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Abstract. The insertion of watermarks into proprietary objects is a well-known
means of discouraging piracy. It works by embedding into the object some (of-
ten surreptitious) data meant to disclose the authorship/ownership of the object.
Some promising graph-based watermarking schemes to protect the intellectual
property of software have been suggested in the literature, and recent efforts
have been endeavored to improve their resilience to attacks. Among the pursued
attributes of software watermarking solutions is the one referred to as “diver-
sity”, which is the ability to encode the intended information in many distinct
forms, making it harder for an attacker to find and remove it. We introduce a
graph-based scheme which achieves a high level of diversity through random-
ization, while admitting an efficient, linear-time implementation nonetheless.

Resumo. A inserção de marcas d’água em objetos proprietários é uma conhe-
cida maneira de se desencorajar pirataria. Funciona através da inclusão de
alguma informação (em geral escondida) que permita revelar autoria ou pro-
priedade do objeto. Alguns esquemas de marca dágua baseados em grafos para
proteger a propriedade intelectual de programas de computador têm sido su-
geridos na literatura, e esforços recentes têm sido devotados ao aumento de
sua resiliência a ataques. Entre os atributos buscados para soluções de marca
d’água de programas está a chamada “diversidade”, que é a habilidade de
codificar a informação desejada de várias maneiras distintas, tornando mais
difı́cil sua localização e remoção por parte do atacante. Apresentamos um
esquema baseado em grafos que consegue, através de randomização, um alto
grau de diversidade, permitindo, ainda assim, uma implementação eficiente em
tempo linear.

1. Introduction
For a long time have watermarks been used to enforce authenticity, authorship or
ownership of objects. The rationale is that a non-authentic object would not pos-
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sess a convincing watermark lookalike, since watermarks are (ideally) hard to be
counterfeit. Moreover, a watermarked object would be seriously damaged if one
attempted to delete the watermark. In the early 1990’s, such ancient idea has
been leveraged to the context of software protection as a means to preclude—or
at least discourage—the widespread crime of software piracy. A lot of research
has been done on software watermarking ever since, and several distinct techniques
have been used, including opaque predicates, register allocation, abstract interpreta-
tion and dynamic paths [Qu and Potkonjak 1998, Monden and Inoue 2000, Arboit 2002,
Nagra and Thomborson 2004, Cousot and Cousot 2004, Collberg et al. 2004].

Graph-based watermarking schemes consist of encoding/decoding algorithms
(codecs) that translate the identification data onto (and back from) some special
kind of graph. The pioneering graph-based watermark for software protection was
formulated in [Davidson and Myhrvold 1996]. It then inspired the publication, in
[Venkatesan et al. 2001], of the first watermarking scheme in which the watermark graph
is embedded into the control flow graph (CFG) of the software to be protected. The
CFG, which can be determined by tools for static analysis of code, represents all possible
sequences of computation of the program’s instructions in the form of a directed graph
whose vertices are the blocks of strictly sequential code, and whose edges indicate possi-
ble precedence relations between those blocks. The embedder algorithm basically creates
dummy code so that new, appropriately interlinked code blocks appear in the CFG, start-
ing at some predefined position and describing exactly the intended watermark structure.

Whereas techniques for watermark embedding are reasonably well de-
veloped by now [Collberg and Thomborson 1999, Chroni and Nikolopoulos 2012b,
Bento et al. 2013a] and not in the scope of this text , the codecs that have been proposed
so far still leave much room from improvement with respect to their resilience to attacks.
Two attack models demand special attention, namely subtractive attacks and distortive
attacks [Collberg and Nagra 2009]. In the subtractive attack model, the attacker detects
the presence of the watermark and removes it altogether. This kind of attack is basically
precluded by code obfuscation and suchlike techniques. The distortive attack model is
in a sense more subtle, since the attacker, not being able to detect and remove the water-
mark as a whole, attempts to damage its structure. It can be done basically by changing
the code so that some connections between code blocks disappear (in other words, by
indirectly removing edges from its CFG).

The recent, ingenious codec introduced in [Chroni and Nikolopoulos 2012a] was
inspired by the work of [Collberg et al. 2003]. It encodes the desired data—which we
will refer to as the key—as an instance of the reducible permutation graphs introduced
by the latter authors. It has been shown in [Bento et al. 2013b] that, even though the wa-
termarks proposed by Chroni and Nikolopoulos manage to withstand attacks in the form
of k ≤ 2 edge removals, there is an infinite number of watermark instances generated by
their codec which get irremediably damaged by k = 3 edge removals. The recovery of the
encoded data is therefore impossible in many cases, even for a modest number of removed
edges. In [Chroni and Nikolopoulos 2012c], the authors ask whether graph-based water-
marks with greater resilience to attacks—as well as better time/space efficiency—could
be devised.

We propose a new codec for software watermarking. The proposed codec employs
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Algorithm 1: Encoding the randomized watermark

Input: an integer key ω to be encoded
Output: a randomized watermark encoding ω

1. Let B be the binary representation of ω, and let n = |B|. Index the bits of B,
from left to right, starting from 1.

2. The watermark G(V,E) is initially isomorphic to a directed path Pn+1 on
vertex set V = {1, . . . , n+ 1}, i.e., the set E initially contains path edges from
v to w = v + 1, denoted [v → w], for 1 ≤ v ≤ n.

3. For each vertex v ∈ V \ {1, n+ 1}, add into E a back edge from v to w,
denoted [w ← v], where w is chosen uniformly at random from the elements
of V which satisfy:

• w is not an inner vertex of a cycle of G, and
• v − w is an odd (respectively, even) positive integer if v is the index

of a bit ‘1’ (respectively, ‘0’) in B.

If no such w exists, then let v remain with its current outdegree 1, i.e., do not
add a back edge leaving v.

randomization to attain a high level of diversity, a property whose importance has been
noted by the community [Collberg and Nagra 2009], and which is closely related to the
resilience of the watermarks against some forms of attack. In short, the structure of the
watermarks produced by our scheme is affected by random choices that are made during
the execution of the encoding algorithm, which gives rise to a number of distinct graphs
encoding the same piece of information. This feature makes it less likely that a watermark
can be spotted through brute force comparisons—undertaken by specialized diff tools—
among different watermarked programs by the same author or proprietor. Furthermore,
the number of edge removals which our watermarks are able to withstand can be cus-
tomized at will. That is accomplished by means of an edge-to-bit bijection, along with
a decoding procedure that is immune to error propagation, making it possible that stan-
dard bit-level error-correction techniques are employed in the decoding algorithm quite
straightforwardly.

The paper is organized as follows. In Section 2, we introduce the new codec. In
Section 3, we propose and analyze a possible linear-time implementation for the encoding
and the decoding algorithms. In Section 4, we indicate how to incorporate bit-level error-
correction techniques into the new codec. In Section 5, we make our concluding remarks.

2. Randomized watermarks
We introduce a codec for graph-based watermarking of software. The codec has the
following main properties:

• the encoding algorithm proceeds in a randomized fashion, therefore the same key
will almost certainly give rise to distinct watermarks at different executions of the
algorithm;
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Figure 1. Distinct randomized watermarks encoding the same key ω = 395

• there is a one-to-one correspondence between the edges of the watermark and the
bits of the encoded key, hence distortive attacks can be detected after the graph-
to-key decoding process, and the correction of any flipped bits—up to some pre-
defined number— can be carried out by standard error-correction algorithms;

• both encoding and decoding algorithms can be implemented to run in linear time.

Algorithm 1 describes the basic steps of the encoding algorithm, when no extra
bits—intended for error-correction—are used (we address error-correction in Section 4).
If C : v1, v2, . . . , vd, vd+1 = v1 is a cycle on d vertices of a directed graph G, we say
vertices v2, . . . , vd−1 are the inner vertices of C.

Figure 1 illustrates two watermarks generated by the new codec for key ω = 395,
whose binary form, determined in step 1 of the algorithm, is B = 110001011, with n = 9
bits. Both watermarks have the same number of vertices, namely n + 1, and both have a
(unique) Hamiltonian path1, which is created in step 2 of the algorithm. The first vertex
of the Hamiltonian path, labeled 1, always corresponds to a bit ‘1’ in B, and its outdegree
is always 1. Now, each vertex from 2 to n becomes the origin of either zero or one
back edges. The back edges with origin in each v ∈ {2, . . . , n} (or the absence thereof)
will bear a one-to-one correspondence with the bits indexed from 2 to n in B: a bit ‘1’
with index v ≥ 2 in B gives rise to a back edge [w ← v] constituting an odd-distance
“backwards jump” over the Hamiltonian path (i.e., v − w is odd), whereas a bit ‘0’ either
gives rise to an even-distance backwards jump or to no jumps at all (when there is no
w < v such that v − w is even and w is not an inner vertex of a cycle).2

We remark that the event that a back edge cannot be added shall never occur with
respect to a vertex v ≥ 2 corresponding to a bit ‘1’. Indeed, because vertices are processed
left-to-right by the algorithm, vertex w = v − 1 is never an inner vertex of a cycle by the
time v is processed. Consequently, for all v ≥ 2 corresponding to a ‘1’, at least the back

1A Hamiltonian path on a graph G is a path where all vertices of G appear exactly once.
2All arrays in this text are 1-based, i.e. their first position has index 1.
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Algorithm 2: Decoding the randomized watermark

Input: a randomized watermark G with n+ 1 vertices
Output: the key ω encoded by G

1. Label the vertices of G in ascending order as they appear in the unique
Hamiltonian path of G.

2. Let B be a bit array starting with a bit ‘1’ followed by n− 1 bits ‘0’.

3. For each vertex v ∈ {2, n}, if there is a vertex w < v such that
[w ← v] ∈ E(G) and v − w is odd, then B[v]← ‘1’;
otherwise, B[v]← ‘0’.

4. Return ω =
∑n
i=1B[i] · 2n−i.

edge [v − 1← v]—an odd-distance backwards jump, as intended—will be available. On
the other hand, if a vertex v corresponds to a bit ‘0’ in B, then it is possible that no w can
be the destination of a back edge with origin at v constituting an even-distance backwards
jump. The absence of a back edge will therefore indicate that the bit with index v in B is
a ‘0’. Moreover, if v gets no outgoing back edges, then vertex v′ = v+1 is assured to get
one, for if v′ corresponds to a ‘0’, then at least the edge [v − 2 ← v]—an even-distance
backwards jump, as intended—will be available, since there is no back edge closing a
cycle at v − 1.

Back to our example in Figure 1, notice that vertex 2 corresponds to a bit ‘1’ in
B and therefore receives the outgoing back edge [1 ← 2], the only possible choice then.
Vertex 3, on its turn, corresponds to a ‘0’ and gets to be the origin of back edge [1 ← 3],
again the only possible choice. Now, vertex 4, which corresponds to a ‘0’, must be left
without an outgoing edge, for the only w < 4 such that 4 − w is even would be w = 2,
but vertex 2 is an inner vertex of the existing cycle 1, 2, 3, 1. Vertex 5 corresponds to a
bit ‘0’, and two back edges were available by the time it was processed, namely [1 ← 5]
and [3← 5]. For the watermark in Figure 1(a), the former edge was chosen, whereas the
latter was chosen for the watermark in Figure 1(b). The algorithm carries on in similar
fashion for vertices 6, . . . , 9, and the watermark is complete.

The decoding procedure consists of two steps. First, we must label the vertices
of the watermark, so their correspondence to the bits of the encoded binary can be de-
termined. This can always be done, since the blocks of the Hamiltonian path are always
consecutive in the CFG, corresponding to vertices 1, 2, . . . , n+1. Second, we set the first
bit of the binary as ‘1’ (which is always the case, since zeroes to the left of a number
are ignored), and we proceed to gathering the information encoded by the back edges,
from vertex 2 onwards: a back edge [w ← v] such that v − w is odd (respectively, even)
indicates that the bit with index v in the binary is a ‘1’ (respectively, ‘0’), and vertices
2 ≤ v ≤ n which are not the origin of a back edge also correspond to bits ‘0’ in the
binary. The decoding algorithm is given in pseudocode as Algorithm 2.
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3. Linear-time implementation

The two first steps of Algorithm 1 are straightforward. In order to implement step 3,
however, we must be able to keep track of the current destination candidates, i.e. vertices
w < v which are not (yet) inner vertices of any cycles and therefore can (still) be picked
as the destination of a back edge with origin at vertex v being currently processed. If
v is even and corresponds to a bit ‘0’, or v is odd and corresponds to a bit ‘1’, then
the destination w of the back edge [w ← v] must be selected among the current even-
labeled destination candidates; otherwise, w must be selected among the current odd-
labeled destination candidates. Whichever the case, the algorithm must choose uniformly
at random among the destination candidates whose label has the desired parity, which can
be done by picking a random integer between 1 and the number of such candidates.

We employ two stacks, S0 and S1, each one implemented over an array so that
any item can be looked up by its index in constant time. Implementing those stacks over
arrays also allows for a constant-time pop all(i) method, which removes all items whose
indexes are greater than a given index i.3

The proposed implementation of step 3 consists of a loop that iterates through
vertices 2, . . . , n in order to determine the back edges (if any) with origin at each of these
vertices, one by one. The following invariant holds: the elements in stack S0 (respectively,
S1) are precisely the even-labeled (respectively, odd-labeled) destination candidates in
ascending order (bottom-up along the stack) at any moment. All vertices v = 1, . . . , n
will be added to their respective stack (even-labeled vertices into S0, odd-labeled vertices
into S1) exactly once during the execution of the algorithm, namely by the end of the
iteration during which v is visited, i.e. right after determining the destination of the back
edge with origin in v.

Additionally, we need an auxiliary n-sized array, call itA, which is initially empty,
and whose positions are indexed from 1 to n. Each position v of the array, for even v,
will be assigned the size that stack S1 used to have by the time v was added to stack S0.
Analogously, each position v of the array, for odd v, will be assigned the size that stack
S0 used to have by the time v was added to S1.

Now we can describe a linear-time implementation for the whole step 3 of the
encoding algorithm. Its pseudocode is depicted in Procedure 3.

After the initialization of the data structures (line 1), vertex v = 1 is the first to be
considered. However, since no back edge with origin at vertex 1 is meant to be added, the
algorithm just pushes v into S1 (because v is odd) and writes 0 (the current size of stack
S0) to position 1 of A (line 2).4 Now, for each vertex v ∈ {2, . . . , n}, the algorithm first
decides which stack—S0 or S1—contains the candidates among which the destination of
the back edge with origin in v shall be (randomly) chosen (lines 4–7). Such stack, which
will be referred to as S, will be S0 if either an even-distance backwards jump is intended
(B[v] is a bit ‘0’) and v is even, or an odd-distance backwards jump is intended (B[v]
is a ‘1’) and v is odd; otherwise, the appropriate stack will be S = S1. The element in

3That can be achieved easily by redirecting a “stack top” pointer to the stack’s ith item, or, alternatively,
by maintaining a “stack size” variable.

4This latter instruction is not actually necessary, since A was initialized with zeroes. We have included
it for clarity.
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Procedure 3: Determining back edges in O(n) time

Input: the n-bit binary representation B of the key to be encoded,
and the set E containing only the path edges of the watermark

Output: updated set E containing all (path/back) edges of the watermark

1. S0 := empty stack; S1 := empty stack; A := array with n zeroes
2. S1.push(1); A[1] := 0

3. for v = 2, . . . , n do
4. if (v is even and B[v] = ‘0’) or (v is odd and B[v] = ‘1’) then
5. S := S0; S

′ := S1

6. else
7. S := S1; S

′ := S0

8. if S.size > 0 then
9. j := integer chosen uniformly at random from [1, S.size]

10. w := S[j]

11. E := E ∪ {[w ← v]}
12. S.pop all(j)

13. S ′.pop all(A[w])

14. if v is even then
15. S0.push(v); A[v] := S1.size

16. else
17. S1.push(v); A[v] := S0.size

18. return E

{S0, S1} \ S will be referred to as S ′. If S is empty, then there are no vertices available
to be the destination of a back edge leaving v; in this case, no back edge will be added
to the edge set E. Otherwise, an integer j is chosen uniformly at random between 1 and
the size of S, thus determining the destination w = S[j] of the back edge leaving v. Such
back edge is added to E (line 11). Now, because the addition of a back edge [w ← v]
implies the creation of a cycle C : w,w+1, . . . , w+(v−w) = v, w, all inner vertices of
C which used to be destination candidates now become unavailable for future selections.
In other words, they cease to be destination candidates, and must therefore be removed
from their corresponding stacks, i.e. all vertices w′ > w must be popped from both S and
S ′. Since the index of w in S, call it j, is known, it is easy to remove all such vertices w′

from S (line 12), for they are precisely those vertices whose indexes in S are greater than
j. On the other hand, because w was never an element of S ′, there is no such thing as the
index of w in S ′, and one might think that a (binary) search in S ′ would be called for in
order to determine the index of the last element of S ′ that is smaller than w—which would
append an extra O(log n) factor to the algorithm’s time complexity. However, because w
is currently not the inner vertex of a cycle (otherwise it would not have been selected
as a back edge destination), no vertex w′ < w was selected as destination after w was
processed, which means all vertices that belonged to S ′ by the time w was processed still
belong to S ′, and must remain there. As a matter of fact, only those vertices must remain
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Figure 2. Encoding the key ω = 395 with 1-bit error correction

in S ′, since vertices added to S ′ after w was processed are necessarily greater than w (and
smaller than v), hence they have just become inner vertices of C and must be removed
from S ′. In other words, S ′ must retain precisely its r first elements, where r is the size
that S ′ used to have when w was processed and added to S. And now the auxiliary array
A comes into play, for r = A[w] is precisely the value that was stored at its wth position
when w was added to S (line 15 or 17, depending on the parity of w).

Since there is a constant number of operations per vertex, and all operations clearly
run in O(1) time, the overall complexity of Procedure 3 is O(n).

4. Resilience to distortive attacks
The literature on error detection/correction techniques, mainly intended for bi-
nary messages transmitted on error-prone channels, is quite vast [Hamming 1950,
Reed and Solomon 1960, Mann 1968, Purser 1995, Wicker 1995]. We do not intend to
give an exhaustive account on the existing techniques in this text. Instead, we intention-
ally regard them as “black boxes”, demonstrating how the intended results can be easily
achieved. Although the existing error-correction techniques may differ (a lot) in the way
they tackle a possibly damaged binary, a common requirement is the insertion of a num-
ber f(n, t) of redundancy bits, for some function f . This is done in a preprocessing step
of the binary representation of the key about to be encoded.

In the decoding phase of our watermarking scheme, the effect of k malicious edge
removals is that of erroneously writing k or less bits ‘0’ at positions originally occupied
by bits ‘1’ in the encoded binary. This is so because the absence of a back edge leaving
vertex v, for 2 ≤ v ≤ n, is regarded by the decoder as a bit ‘0’ with index v. If a back
edge leaving v used to exist in the watermark before the attack, then the bit with index v
in the original binary might as well be a ‘1’. Yet, the consequence of each edge removal is
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that of a single flipped bit (at most), because, due to the mechanics of the proposed codec,
decoding errors do not propagate.

Suppose, on the other hand, that, instead of being based on the parity of the dis-
tance covered by backwards jumps, our encoding algorithm selected the destination w of
a back edge with origin at v in the following way: pick—uniformly at random—a desti-
nation w < v such that w is not an inner vertex of a cycle, and w corresponds to a bit,
in the binary, that is the same as the bit in the vth position. In other words, if v is a ‘1’,
its outgoing back edge must reach a ‘1’; if v is a ‘0’, its outgoing back edge must reach a
‘0’. Under such a codec, an edge removal resulting in the erroneous decoding of a vertex
v would cascade the error to vertex v′ whose outgoing back edge reached v, and to vertex
v′′ whose outgoing back edge reached v′, and so on.

We illustrate, in Figure 2, the encoding of the same key from Figure 1,
but now employing the well-known Reed-Solomon error correction tech-
nique [Reed and Solomon 1960] under a Galois field GF(23), which in this case
provides the ability to recover from 1-bit flips (i.e., from single edge removals). In step
(1), the binary form of the key is obtained; in steps (2) and (3), the binary is passed to
an error-correction preprocessing step, where redundancy bits are appropriately inserted;
in step (4), the final binary is translated onto the watermark graph by using the proposed
encoding function (see Section 2, Algorithm 1). Notice that the preprocessing step could
be made so that an arbitrary, predefined number t > 0 of edge flips could be afterwards
detected and corrected, yet the size of the ensuing binary grows accordingly.

The decoding is done in similar fashion, as illustrated in Figure 3: in step (1), the
watermark graph is decoded into the binary it represents (see Section 2, Algorithm 2);
in (2) and (3), the decoded binary is passed to the error-correction post-processing step,
wherefrom another binary (with unflipped bits) is produced; and, finally, in step (4), the
original key is retrieved.

Thus, if the number k of missing edges is less than the fixed threshold t > 0 taken
into consideration when preprocessing the original binary, the employed error-correction
solution shall identify the flipped bits and correct them; otherwise, the attack will have
succeeded in damaging the watermark permanently. In effect, no matter the chosen error-
correction technique or the number t of errors the watermark can withstand, the attacker
may always remove so large a number t′ > t of edges that no recovery is possible, as
illustrated in Figure 4.

5. Conclusion
We presented a randomized codec for graph-based software watermarking. Its main prop-
erty is its ability to encode the same key as distinct graphs, accounting for a high diversity,
a feature whose importance has been stressed by the community. Moreover, it can be im-
plemented to run in linear time5 as shown in Section 3, and it is compatible with standard
bit-level error-correction techniques.

For future work, it should be interesting to devise a codec with all these nice
attributes, but also with the property of being embeddable in the CFG without the need

5An implementation using the Python language is available at https://www.dropbox.com/s/
kydbc60mkl7lf7z/randomized-watermark.py.
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Figure 3. Decoding the watermark after the removal of edge [5← 6]

15 1613 1411 129 107 85 63 41 2

110000010100101

= 386
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(3)

(4)

110000010100101

Figure 4. Decoding the watermark after the removal of edges [5← 6] and [8← 9]:
an incorrect outcome is produced
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to use raw jumps (goto statements), something that is required not only by our codec but
by all other CFG-embedding codecs we are aware of. In other words, a codec which
produces watermarks that can be made to appear as subgraphs of the CFG by means of
adding dummy structured code only. Such property would improve upon the stealthiness
of the produced watermarks, since they would resemble normal, actual code even further.
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