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Abstract. We describe an algorithm to perform Principal Component Analysis
(PCA) over encrypted data using homomorphic encryption. PCA is a fundamen-
tal tool for exploratory data analysis and dimensionality reduction, and thus a
useful application for privacy-preserving computation in the cloud.

1. Introduction

The increasingly intrusive behavior of governments and corporations and sensitive infor-
mation leaks observed this year put into question the long-term viability of cloud com-
puting as the prominent industry paradigm. Although this was an inherent risk since the
introduction of cloud computing, the associated security and privacy issues of delegating
computing to a third party became self-evident only recently.

A possible solution to accommodate these conflicting requirements is computing
over encrypted data. In this model, data is encrypted by a transformation which conserves
part of their structure and allows further execution of certain operations. Because of
practical difficulties with fully homomorphic encryption that allows arbitrary computation
in type and number of operations, a growing research area is dedicated to study partially
homomorphic schemes and to adapt algorithms to work correctly in the encrypted domain.
In this work, we propose an algorithm for performing PCA over encrypted data stored
in the cloud. PCA is a fundamental step in data analysis and machine learning, thus a
promising application for privacy-preserving computing. The proposed algorithm is non-
interactive in nature and compatible with somewhat homomorphic encryption schemes.

2. Preliminaries

In this section, we recall basic Linear Algebra, without proof due to space constraints.
Definition 2.1 (Eigenvector and eigenvalue). Let X be a real matrix inRn×n. We say that
a scalar λ ∈ R is a eigenvalue of X if there exists a non-zero vector v ∈ Rn such that
Xv = λv. We also say that v is the eigenvector associated with λ and that (λ, v) is an
eigenpair ofX . Eigenvectors are invariant to multiplication by a scalar and the dominant
eigenvalue of X is the one with the largest absolute value.
Definition 2.2 (Shifting eigenpairs). We say that a procedure shifts the eigenvalues of a
matrix X if it returns any matrix B such that the dominant eigenvalue of B is equal to the
second dominant eigenvalue of X and their associated eigenvectors are the same. More
formally, given X and dominant eigenpairs (λi, vi), a function f shifts the eigenvalues of
X if f(X) = B ∈ Rn×n with dominant eigenpairs (λi+1, vi+1).
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Theorem 2.3 (Spectral Theorem [Watkins 2005]). Suppose A ∈ Rn×n is symmetric.
Then, it can be written as A = UDUT , where U is a orthogonal matrix where each
column is a normalized eigenvector and D is a diagonal matrix with the eigenvalues on
the principal diagonal in an order correspondent to the columns of U . In other words, for
i ∈ {1, 2, .., n}, the pair (Dii, Ui) is an eigenpair, where Ui is the i-th column of U .
Corollary 2.4 (Symmetric matrix as a sum). Let A ∈ Rn×n be symmetric and (λ1, v1),
(λ2, v2), ..., (λn, vn), eigenpairs of A, with ||vi|| = 1 for i ∈ {1, 2, .., n}. Then, A may be

written as A =
n∑

i=1

λiviv
T
i .

3. Principal Component Analysis

The problem of finding the principal components of a data matrix X is equivalent to the
problem of finding the eigenvectors of its covariance matrix. In general, the i-th principal
component is the i-th dominant eigenvector [Jolliffe 2002]. Hence, to project the data into
a K-dimensional space, we have to find the K dominant eigenvectors.

3.1. Power Method

The Power Method is a simple iterative algorithm to find a dominant eigenvector of a given
matrix. Let A ∈ Rn×n be a real matrix. We sample a random initial vector u ∈ Rn and
multiply A by u repeatedly, generating the sequence Au, A2u, A3u, . . . , that converges
to a dominant eigenvector. If we write the initial vector u as a linear combination of the
eigenvectors v1, v2, .., vn, we have:

Aku = Ak(α1v1 + α2v2 + α3v3 + ...+ αnvn) = λk1α1v1 + λk2α2v2 + ...+ λknαnvn.

Assuming that v1 is a dominant eigenvector, we have |λk1| > |λki |, for i ∈ {2, 3, .., n}.
Therefore, if we divide both sides by λk1, it converges to a multiple of v1:

Aku

λk1
= α1v1 +

λk2
λk1
α2v2 + ...+

λkn
λk1
αnvn.

In order to avoid underflow and overflow in practice, it is common to divide the sequence
by a scaling factor θk. The resulting algorithm for the Power Method can be found below:

1 powerMethod (A)
2 N = A . l i n e s
3 u = randomVector (N )
4 f o r k = 1 t o STEPS
5 u = Au

θk
6 r e t u r n u

3.2. Finding K principal components

Our strategy to find the principal components is to calculate the covariance matrix of the
data and find the K dominant eigenvectors by repeatedly using the Power Method and
a shifting procedure. Since the covariance matrix is symmetric, the following function
works as a shifting procedure:
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1 e i g e n S h i f t (A , dominant e i g e n v e c t o r v )
2 u = v

||v||
3 r e t u r n B = A−AuuT

Theorem 3.1. LetA be a n×n real symmetric matrix. Then the function eigenShift shifts
the eigenvalues of A.

Proof. Since the first operation of eigenShift is normalizing v, we have that v becomes
equal to v1, the normalized dominant eigenvector. Since vT1 v1 = ||v1||2 = 1, we have

Bv1 = Av1 − (Av1v
T
1 )v1 = Av1 − Av1(vT1 v1) = Av1 − Av1 = λ1v1 − λ1v1 = 0 · v1

which proves that v1 is also an eigenvector ofB but now associated with a new eigenvalue
λnew = 0. By Corollary 2.4, the matrix A may be written as A =

∑n
i=1 λiviv

T
i , and thus

B = λ2v2v
T
2 + λ3v3v

T
3 + ...+ λnvnv

T
n .

For all i ∈ {2, 3, .., n}, we have Bvi = λ2v2v
T
2 vi + ... + λiviv

T
i vi + ... + λnvnv

T
n vi. By

Theorem 2.3, all the eigenvectors are orthogonal, so for j 6= i, the product vTj vi is equal to
0, and the product vTi vi is equal to 1. Then,Bvi = 0+0+...+0+λivi·1+0+...+0 = λivi,
which proves that all the other eigenpairs of A are also eigenpairs of B. Therefore, all the
eigenvectors of A are also eigenvectors of B, the dominant eigenvector of A is associated
with the eigenvalue λnew = 0, and the second dominant eigenvalue of A is the dominant
eigenvalue of B.

In order to calculate the covariance matrix, we just have to set the mean of each
variable (column of the data matrix) to zero and then make a matrix multiplication.

1 c o v a r i a n c e M a t r i x (X )
2 N = X . l i n e s
3 P = X . columns
4 f o r j = 1 t o P
5 µ = 0
6 f o r i = 1 t o N
7 µ = µ+X[i][j]
8 µ = µ

N
9 /∗ S u b t r a c t t h e mean . ∗ /

10 f o r i = 1 t o N
11 X[i][j] = X[i][j]− µ
12 C = XT ∗X
13 r e t u r n C

Our proposal for solving the PCA problem is the following:
1 PCA(X , new d imens ion K )
2 C = c o v a r i a n c e (A )
3 pcs = ∅
4 f o r i = 1 t o K
5 pci = powerMethod (C )
6 C = e i g e n S h i f t (C , pci )
7 pcs = {pci} ∪ pcs
8 r e t u r n pcs
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4. Homomorphic version
Employing a Somewhat Homomorphic Encryption (SWE) scheme such as [Bos et al. 2013]
for privacy-preserving computation involves some restrictions on the operations that can
be performed on the data. Usually, we can only make additions and a few multiplications
over the ciphertexts, and general divisions are not viable. If encoding real numbers is
possible using [Aono et al. 2015], we can also divide the ciphertexts by constants or any
other known values (number n of elements submitted by the client, for example). Be-
cause of these restrictions, we have to modify the algorithms to remove divisions between
ciphertexts and to minimize the number of consecutive multiplications.

For the Power Method, the value θk can be chosen as a constant, and the computa-
tion of the covariance matrix only employs a value known a priori, thus divisions can be
performed between ciphertexts and plaintexts. The remaining obstacle is the eigenShift
procedure. Since the components of the vectors are encrypted, we cannot normalize v
dividing it by its norm (first operation of the eigenShift) as B = A− A v

||v||
vT

||v|| .

However, Definitions 2.1 tell us that B and ||v||2B have the same eigenvectors.
Hence:

||v||2B = ||v||2(A− A v

||v||
vT

||v||) = ||v||
2A− AvvT ,

which means that we can compute ||v||2B from A and v without divisions between ci-
phertexts. Finally, using the relation between the inner product and the Euclidean norm,
namely, vTv = ||v||2, the homomorphic version of the eigenShift function can be de-
scribed as follows:

1 homomorph icSh i f t (A , v )
2 α = i n n e r P r o d u c t (v , v )
3 B = αA−AvvT
4 r e t u r n B

This way, the entire Power Method can be computed over encrypted data.

5. Conclusion
Principal Component Analysis can be computed in a privacy-preserving way, by adapting
all of the required steps in the Power Method to remove expensive divisions and employ-
ing a Somewhat Homomorphic Encryption scheme with a bounded number of multipli-
cations. As far as we know, this is the first non-interactive proposal for performing PCA
over encrypted data in the cloud.
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