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Abstract. In this paper, we propose a new type of construction for a secure and
efficient public-key cryptosystem, which is based on a new problem from the
theory of lattices.

1. Introduction
There is no doubt that lattice-based cryptography is very promising. Constructions can
be quite efficient, simple and some of them enjoy very strong security proofs. But things
are not always as good as they seem. Known lattice-based cryptographic constructions
are in the middle of a tradeoff between efficiency and provable security, and the task of
achieving both is not simple.

There are a lot of well known lattice-based cryptographic constructions. It all be-
gan back in the 90’s, with [Ajtai and Dwork 1997], but GGH [Goldreich et al. 1997] was
the first practical proposal. After extensive attacks [Nguyen 1999, Lee and Hahn 2010],
GGH has been regarded as a deprecated system [Goldreich 1999], even after some im-
provements were proposed [Micciancio 2001, Yoshino and Kunihiro 2012].

A more efficient and secure lattice-based cryptosystem called NTRU was pro-
posed by Hoffstein, Pipher and Silverman [Hoffstein et al. 1998], but the state of the art
in terms of strong security proofs is represented by the constructions based on the Learn-
ing With Errors (LWE) problem [Regev 2005, Lyubashevsky et al. 2013].

We are currently developing a study on a new lattice problem, which may be used
as an underlying problem to an efficient public-key cryptosystem. The advantage of our
proposal lies in its simplicity, since it only deals with integer arithmetic and simple linear
algebra computations.

2. The Basics
In this section, we present some notations and conventions. We also provide basic defini-
tions, which may be useful as a theoretical background.

2.1. Notations and Conventions

Vectors will be considered row vectors and represented by lowercase boldface letters,
such as u. The j-th entry of the vector u will be represented by uj . Matrices will be
represented by uppercase letters. The entry at the i-th row and j-th column of the matrix
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A will be denoted by Ai,j . The notation A > 0 (conversely A < 0) implies that all the
entries of A are greater (or less) than 0.

We also employ the symbols [±a]n, where a is an integer, to denote the vector
a ∈ Zn whose entries are either a or−a, and duc to denote the vector in which each entry
is the nearest integer to the corresponding entry of u.

2.2. Definitions
Lattices play an essential role in our cryptosystem. Algebraically speaking, a lattice is a
discrete additive subgroup of Rn. We provide a definition in terms of a basis of vectors.
Definition 1 Given a matrix A ∈ Rn×n, the lattice generated by A is the set

L(A) = {uA : u ∈ Zn} . (1)

In other words, the set L(A) corresponds to all the integer linear combinations of the rows
of A. In particular, if A ∈ Zn×n, we say that L(A) is an integral lattice. The matrix A is
said to be a basis of the lattice. Like a vector space, a lattice admits infinitely many bases.
Definition 2 A matrix U is unimodular if its entries are integers and |det(U)| = 1.
Definition 3 Given two real matrices A,B, we say that L(A) is a sublattice of L(B) if
there exists an integer matrix R such that A = RB.

In particular, if R is a unimodular matrix, it can be proven that L(A) = L(B). As
a matter of fact, L(A) = L(B) iff there exists a unimodular matrix U such that A = UB.
Definition 4 A real matrix S is said to be an M-matrix if it can be written as S = γI+Q,
where Q ≤ 0 and γ ≥ ρ(Q)1.

A useful property of such M-matrices is known as inverse-positivity. We state this
property in the form of a theorem. For the proof, [Berman and Plemmons 1987] can be
consulted.
Theorem 1 If S = γI +Q is an M-matrix with γ > ρ(Q), then S−1 exists and S−1 ≥ 0
(S is an inverse-positive matrix).

The following definition is nonstandard, but it will be helpful, since it summarizes
information on how an M-matrix was built.
Definition 5 We say that S is an Mγ,λ-matrix, for positive integers γ, λ, if it is an invert-
ible M-matrix and S = γI +Q, with Qi,j ∈ {−λ,−λ+ 1, · · · ,−1, 0}.

For completeness, we give three definitions regarding trapdoor functions, which
is an essential concept in the design of public-key cryptosystems.
Definition 6 A function f is a trapdoor-function if it can be efficiently evaluated in its
input domain, but its inversion requires the knowledge of some special information, called
the trapdoor.
Definition 7 An evaluation set for a trapdoor-function f is a set E of public parameters,
required for the evaluation of f in its input domain. In this case, we use the notation fE
to represent the function f with evaluation set E .
Definition 8 A trapdoor set for the inverse of a trapdoor-function f is a set T of secret
parameters, required for the evaluation of f−1 in its input domain. In this case, we use
the notation f−1T to represent the inverse function f−1 with trapdoor set T .

1Here, ρ(Q) denotes the spectral radius of Q, i.e., ρ(Q) = max {|λ1|, · · · , |λn|}, where λ1, · · · , λn are
the eigenvalues of Q.
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3. The Problem of Lattice Deformations
Geometrically, a lattice may be viewed as a grid in the euclidean space, with the additive
property: if two points are in the grid, their vectorial sum is also in the grid. In R2, a
lattice is a 2D-grid, in R3 a 3D-grid and so on. The lattice basis forms what is called a
fundamental parallelepiped, and the lattice itself consists of copies of this fundamental
parallelepiped distributed along the euclidean space. We may think about the process of
deforming such a grid, as shown in Figure 1.

Figure 1. Lattice deformation.

This raises an interesting question: given a deformed grid, is it possible to recover
the original grid? It seems to be clear that, if no information is given on how the original
grid was deformed and what it looked like, it is quite impossible to know the answer to
this question. The original grid could be virtually any grid.

Before we state this problem formally, we need to rigorously define what a de-
formation is, and what kind of information we aim to recover when trying to solve the
problem. Let us denote by In the set of all n × n integer matrices, and consider three
nonempty subsets A,B, C ⊆ In. Let S ∈ A be a lattice basis. A deformation on S
consists of two steps:

1. Obtain a basis for a sublattice of L(S) given by RS (see Definition 3), where
R ∈ B;

2. Add a deformation matrix E ∈ C, obtaining a basis P = RS + E.

The deformation matrix contains the vectors that will be added to the vectors of RS, in
order to obtain the deformed basis P , as shown in Figure 2. We consider the problem of
finding matrices S ′ ∈ A and R′ ∈ B (the solution is not necessarily unique) such that
P = R′S ′ + E ′, with E ′ ∈ C, or equivalently, such that P −R′S ′ ∈ C.

Problem 1 (Lattice Deformation Problem (LDP)) We take as parameters of the prob-
lem three subsetsA,B, C ⊆ In. The input consists of a lattice basis P . The goal is to find
S ∈ A and R ∈ B such that P −RS ∈ C.

We shall denote an instance of LDP with parametersA,B, C and input P by LDPA,B,C(P ).
A pair of integer matrices S,R is a solution for LDPA,B,C(P ) if S ∈ A, R ∈ B and
P −RS ∈ C. We say that P is a viable input if such a solution exists.
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Figure 2. Deformation of a basis.

We are not aware of any specific method that can be used to solve this problem
in the general case. It is clear that the hardness of an instance will depend on the given
subsets A, B and C. These subsets are supposed to be sufficiently large, so that it is hard
to perform an exhaustive search for a solution. On the other hand, large subsets may
yield more than one solution, maybe an infinite number of solutions. The trivial case is
A = B = C = In, for which any pair of integer matrices S,R is a valid solution (this
remains true for any choice of A and B if we choose C = In).

In this paper, we propose a cryptosystem based on the assumed hardness of
LDPA,B,C , where A is the set of n × n M-matrices with given parameters, B is the set
of n-dimensional unimodular matrices and C is the set of n × n integer matrices with
entries bounded by given integers. For this purpose, we shall employ special notation for
these subsets. The dimension n will be implicit in the notation:

• Mλ
γ will denote the set of all n× n Mγ,λ-matrices;

• U will denote the set of all n-dimensional unimodular matrices;
• Eβα will represent the set of all integer n×n matrices with entries chosen from the

set {−α, · · · , 1, 0, 1, · · · , β}, for given positive integers α, β.

Hence, we are considering instances of LDPA,B,C with A =Mλ
γ , B = U and C = Eβα .

4. A New Trapdoor Function
In this section, we provide an overview of a candidate trapdoor function, whose security
is based on the Lattice Deformation Problem. We follow the steps below:

• Pick up positive integers n, α, β, γ, δ, λ, σ and positive real numbers ε1, ε2. The
values of ε1 and ε2 must be close enough to 0. An heuristic choice for these
parameters will be discussed in Section 7.
• Build a matrix E ∈ Zn×n, with entries randomly and uniformly chosen from the

set {−α,−α + 1, · · · , 0, 1, · · · , β}.
• Build a random unimodular matrix U as follows: choose a random upper triangu-

lar matrix Tu, a random lower triangular matrix Tl, both filled with 1’s along the
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main diagonal, and compute U ′ = TlTu. Next, choose two random permutation
matrices R1, R2 and compute U = R1U

′R2. The entries of Tu and Tl may be
chosen from the set {−α,−α + 1, · · · , 0, 1, · · · , β}.
• Build an Mγ,λ-matrix S = γI + Q, with Qi,j ∈ {−λ,−λ+ 1, · · · ,−1, 0}. The

inverse of S must satisfy the following conditions:

1

γ
< S−1j,j <

1 + ε1
γ

, for all j = 1, · · · , n (2)

and

0 < S−1i,j <
λ(1 + ε2)

γ2
, for all i 6= j. (3)

• Build the matrix P = US + E.
• Choose real numbers θ1, θ2, µ1, µ2 satisfying

θ2 > θ1 > nσα > 0 (4)

and
µ1 < µ2 < −nσβ < 0. (5)

In order to build a suitable trapdoor for the inversion of our function, we need to
choose these parameters satisfying some other conditions, which will be discussed
later when we describe the inversion algorithm.

Let E = {P, n, σ, θ1, θ2, µ1, µ2} be the evaluation set of our function fE . Define a
procedure generateVector, which takes as input n, θ1, θ2, µ1, µ2 and outputs a vector
r ∈ Zn. It generates, for all k = 1, · · · , n, a random bit bk. If bk = 0, it chooses a random
and uniform integer value from the interval ]θ1, θ2[. If bk = 1, an integer value is randomly
and uniformly picked up from the interval ]µ1, µ2[. The chosen value is assigned to the
k-th entry of the vector r.

Our function takes as input a vector x ∈ Zn, with entries from the set
{0, 1, · · · , σ}, and outputs

fE(x) = r+ xP. (6)

where r is the output of generateVector(n, θ1, θ2, µ1, µ2).

The next step consists of establishing a proper inversion algorithm, which will
make use of the trapdoor set T = {U−1, S−1, δ}. From now on, let c = fE(x) = r+ xP ,
and define the inversion error vector

e = (r+ xE)S−1. (7)

Our first goal consists of determining which conditions, besides (4) and (5), the parame-
ters θ1, θ2, µ1, µ2 must satisfy so that the following holds:

θ1 < rj < θ2 ⇒ δ < ej < δ +
1

2
(8)

and
µ1 < rj < µ2 ⇒ −δ −

1

2
< ej < −δ, (9)
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for all j = 1, · · · , n. In other words, we would like to guarantee that dec = [±δ]n. Let
v = r+ xE. Note that

vj = rj +
n∑

i=1

xiEi,j, (10)

for all j = 1, · · · , n. Observe that, since we have θ2 > θ1 > 0 > µ2 > µ1, it is true
that µ1 < rj < θ2 for all j = 1, · · · , n. Provided that 0 ≤ xj ≤ σ and −α ≤ Ei,j ≤ β,
identity (10) allows us to conclude that

µ1 − nσα < vj < θ2 + nσβ. (11)

Now we must consider the two cases below:

• Case 1: θ1 < rj < θ2
From (4) and (10) we conclude that vj > θ1 − nσα > 0. By (7) we have

ej = vjS
−1
j,j +

∑

i 6=j
viS

−1
i,j . (12)

Since S−1i,j > 0 for all 1 ≤ i, j ≤ n and the lower bound for vi, for i 6= j, is a
negative number, a lower bound for the sum above is given by

ej ≥ vjS
−1
j,j + (n− 1)min

i 6=j
{vi}max

i 6=j

{
S−1i,j

}
. (13)

Using (2), (3) and (11), we conclude that

ej >
θ1 − nσα

γ
+
λ(n− 1)(µ1 − nσα)(1 + ε2)

γ2
. (14)

In order to guarantee that ej > δ, it is sufficient to set

θ1 > γδ + nσα− λ(n− 1)(µ1 − nσα)(1 + ε2)

γ
. (15)

On the other hand, by (7) we have that

ej ≤ vjS
−1
j,j + (n− 1)max

i 6=j
{vi}max

i 6=j

{
S−1i,j

}
. (16)

By (2), (3), (11) and (16), we get

ej < (θ2 + nσβ)

(
1 + ε1
γ

+
λ(n− 1)(1 + ε2)

γ2

)
. (17)

Therefore, we obtain ej < δ + 1/2 by setting

θ2 <
γ2(2δ + 1)

2(γ(1 + ε1) + λ(n− 1)(1 + ε2))
− nσβ. (18)

Hence, if θ1 and θ2 satisfy (4), (15) and (18), then (8) holds.
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• Case 2: µ1 < rj < µ2

By (5) and (10), we have vj < µ2 + nσβ < 0. From (16), we obtain

ej <
µ2 + nσβ

γ
+
λ(n− 1)(θ2 + nσβ)(1 + ε2)

γ2
. (19)

Choosing the following upper bound for µ2, we ensure that ej < −δ:

µ2 < −γδ − nσβ −
λ(n− 1)(θ2 + nσβ)(1 + ε2)

γ
. (20)

Finally we have vj > µ1 − nσα. Once again, a lower bound for ej is given by
(13). Taking into account that vj < 0, we obtain

ej > (µ1 − nσα)
(
1 + ε1
γ

+
λ(n− 1)(1 + ε2)

γ2

)
. (21)

In order to guarantee that ej > −δ − 1/2, it is sufficient to choose µ1 satisfying

µ1 >
−γ2(2δ + 1)

2(γ(1 + ε1) + λ(n− 1)(1 + ε2))
+ nσα. (22)

Conditions (4), (5), (15), (18), (20) and (22) ensure that, whenever 0 < θ1 < rj < θ2, we
have dejc = δ. Similarly, when µ1 < rj < µ2 < 0, we have dejc = −δ.

Now remind that c = fE(x) = r + xP . Define the rounding difference vector as
follows:

d = cS−1 − dcS−1c. (23)

Since the bounds µ1, µ2, θ1, θ2 for the entries of r satisfy (4), (5), (15), (18), (20) and (22),
the vector d allows us to decide whether dejc = δ or dejc = −δ, even without prior
knowledge of the vector r. In fact,

d = (r+ xP )S−1 − d(r+ xP )S−1c. (24)

Replacing P by US + E, we obtain

d = (r+ xE)S−1 + xU − d(r+ xE)S−1 + xUc. (25)

Since xU is an integer vector, we have that d(r+xE)S−1+xUc = d(r+xE)S−1c+xU .
Hence:

d = (r+ xE)S−1 − d(r+ xE)S−1c = e− dec. (26)

We know that either δ < ej < δ + 1/2 or −δ − 1/2 < ej < −δ, for all j = 1, · · · , n.
In the first case, ej > dejc, while in the second we have ej < dejc. Hence, we conclude
that, if dj > 0, then δ < ej < δ + 1/2, which means that dejc = δ. Similarly, if dj < 0,
we know for sure that −δ − 1/2 < ej < −δ and, consequently, dejc = −δ.

In face of these facts, we can build an inversion algorithm to our trapdoor function
f , using the trapdoor set T = {U−1, S−1, δ}. It takes as input a vector c, retrieves the
rounded inversion error vector dec from the rounding difference vector, and outputs

f−1T (c) = (dcS−1c − dec)U−1. (27)
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The correctness of f−1T can be easily proven. In fact, since the rounding difference vector
d allows to correctly recover the rounded inversion error vector dec, we have:

f−1T (fE(x)) = (d(r+ xP )S−1c − dec)U−1 = (d(r+ xE)S−1 + xUc − dec)U−1. (28)

Once again, using the fact that xU is an integer vector, we may write the previous identity
as follows:

f−1T (fE(x)) = (d(r+ xE)S−1c+ xU − dec)U−1. (29)

From the definition of e given by (7), we finally obtain

f−1T (fE(x)) = (d(r+ xE)S−1c+ xU − d(r+ xE)S−1c)U−1 = x, (30)

for all x in the domain of fE .

5. From a Trapdoor Function to a Cryptosystem

Now that we have a full description of our trapdoor function, it is time to use it to build a
public-key cryptosystem. It is clear that the public key will consist of the evaluation set,
and the secret key will be the trapdoor set. A full cryptosystem from our function requires
procedures for key generation, encryption and decryption. The key generation procedures
are the following:

• MmatrixGenerator: on input n, γ, λ, ε1, ε2, outputs an Mγ,λ-matrix S of di-
mension n, satisfying conditions (2) and (3).
• unimodularGenerator: on input n, α, β, outputs a random n-dimensional

unimodular matrix U , as described in Section 4.
• randomMatrixGenerator: on input n, α, β, outputs an n-dimensional ma-

trix E whose entries are uniformly chosen from the set {−α, · · · , β}.
• parameterGenerator: it takes as input the values of n, α, β, γ, δ, λ, σ, ε1, ε2

and outputs the parameters θ1, θ2, µ1, µ2 satisfying (4), (5), (15), (18), (22) and
(20).

The public key, as already mentioned, consists of the evaluation set of our function, and
the secret key is the trapdoor set. Denoting the public and secret keys respectively by PK
and SK, we have PK = {P, n, σ, θ1, θ2, µ1, µ2} and SK = {S−1, U−1, δ}.

Encryption will be randomized. In other words, the same message encrypted twice
is likely to generate different ciphertexts. For the encryptiom step, we need three algo-
rithms:

• messageEncoder: takes as input a binary stream b and outputs x ∈ Zn, with
entries in {0, · · · , σ}, or r ∈ Zn, with entries in ]µ1, µ2[ ∪ ]θ1, θ2[, which encodes
b.
• ephemeralKeyGenerator: if messageEncoder outputs x, then this func-

tion outputs a random vector r ∈ Zn, with entries in ]µ1, µ2[ ∪ ]θ1, θ2[. If
messageEncoder outputs r, then this function outputs a random vector x ∈
Zn, with entries in {0, · · · , σ}.
• encryptionAlgorithm: takes as input the vectors x and r, generated by the

previous procedures, and outputs c = r+ xP .
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Note that the encryption resembles GGH, except that in our case the vector xP is not the
vector of L(P ) closest to c. Furthermore, as in the GGH construction, the message can
be encoded into x or r.

The last part of our cryptosystem is the decryption procedure, which consists of
three steps, performed by the following algorithms:

• retrieveErrorVector: builds the rounding difference vector d defined in
(26) and reconstructs the rounded inversion error vector dec from (7) as follows:
if dj > 0, then decj = δ, otherwise decj = −δ.
• retrieveMessageVector: computes x = (dcS−1c − dec)U−1. If the mes-

sage was encoded into r, the algorithm computes c− xP .
• decodeMessage decodes the vector x or r in order to obtain the original binary

message.

Correctness of the decryption procedure comes immediately from the correctness of the
inversion procedure for our trapdoor function.

Note that the secret key consists of three parts: S−1, U−1 and δ. Apparently,
neither of these parts isolated allows full decryption of a ciphertext. For example, if the
value of δ leaks to an attacker, he still will not be able to decrypt any ciphertext. The same
is true if one of the secret matrices leak. Hence, our cryptosystem seems to be suitable
for scenarios of secret sharing, where the secret key must be distributed amongst a group
of participants, in such a way that individual parts of the secret key are of no use on their
own.

6. Security Analysis

In this section, we provide a security analysis of our proposal, describing the most com-
mon attacks and countermeasures to avoid them.

Before we proceed, let us precisely state the relation between breaking our cryp-
tosystem and solving an instance of LDP. First, we make some remarks on the parameters
γ, λ, α, β, which are used to build the secret key. Since they are not necessary for encryp-
tion, there’s no need to make them publicly available. However, since the possible choices
for them must be publicly known, it is desirable to conceive a threat model in which the
adversary has access to the values of these parameters.

Under the assumption that γ, λ, α, β are publicly known, we may establish a clear
relation between our cryptosystem and LDP as follows:

1. Reduction from LDPM
λ
γ ,U ,Eβα to finding the secret matrices:

(a) Let P be any viable input of LDPM
λ
γ ,U ,Eβα . We map this input to a public

matrix of our cryptosystem. In fact, P itself is a public matrix for some
instance of a public key.

(b) Assume the existence of an oracle that, given a public matrix and the pa-
rameters γ, λ, α, β, returns the secret matrices S and U .

(c) Feed the oracle with P and get the secret matrices S, U .
(d) The pair S, U is a solution for LDPM

λ
γ ,U ,Eβα(P ).

2. Reduction from finding the secret matrices to LDPM
λ
γ ,U ,Eβα :
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(a) Let P be a public matrix from a generic instance of a public key. We map
P to a viable input of LDPM

λ
γ ,U ,Eβα . Because of the way P is built, it is

also such a viable input.
(b) Assume the existence of an oracle that solves LDPM

λ
γ ,U ,Eβα , for any viable

input.
(c) Feed the oracle with P and get a solution pair S, U .
(d) This solution pair serves as a pair of secret matrices. The parameter δ can

be found by exhaustive search (since the space of all possible choices for
δ will eventually be publicly known as well).

Hence, by assuming the hardness of LDPM
λ
γ ,U ,Eβα , we conclude that finding the secret

matrices from the public matrix is hard. But some precautions must be taken in order to
avoid other kinds of attacks.

6.1. Exhaustive Search

The first attack we would like to avoid consists of an exhaustive search on the key space,
in which the attacker literally tries to guess the secret key. As we mentioned before, we
work under the assumption that any adversary has access to the parameters γ, λ, α, β. In
order to avoid this kind of attack, these values must be chosen in such a way that the
search space becomes sufficiently large.

If an attacker performs an exhaustive search for the secret matrices, he only needs
to try guessing two matrices, for example U and S. The first alternative is trying to guess
S and E and checking whether (P − E)S−1 is a unimodular matrix.

For each γ, the search space for the matrix S = γI+Q is equal to the search space
for the matrix Q, which is given by (λ+1)n

2 . For the matrix E, the search space is given
by (α+β+1)n

2 . Assuming that all the matrices are uniformly and independently chosen,
the total size of the search space (for the secret matrices) is given by (λ+1)n

2
(α+β+1)n

2 .

If the attacker tries to guess U and S, he needs to check whether P − US is a
matrix with entries in the set {−α, · · · , β}. In order to compute the search space for the
matrix U , we must take into account the search spaces for the matrices Tu, Tl, R1, R2,
which are equal to (α + β + 1)n

2/2−n, (α + β + 1)n
2/2−n, n! and n! respectively. Hence,

assuming that the choices are random and uniform, the total size of the search space is
given by (α + β + 1)n

2−2n(n!)2.

6.2. Babai’s Algorithm

As we already mentioned, the encryption method of our cryptosystem is similar to GGH.
Hence, one of the most natural types of attack consists of applying Babai’s algorithm
[Babai 1986] on the ciphertext c = r+ xP . The attack works as follows:

• The attacker applies some lattice reduction technique, such as LLL
[Lenstra et al. 1982] or BKZ [Schnorr and Euchner 1994], on the public matrix
P , obtaining a reduced basis P ′ = U ′P , where U ′ is a unimodular matrix;
• The attacker computes dcP ′−1c = drP ′−1c+ xU ′−1;
• If the vector r is sufficiently short, the attacker may expect that the vector above

is equal to xU ′−1. Multiplying by P ′, he obtains xP and solves a linear system to
obtain x.
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This attack may work whenever r is a short vector, i.e., if c is sufficiently close to the
lattice point xP . In order to avoid this, the parameter δ must be sufficiently large. In our
experiments, we set δ between 256 and 384, which was sufficient to avoid this kind of
attack.

6.3. Shortening the Perturbation Vector
The previous attack does not work basically because the vector r is too large (if δ is
sufficiently large), which means that the vector c is not close to xP . However, an attacker
may try to shorten the vector r, in order to obtain a vector which is closer to xP .

In fact, let c = r + xP be the ciphertext, and consider a vector s, with entries
in ]µ1, µ2[ ∪ ]θ1, θ2[, such that rjsj > 0 for all j = 1, · · · , n. It is clear that the vector
r′ = r − s has much smaller entries than the vector r. The attack consists of applying
Babai’s algorithm on the vector c− s, which is much closer to the vector xP than c.

This attack will succeed if the positive (respectively negative) entries of s match
the positive (respectively negative) entries of r. Provided that the signal for each entry of
r is uniformly chosen, we expect the number of positive entries to be close to the number
of negative entries, which gives the attacker at least n!/((n/2)!)2 possibilities to try.

We raise a natural question: how does the attacker know whether he chose the
right vector s? After applying Babai’s algorithm on c− s, he expects to obtain the vector
x. Therefore, he may check whether his answer is a vector with integer entries in the
interval [0, σ]. Our experiments suggest that this attack yields a unique valid solution.
Curiously, if a random integer matrix is used instead of the unimodular U to build the
public matrix P , this attack produces many valid solutions. The attacker has no way of
knowing which one of them is the right one, because encryption is randomized. In this
case, the security of the system would be based on the assumed hardness of LDPM

λ
γ ,In,Eβα .

7. Choice of Parameters
In this section, we discuss a possible choice of parameters to our cryptosystem, providing
an analysis of the key size for this choice and the hardness of the aforementioned attacks.
All values suggested here were tested using the NTL C++ Library [Shoup 2015], running
on Linux Mint 17 (64 bits) with an AMD E-350 1600MHz processor and 4GB of RAM.

The choices for σ, δ, γ, λ, α, β, ε1, ε2 were heuristically determined in order to pro-
duce suitable values for µ1, µ2, θ1, θ2 and generate valid Mγ,λ-matrices satisfying condi-
tions (2) and (3).

From now on, let random(x) be a function that outputs a random integer from the
interval [0, x[. The suggested parameters are given below:

• σ = 256;
• δ = 256 + random(128);
• γ = n5 + random(n3);
• λ = n/2 + random(n/2);
• α = β = n+ random(n).
• ε1 = 10−6.
• ε2 = 10−4.

The values of µ1, µ2, θ1, θ2 were computed as follows:
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• µ1 =
−γ2(2δ + 1)

2(γ(1 + ε1) + λ(n− 1)(1 + ε2))
+ nσα+ random(64).

• θ1 = γδ + nσα− λ(n− 1)(µ1 − nσα)(1 + ε2)

γ
+ random(64).

• θ2 =
γ2(2δ + 1)

2(γ(1 + ε1) + λ(n− 1)(1 + ε2))
− nσβ − random(64).

• µ2 = −γδ − nσβ −
λ(n− 1)(θ2 + nσβ)(1 + ε2)

γ
− random(64).

We suggest the value of n to be between 128 and 256. Table 1 shows the public
key size for some suggested values of n.

Table 1. Public key sizes (in kB) for several parameters.
Dimension (n) Public Key Size

128 109
150 152
200 278
256 503

Table 2 shows the average time (in seconds) for key generation, encryption and
decryption.

Table 2. Time (in seconds) for key generation, encryption and decryption.
Dimension (n) Key generation Encryption Decryption

128 16.6617 0.0054 0.0441
150 31.3466 0.0078 0.0724
200 102.6070 0.0115 0.1729
256 285.3920 0.0191 0.3723

The minimum parameters yield a search space greater than 27.2
15 for the exhaustive

search attack. As we have already mentioned, the attack based on lattice reduction was
unsuccessful for the suggested value of δ. For the third attack, the number of possibilities
for the signals of the vector s is equal to 2128. Considering that the signals are chosen
uniformly, there are at least 2124 possibilities, corresponding to those in which the number
of positive entries is equal to the number of negative entries.

For the maximum parameters (n = 256), the search space for the exhaustive
search exceeds 22

20 . The number of possible choices for the vector s in the third at-
tack is greater than 2251. We estimate that these parameters offer high security against all
known attacks.

8. Conclusion and Final Remarks

We proposed a new public-key cryptosystem from a new lattice problem, which we have
reasons to believe is a hard one. It is not yet ideal in terms of key size, but current research
suggests that this aspect can be substantially improved. Such improvements are part of
our plans for future works, and further research is highly encouraged.
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Future work must also include a formal proof of security for our cryptosystem,
which means finding a suitable reduction from some classic hard problem to LDP, or even
a clear relation between the security of our proposal and some other problem, for which
the hardness has already been theoretically established. We also propose future study on
the possibility of using random integer matrices instead of unimodular matrices to build
the public key, as we briefly mentioned at the end of Section 6.3. This study would include
an assessment on the hardness of LDPM

λ
γ ,In,Eβα .
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