
Control Flow Protection Against Return Oriented Attacks
Álvaro Rincón1,2, Davidson Boccardo2, Luci Pirmez1, Luiz Fernando Rust1,2

1Programa de Pós-Graduação em Informática – Instituto Tércio Pacitti / Instituto de
Matemática – Universidade Federal do Rio de Janeiro – 21.941-901 – Rio de Janeiro

2Instituto Nacional de Metrologia, Qualidade e Tecnologia - Av. N. S. das Graças, 50 –
25.250-020 – Xerém – Duque de Caxias – Rio de Janeiro
alvaro.rincon@ppgi.ufrj.br, luci@nce.ufrj.br

{drboccardo, lfrust}@inmetro.gov.br
Abstract. Recent ROP (Return Oriented Programming) attacks are characterized
by evading traditional protection methods, encouraging the scientific community to
seek for a reliable and practical security solution. This work presents a novel
technique based on control flow protection, and with a low overhead, making it
suitable for constrained architectures in terms of processing, storage and energy. A
prototype of the protection technique was developed and tested for ARM-Linux
environment. The results show that our solution is effective and capable of
preventing such ROP attacks with negligible overhead.

1. Introduction
The amount of electronic devices with embedded software that makes part of the

peoples’ lives is growing daily due to the scientific advances and the lower cost of
hardware components. As an example, we have smart meters doing telemetry to read
the energy consumption of the end-users without human intervention [Huang et al.
2012]. The benefits are obvious, they increase reliability and efficiency of the processes.
However, they also raise questions regarding the software security. The literature shows
that software security flaws are growing rapidly [Alhazmi et al. 2007].

Recent studies have shown that it is possible to adapt techniques strictly
designed to attack conventional systems to embedded systems. For example, in [Itzahak
et al. 2011] the authors present an attack non-executable stacks, intrinsic characteristic
of most embedded systems, allowing stack exploitation and control flow redirection.
Code reuse techniques that use gadgets (snippets of the code with a control transfer
instruction in the end) of the own software to manipulate the control-flow execution.
These gadgets can be in any part of the software and are made up of a small set of
instructions. The primary goal of these code instructions is to enable features that allow
an unexpected software behavior, for instance, a control-flow redirection or a sensitive
data modification. Such techniques have emerged in response to protection methods that
distinguish between data and code instruction in memory, making the stack non-
executable, thereby, preventing the execution of instructions within the stack.

Different types of techniques to protect systems against code reuse attacks have
been developed in recent years [Abadi et al. 2009, Bletsch et al. 2011, Pappas et al.
2012] and can be broadly classified into two categories: static and dynamic. Static
techniques aim at protecting anomalous control flows by instrumenting the source code

XV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2015

346 c©2015 SBC — Soc. Bras. de Computação

before the compilation-time. The main limitation of the proposed static works is the
priori knowledge of all execution paths of the software application. The dynamic
techniques are based on code execution and dynamic binary instrumentation, foreseeing
potential control flows’ misdirection. In spite of the accuracy of the dynamic methods,
the overhead is prohibitive for using in restricted environments, such as embedded
devices that have very limited computing resources. Therefore, it is important to seek
protection methods that are general, not needing the a priori knowledge of all execution
control flow paths, and with a low overhead in terms of memory and processing
consumption.

This paper proposes a static protection technique of the software control-flow
against return-oriented attacks without needing the previous knowledge of all the
execution paths and with a negligible overhead in the software application. It allows its
use in restricted environments, like embedded systems, aiming to mitigate unauthorized
control flow or data manipulation of the software application for return-oriented attacks.
Broadly speaking, the technique inserts verification instructions at compile-time in
order to protect gadgets that can be used maliciously in ROP attacks. These instructions
have the ability to verify during runtime if the execution of the code instructions within
of the basic blocks (group of sequential code instructions) is a legitimate control flow
path. The legitimacy is determined when the execution flow starts at the first instruction
and ends at the last instruction of each basic block.

2. Proposed approach
We propose a technique that differs between an authentic flow and a malicious

flow of the software application, being the malicious performed by Return Oriented
Programming (ROP). Our technique is based on the inspection of the execution flow of
the basic blocks. Analogously, state inspection techniques [Christian et al. 2009] are
those able to verify that the manipulation of a variable in the code is, in fact, legitimate,
using verifiers. Similarly, the proposed technique also makes use of verifiers, but
instead of checking a variable, the verifiers check whether the block execution flow
started in its first instruction.

The basic blocks are obtained through the control flow graph (CFG) of the
software application, obtained in the static analysis. A control flow graph is a
representation of all execution paths that might be traversed during the software
execution. Our technique uses the CFG to identify the basic blocks and the instructions
contained therein. Thus, it is possible to identify and protect the basic blocks that
contain snippets of code (gadgets) with the ability to generate ROP attacks.

Our technique instruments the basic blocks that contain gadgets through verifier
instructions called Assign and Checkpoint. These verifiers will be located at specific
parts within the basic blocks. The Assign instruction is inserted at the beginning the
basic block and initializes a variable "x". At the end of the gadget, before the redirection
flow instruction, the variable "x" is verified by the Checkpoint instruction. This
verification determines if the current "x" value is the expected value for the code
execution, that is, the value that was assigned at the beginning of the block, or if the
execution flow is malicious, that is, the value of "x" differs form the value previously
assigned. In the case of divergence, a ROP attack is detected and a response mechanism

XV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2015

347 c©2015 SBC — Soc. Bras. de Computação

may be implemented, such as, stopping the application execution. Figure 1 shows a
basic block without the protection technique (Figure 1a) and the same basic block with
our protection technique (see Figure 1b).

Beginning Basic Block L0: Beginning Basic Block L0: Assign(x)

 L1: L1:
Flow execution L2: Flow execution L2:

Start Gadget L3: Inst1 Start Gadget L3: Inst1

 L4: Inst2 L4: Inst2

 L5: Inst3 L5: Inst3

 L6: Inst4 L6: Inst4
End Gadget L7: JumpInst L7: Checkpoint(x)

End Basic Block

End Gadget L8: JumpInst

End Basic Block

 (a) (b)
Figure 1. Basic block without protection (a) Basic block with protection (b).

The whole process of the proposed technique can be divided in three steps:
1) Assembly code and CFG generation: it uses compilation flags to obtain the

assembly code with the symbol and relocation tables. The assembly code generated will
be used to conduct the static analysis in order to obtain the CFG.

2) Gadgets identification and basic block instrumentation: it uses the
assembly code to identify instruction sets that can be used as gadgets in a ROP attack.
These instruction sets must have some specific characteristics, such as ability of
manipulate registers used to pass arguments to a function and have a jump instruction or
return instruction at their ends. After identification of the instruction sets, is necessary to
identify the blocks in which they are contained to insert the verifier instructions Assign
and Checkpoint.

3) Protected executable code generation: It comprises the compilation of the
instrumented assembly code, generating the protected executable code.

3. Experiments
This section describes as our technique to protect basic blocks against ROP

attacks was validated. The experiments were developed in a processor ARMv5TEJ in an
environment ARM-Linux with kernel 3.2.0-4-versatile virtualized through the QEMU
tool. The tools used to perform the protection were: compiler GCC 4.6.3, assembler AS
2.22 and debugger GDB 7.4.1. To perform the validation has been taken into account
the impact generated in terms of (i) code size and (ii) computational cost. The metrics
used, respectively, are: (i) code size in bytes and (ii) execution time in seconds.

Figure 2.a shows the difference between the size in bytes before and after
applying protection. Therein is possible to see that the greater the size of the executable
less overhead in terms of bytes, that means, that our protection technique is inversely
proportional to code size. For instance, the bitcnts executable overhead with 587,628
bytes is 0.01% and cjpeg with 93,056 bytes is 50.92%. Figure 2.b shows the execution
times of the executables with and without protection. Therein is possible to see the
average of our protection technique causes an overhead in order of 2.3% with a standard
deviation of 1.7%. The times were obtained through routine time() executed 20 times
for each executable.

XV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2015

348 c©2015 SBC — Soc. Bras. de Computação

(a) (b)

Figure 2. Experiments about program size (a)and time execution (b).

4. Conclusions
This paper presents a technique to protect basic blocks using verifiers with the

ability to detect a ROP attack when the execution of the basic blocks is not performed in
a conventional way, that is, the execution flow does not start from the first instruction of
the basic block. The results show that the technique has minimal overhead in terms of
time and space, proving its suitability to protect restricted systems, such as embedded
systems. Additionally, according to our research, this is the first static protection
technique against ROP attacks to ARM architecture.

References
Abadi, Martín, et al. (2009) "Control-flow integrity principles, implementations, and

applications." ACM Transactions on Information and System Security (TISSEC) 13.1
(2009): 4.

Alhazmi et al. 2007 Alhazmi, O. H., Malaiya, Y. K., and Ray, I. (2007). Measuring,
analyzing and predicting security vulnerabilities in software systems. Computers &
Security, 26(3):219–228.

Bletsch, Tyler, Xuxian Jiang, and Vince Freeh. (2011) "Mitigating code-reuse attacks
with control-flow locking." Proceedings of the 27th Annual Computer Security
Applications Conference. ACM.

Christian Collberg and Jasvir Nagra. (2009). Surreptitious Software: Obfuscation,
Watermarking, and Tamperproofing for Software Protection (1st ed.). Addison-
Wesley Professional.

Huang, Zi-Shun, and Ian G. Harris. (2012) "Return-oriented vulnerabilities in ARM
executables." Homeland Security (HST), 2012 IEEE Conference on Technologies
for. IEEE.

Itzhak(Zuk) Avraham. (2011) Non-Executable Stack ARM Exploitation Research
Paper. In BlackHat Security Convention. https://media.blackhat.com/bh-dc-
11/Avraham/BlackHat-DC-2011-Avraham-ARMExploitation-wp.2.0.pdf

Pappas, Vasilis, Michalis Polychronakis, and Angelos D. Keromytis. (2012) "Smashing
the gadgets: Hindering return-oriented programming using in-place code
randomization." Security and Privacy (SP), 2012 IEEE Symposium on. IEEE.

bitcnts qsort_larg qsort_small susan patricia cjpeg djpeg

Programs

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900

Pr
og

ra
m

 S
iz

e
(b

yt
es

)

Original Program
Protected Program

Benchmark

bitcnts qsort_larg qsort_small susan patricia cjpeg djpeg

Programs

0

0,3

0,6

0,9

1,2

1,5

1,8

2,1

Ex
ec

ut
io

n
Ti

m
e (

se
c)

Original Program
Protected Program

Benchmark

XV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2015

349 c©2015 SBC — Soc. Bras. de Computação

	Resumos estendidos
	Segurança do software
	Control Flow Protection Against Return Oriented Attacks.A. Rincón (Inmetro, UFRJ), D. Boccardo (Inmetro), L. Pirmez (UFRJ), L. Carmo (Inmetro, UFRJ)

