifies the construc-
tion of the unique identifier ID by ΦS.V erify(φID) and transference tags {Tj}j=0...(h+1)

by
∧h+1
j=0 ΦT .V erify(φTj), and that both proofs of ownership φrh and φrh+1

are valid in
respect to the public key pkP1 by Φr.V erify(φrh , pkP1)∧Φr.V erify(φrh+1

, pkP1). If they
are all valid, P2 then stores this card locally, so it can report this information to the game
server later, and uses the unique identifier ID to identify this card during the match.

• Report
(
P(C) ↔ A(RS)

)
: Player P sends to the game auditor A a card

XV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2015

194 c©2015 SBC — Soc. Bras. de Computação



C = (ID, d, φID, φσ, πT = {Tj, φTj , rj, ij}j=0...h) that an opponent has used in some
match. A stores C in the set of reported cards RS and verifies if there is any card
C̄ with identifier ¯ID = ID already reported in RS. For each card C̄, A executes
Identify(C, C̄), retrieving the list of public keys of users who had illegally duplicated
this card.

• Refresh
(
P(skP , C) ↔

(
G = A(RS) ∪ M(skM , pkP )

))
: Player P pre-

pares a card C = (ID, d, φID, φσ, πT = {Tj, φTj , rj, ij}j=0...h) that has been updated h
times. P chooses some public information ih+1 ← {0, 1}∗ (e.g., a timestamp) and com-

putes rh+1 = G
1

skP +H(ih+1) , Rh+1 = H(rh+1, ih+1) and t = H(S, {Tj}j=0...h). Then P
generates a new transference tag Th+1 = fT (skP , t, Rh+1), together with proof of knowl-
edge φTh+1

= ΦT .P rove(skP , t, Rh+1) of the construction. The card C is updated to
C ′ = (ID, d, φID, φσ, π

′
T = {Tj, φTj , rj, ij}j=0...(h+1)) and is sent to the game server G.

A stores C ′ inRS and verifies if there is any card C̄ with identifier ¯ID = ID already re-
ported inRS . For each card C̄, A executes Identify(C ′, C̄), retrieving the list of public
keys of users who had illegally duplicated this card. If identifying C ′ did not return any
transgressor, both parties execute Stamp

(
P(skP , pkM , d) ↔M(skM , pkP )

)
to produce

a fresh card C ′′ to P .

• Identify(C, C̄): The game auditor A parses cards C = (ID, d, φID, φσ, πT =
{Tj, φTj , rj, ij}j=0...h) and C̄ = (S̄, ¯φID, φ̄σ, d̄, π̄T = {T̄j, φ̄Tj , r̄j, īj}j=0...h̄) with the same
identifier ID = ¯ID. It searches for the first index l in which Tl 6= T̄l, computes Rl =
H(rl, il) and R̄l = H(r̄l, īl), and retrieves the public key of the perpetrator D as pkD =(
Tl
T̄l

) 1
Rl−R̄l . If the index l is larger than the number of hops for any card (h or h̄), this card

had already been reported but had not been duplicated, so the output is empty.

The requirements of a secure card trading system, as presented in Sec. 2, are fulfilled by
the underlying e-cash scheme. Namely, the signature on stamping method guarantees ver-
ifiability (“own” property), anonymity when stamping (the signer cannot link signatures
to new cards), and balance (if the signature is unforgeable, a new card cannot be incon-
spicuously created without authorization by the card market). The proof of knowledge
provides transferability on trading and ad-hoc playing, given its non-interactivity prop-
erty. It also keeps anonymity when trading, since it is witness-indistinguishable together
with the VRF. Finally, the identification method of the e-cash scheme guarantees balance,
cheat detection and exculpability.

5. Preliminary efficiency analysis

Signing, n = 4 messages ({skP , s, t, d}) with the presented P-signature scheme, a sig-
nature proof (φσ) requires 20 elements in G1 and 42 in G2 (see Table 1). For the serial
number generation proof (φID), we need 24 elements in G1 and 26 in G2. For the trans-
ference tag generation proof (φT ), we need 36 elements in G1 and 38 in G2. A card C
is composed by: the unique identifier ID (1 element in G1, output from fS) the proofs
of knowledge of ID (φID) and of the signature from the market (φσ), and a set of trans-
ferences (πT ), updated with each trade or play. Each transference j in the set is in turn
composed by: the transference tag Tj (1 element in G1, output from fT ), the correspond-
ing proof of knowledge φTj , the ownership tag rj (1 element in G1, output from fr), and
additional public information ij , which may have variable length. Hence, for a total of t

XV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2015

195 c©2015 SBC — Soc. Bras. de Computação



transferences and/or usages, a card needs 45 + 38t elements in G1 and 68 + 38t in G2.

The execution time is likely dominated by the pairing computations. Using a
Groth-Sahai proof of knowledge, each time a card is traded or used in a match, the total
execution cost corresponding basically to the 148 underlying pairing computations. As
each pairing is expected to take on the order of 1 ms to run with [Aranha et al. 2011]
(Intel Core i5 1,6 GHz, 128-bit security level), the total time would be around 150 ms per
card traded or played. We note that, while these timings are quite reasonable for trading,
they may be somewhat cumbersome when playing with a deck having roughly 50 cards,
as it is common in commercial TCGs, since the verification of a deck would take around
7,5 min. Nevertheless, it is important to have in mind that the preparation of a deck can
be done beforehand, much before the match starts; in addition, the verification of the
corresponding proofs of knowledge can happen in background during the match, which
usually takes several minutes. Therefore, in practice those costs can be made transparent
to players.

6. Conclusions

In this paper, we presented the set of requirements for allowing secure trades in P2P
TCGs, defining the cheating types that need to be detected. We then adapted a trans-
ferable e-cash protocol for creating a concrete scheme that fulfills those requirements
The proposed scheme is based on the P-signatures described in [Izabachène et al. 2011],
which allows a vector of messages to be signed, which is combined with a compact blind
signature scheme in the asymmetric pairing setting to allow a more memory-efficient rep-
resentation.

According to our preliminary analysis, the scheme is quite efficient to be used
in practice, especially considering that the most expensive operations involved (namely,
validating an entire deck of cards) can be performed in background, either before or during
a match.

Acknowledgments: This work was supported by the São Paulo Research Founda-
tion (FAPESP) under grant 2011/21592-8 and by the National Counsel of Technology and
Scientific Development (CNPq) under grants 482342/2011-0 and 165874/2014-7.

References

Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., and Ohkubo, M. (2010). Structure-
preserving signatures and commitments to group elements. In Advances in Cryptology
(CRYPTO’10), pages 209–236. Springer.

Abe, M., Groth, J., Ohkubo, M., and Tango, T. (2014). Converting cryptographic
schemes from symmetric to asymmetric bilinear groups. In Advances in Cryptology
(CRYPTO’14), pages 241–260. Springer.

Aranha, D. F., Karabina, K., Longa, P., Gebotys, C. H., and López, J. (2011). Faster
explicit formulas for computing pairings over ordinary curves. In Advances in
Cryptology–EUROCRYPT 2011, pages 48–68. Springer.

Ballard, L., Green, M., de Medeiros, B., and Monrose, F. (2005). Correlation-resistant
storage. Technical report, TR-SP-BGMM-050507, Johns Hopkins UDCS.

XV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2015

196 c©2015 SBC — Soc. Bras. de Computação



Barbulescu, R., Gaudry, P., Joux, A., and Thomé, E. (2014). A heuristic quasi-polynomial
algorithm for discrete logarithm in finite fields of small characteristic. In Advances in
Cryptology (Eurocrypt’14), pages 1–16. Springer.

Belenkiy, M., Chase, M., Kohlweiss, M., and Lysyanskaya, A. (2009). Compact e-cash
and simulatable vrfs revisited. In Pairing’09, pages 114–131. Springer.

Camenisch, J., Hohenberger, S., and Lysyanskaya, A. (2005). Compact e-cash. In Ad-
vances in Cryptology (Eurocrypt’05), pages 302–321. Springer.

Canard, S., Gouget, A., and Traoré, J. (2008). Improvement of efficiency in (uncondi-
tional) anonymous transferable e-cash. In Financial Cryptography and Data Security,
pages 202–214. Springer.

Castellà Roca, J., Sebé Feixas, F., and Domingo-Ferrer, J. (2006). Contributions to mental
poker. Universitat Autònoma de Barcelona,.

Chaum, D. (1983). Blind signatures for untraceable payments. In Advances in cryptology,
pages 199–203. Springer.

Chaum, D. and Pedersen, T. P. (1993). Transferred cash grows in size. In Advances in
Cryptology (Eurocrypt’92), pages 390–407. Springer.

Dodis, Y. and Yampolskiy, A. (2005). A verifiable random function with short proofs and
keys. In Public Key Cryptography (PKC’05), pages 416–431. Springer.

Fuchsbauer, G., Pointcheval, D., and Vergnaud, D. (2009). Transferable constant-size fair
e-cash. In Cryptology and Network Security, pages 226–247. Springer.

Groth, J. and Sahai, A. (2008). Efficient non-interactive proof systems for bilinear groups.
In Advances in Cryptology (Eurocrypt’08), pages 415–432. Springer.

Izabachène, M., Libert, B., and Vergnaud, D. (2011). Block-wise P-signatures and non-
interactive anonymous credentials with efficient attributes. In Cryptography and Cod-
ing, pages 431–450. Springer.

Micali, S., Rabin, M., and Vadhan, S. (1999). Verifiable random functions. In Foundations
of Computer Science, 1999. 40th Annual Symposium on, pages 120–130. IEEE.

National Institute of Standards and Technology (2014). DRAFT FIPS PUB 202: SHA-3
Standard: Permutation-Based Hash and Extendable-Output Functions. pub-NIST.

Pittman, D. and GauthierDickey, C. (2013). Match+Guardian: a secure peer-to-peer trad-
ing card game protocol. Multimedia systems, 19(3):303–314.

Shamir, A., Rivest, R., and Adleman, L. (1981). Mental poker. In Klarner, D., editor, The
Mathematical Gardner, pages 37–43. Springer US.

Simplicio, M. A., Santos, M. A., Leal, R. R., Gomes, M. A., and Goya, W. A. (2014). Se-
cureTCG: a lightweight cheating-detection protocol for P2P multiplayer online trading
card games. Security and Communication Networks, 7(12):2412–2431.

XV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2015

197 c©2015 SBC — Soc. Bras. de Computação


	Artigos Completos
	A secure protocol for exchanging cards in P2P trading card games based on transferable e-cash.M. Silva, M. Simplicio Jr (USP)


