
A comparison of simple side-channel analysis
countermeasures for variable-base elliptic curve scalar

multiplication

Erick Nascimento1, Rodrigo Abarzúa2, Julio López1, Ricardo Dahab1
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Abstract. Side-channel attacks are a growing threat to implementations of cryp-
tographic systems. This article examines the state of the art of algorithmic coun-
termeasures against simple side-channel attacks on elliptic curve cryptosystems
defined over prime fields. We evaluate the security versus computation cost
trade-offs of SSCA countermeasures for variable-base scalar multiplication al-
gorithms without precomputation. The expected performance impact of each
countermeasure is analyzed regarding their computational cost in terms of finite
field operations.

1. Introduction

Elliptic Curve Cryptography (ECC) is a class of public-key cryptosystems proposed by
Neal Koblitz [Koblitz 1987] and Victor Miller [Miller 1985], which provides significant
advantages in several situations, including implementations on specialized microproces-
sors. For example, some industry standards require 2048-bit integers 1 for the RSA sys-
tem, whereas the equivalent security for ECC requires finite fields of just 160 bits. Given
the restricted power consumption, storage and processing capacities of embedded micro-
processors, ECC-based cryptosystems are an interesting option.

Passive side-channel attacks exploit physical leakages of a cryptographic pro-
cess executing on a device, for example: timing [Kocher 1996], power consump-
tion [Kocher et al. 1999] and electromagnetic radiation [Quisquater and Samyde 2001,
Gandolfi et al. 2001]. These attacks present a realistic threat to cryptographic applica-
tions, and have been demonstrated to be very effective against smart cards without proper
countermeasures [Mangard et al. 2007]. There are two general strategies for these at-
tacks: Simple Side-Channel Analysis (SSCA) [Kocher 1996], which analyzes the mea-
surements obtained during a single scalar multiplication, based on the differences in the
measured quantity depending on the value of the secret key; and Differential Side-channel
Analysis (DSCA) [Kocher et al. 1999], which is based on statistical techniques to retrieve
information about the secret key based on measurements from several scalar multiplica-
tions.

1For the modulus n.
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The aim of this paper is to show the landscape of solutions that implementers
can choose to protect implementations of elliptic curve scalar multiplication algorithms
against simple side-channel attacks, targeted at very restricted embedded devices. The
SSCA countermeasures are evaluated from the security and computational cost (number
of finite field operations) perspectives, providing a security versus computational cost
comparison.

These tight device capabilities limited the scope of the paper to countermeasures
to SSCA that require the minimum: additional data space at runtime, additional code
space, time overhead and energy usage. Therefore, we have chosen countermeasures that
do not make use of precomputation tables, usually to store elliptic curve points.

This paper is organized as follows. Section 2 provides an introduction to two kinds
of simple side-channel analysis (SSCA): simple power analysis (SPA) and timing anal-
ysis (TA). Section 3 introduces the scalar multiplication problem and classic algorithms
to solve it. Section 4 presents known variable-base scalar multiplication algorithms with-
out precomputation and protected against SSCA, discussing their computational cost and
known attacks. The performance comparison of the countermeasures is provided in Sec-
tion 5. Finally, Section 6 concludes the paper.

2. Simple Side-channel Analysis (SSCA)
There are several types of side-channel analysis within the class of simple side-channel
analysis, but two of them are commonly considered for software-based implementation
of public-key cryptographic algorithms: simple power analysis (SPA) and timing analysis
(TA).

2.1. Simple Power Analysis (SPA)
Power analysis in general, and simple power analysis in particular, exploit the fact that the
instantaneous power consumption of a device depends on both: the data processed and
the operation performed [Mangard et al. 2007, Kocher et al. 1999].

Power analysis countermeasures for both SPA and DPA are based on the reduction
or elimination of the dependency between the power consumption of a cryptographic
device and the intermediate values used by the algorithm, and are classified in two main
groups: hiding and masking [Mangard et al. 2007].

The fundamental principle of hiding countermeasures is to remove the dependency
of the data into the power consumption. In software implementations the goals are usu-
ally to randomize the algorithm control flow (time dimension) or the kind of instructions
used on each run (amplitude dimension), without changing the input data or any other
intermediate value processed by it, so that it is impossible to recognize the dependency
between data and power consumption.

The concept of masking is to randomize the intermediate values processed by the
cryptographic device, i.e., a masking operation is applied over these values before the
original algorithm execution occurs. Sometime later, the resultant (masked) intermediate
values are then unmasked. The goal of masking is to make the power consumption re-
quired to process the intermediate values on the masked implementation independent of
the original (unmasked) values. To achieve this goal, masking countermeasures act on the
amplitude dimension of the leakage, by means of data randomization.
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2.2. Timing Analysis (TA)
Timing attacks against implementations of cryptographic algorithms exploit the fact that
usually, in implementations, the elapsed time for the execution of an algorithm is variable
and depends on the input data being processed on the particular run, be it fixed data (the
key) or variable data (the plaintext).

In general, if an implementation is vulnerable to timing attacks it is also vulner-
able to power attacks, but the converse is not necessarily true [Schindler 2002]. Timing
analysis can often be combined with power analysis, to conceive powerful attacks. Ac-
cording to [Aciiçmez and Koç 2009], timing analysis can be classified in the following
major groups: cache analysis, branch prediction analysis, and shared functional unit anal-
ysis.

3. Scalar Multiplication Algorithms
There are several classes of algorithms for multiplying a point P by an integer scalar k.
In this paper we focus on variants of the double-and-add method. The double-and-add
method is similar to square-and-multiplication method for modular exponentiation. The
binary representation of k is denoted by kn−12n−1 + · · · + k02

0, then the scalar multipli-
cation [k]P = (kn−12n−1+ · · ·+k020)P is computed using Horner’s rule, resulting in the
double-and-add method, [k]P = [k0+2(k1+2(. . . (kn−2+2kn−1) . . . ))]P , which requires
n = blog2(k)c+ 1 point doublings and, in average, n

2
point additions

(
nD + n

2
A
)

2. The
double-and-add method is optimal [Cohen et al. 2010].

4. Countermeasures for Variable-Base Scalar Multiplication without
Precomputation against Simple Side-Channel Attacks

Elliptic curve scalar multiplication is particularly vulnerable to simple side-channel anal-
ysis because the operations of doubling and addition of points are intrinsically differ-
ent. Very efficient countermeasures are known but they are only applicable to specific
models of elliptic curves (e.g. Edwards curves [Bernstein et al. 2008, Hisil et al. 2008]).
Although it is possible to select an elliptic curve from a model where efficient counter-
measures are known, in practice, it is very likely that curves established by a standard will
be selected. For example, NIST [NIST 2000] and SEC 2 [Certicom 2010] standards.

The most commonly used algorithm for computing Q = [k]P on an elliptic
curve is the double-and-add algorithm, in the left-to-right or right-to-left versions 3.
Suppose that the doubling of a point and the addition of two different points are im-
plemented with different formulas. Then, these two operations can be distinguished by
SSCA [Kocher 1996, Kocher et al. 1999]. When the power trace shows a point doubling
followed by a point addition, the current bit, say ki, is equal to 1; and when the power
trace shows a doubling followed by another doubling, then ki = 0. The usual approach to
prevent SSCA consists in always repeating the same pattern of instructions, whatever the
processed data is.

Several proposals have been made to protect scalar multiplication against these at-
tacks. For example, the double-and-add-always algorithm of Coron [Coron 1999] ensures

2In this notation, D stands for point doubling and A stands for point addition.
3In the left-to-right version, the scalar bits are scanned from the most (MSB) to the least (LSB) signifi-

cant bit. In the right-to-left version, the order is reversed.
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the sequence of operations to compute a scalar multiplication is independent of the value
of the secret scalar by inserting a dummy point addition between consecutive doublings
(i.e., when the bit of the scalar is 0).

A second countermeasure is to use unified formulas which use similar sets of field
operations for both additions and doubling operations. These formulas exist for Weier-
strass curves [Brier and Joye 2002], and special curves, such as Edwards [Edwards 2007]
and inverted Edwards [Bernstein and Lange 2007] curves, among others 4.

Another countermeasure is the Montgomery ladder [Montgomery 1987], a tech-
nique designed for a special type of curve in large characteristic fields. It makes sure
that every bit of the scalar corresponds to both a doubling and an addition, and that both
operations have an impact on the output of the scalar multiplication. The addition for-
mula for curves on the Montgomery model is also much simpler than that for curves
on the Weierstrass model, contributing to make the scalar multiplication faster in this
curve model. However, it is not always possible to convert a curve in the Weierstrass
model to one in the Montgomery model, because, among other reasons, the number of
points in a Montgomery curve is always divisible by 4. Nevertheless, the converse is
true [Cohen et al. 2010].

Elliptic curve cryptography standards recommend curves on the Weierstrass form
over Fp (prime fields) or F2m (binary extension fields), where p > 2 is a prime number
and m is an integer. None of the NIST recommended elliptic curves [NIST 2000] over
prime fields can be converted to the Montgomery form, because all of them have a prime
number of points (the cofactor is always 1).

A fourth approach consists in using regular representations of the
scalar [Thériault 2006, Joye 2007], with the same fixed sequence of group opera-
tions for all scalars. Yet another countermeasure [Goundar et al. 2011] is the use of
signed-digit representations of the scalar, particularly the zero-less signed-digit (ZSD)
representation 5.

Finally, side-channel atomicity [Chevallier-Mames et al. 2004]) splits point oper-
ations into small homogeneous blocks of basic field operations, making it hard to distin-
guish between atomic blocks of point doublings from those of point additions.

The following countermeasures are considered in this paper: a) Unified Formu-
las of Brier-Joye and Brier-Dechene-Joye; b) Double-and-add-always of Coron; c) Mont-
gomery Ladder over prime fields of Brier-Joye and Izu-Takagi; d) Double-add of Joye;
e) Zero-less signed-digit (ZSD) of Goundar; and f) Atomic Blocks of Chevallier-Mames,
Longa-Miri and Abarzúa-Thériault.

In the following subsections we present these countermeasures in detail, analyzing
their side-channel security and the expected performance based on the number of required
finite field operations.

4More details can be found in the database of special elliptic curves [Tanja and Bernstein 2014]. Such
special families of elliptic curves are not studied in this work.

5An odd integer k is represented in ZSD if its digits are in the set {−1, 1}.
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4.1. Unified Formulas of Brier-Joye [Brier and Joye 2002]

Unified Formulas for point addition and point doubling using projective coordinates
were presented by Brier and Joye [Brier and Joye 2002]. Let P = (X1, Y1, Z1) and
Q = (X2, Y2, Z2), with xi = Xi/Zi and yi = Yi/Zi, then R = P + Q = (X3, Y3, Z3) is
given by:

U1 = X1Z2, U2 = X2Z1, S1 = Y1Z2, S2 = Y2Z1, T = U1 + U2,

M = S1 + S2, Z = Z1Z2, F = ZM, R = T 2 − U1U2 + aZ2, L =MF,

G = TL, W = R2 −G, X3 = 2FW, Y3 = R(G− 2W )− L2, Z3 = 2F 3.

This formula requires 13M + 5S 6. The Unified Formulas of Brier-Joye are prone to the
following attacks.

4.1.1. Izu-Takagi Attack [Izu and Takagi 2002b]

The unified formulas of Brier-Joye are only valid if y1 + y2 6= 0, where P1 = (x1, y1)
and P2 = (x2, y2). Izu and Takagi [Izu and Takagi 2002b] presented an attack using
two points such that x1 6= x2 and y1 + y2 = 0. The main idea of the attack is to use
an exceptional point, which causes an exceptional condition (0−1 /∈ Fp, i.e., a division
by zero) on the underlying unified formula in affine coordinates. The secret scalar k
is guessed from the error of the scalar multiplication [k]P for different points P . If an
attacker wants to know if the target calculated [m]P + P with 2 ≤ m < k, he can use a
point P such that y(mP )+y(P ) = 0. If the device replies an error to the attacker, or does
it in an implicit but detectable manner, then he knows the device calculated [m]P + P .
Starting with m = 2 7, and by following this process, the attacker is able to recover the
secret scalar bit-by-bit, from the most to the least significant.

Brier, Dechene and Joye [Brier et al. 2004] presented a new unified formula to
protect against Izu-Takagi attack. Nevertheless, their formula is prone to both Amiel’s
attack [Amiel et al. 2009] and PACA attack [Amiel et al. 2007].

4.1.2. Walter’s Attack [Walter 2004]

Walter’s attack [Walter 2004] is based on the fact that the conditional subtraction in a
Montgomery modular multiplication (MMM) operation can be detected. Given a point
P = (X, Y, Z), in the point doubling using the projective formulas of Brier-Joye the
computation of U1 and U2 are identical (U1 = U2 = XZ), and they exhibit identical
behavior with respect to the occurrence of the final conditional subtraction in MMM. The
same property holds for the computation of S1 and S2.

The behavior for point addition is different. Point addition involves the input point
P = (X1, Y1, Z1), where the random (or randomized) coordinates mean that occasionally

6In expressions regarding computational costs in terms of the number of finite field operations, M stands
for (field) multiplication, S for squaring and I for inversion.

7When m = 2 and the attacker knows whether y(2P ) + y(P ) = 0, then, if it is, kn−2 = 1; otherwise,
kn−2 = 0
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X1 and Y1 will both be small (i.e., close to 0) and Z1 will be large. This means that the
computations of U1 and S1 are less likely to include the additional subtraction in MMM,
while the computations of U2 and S2 are more likely to include the additional subtraction.
This difference in behavior can be detected by an attacker and can be used accordingly to
recover the bits of the secret scalar.

4.1.3. Amiel et al’s Attacks [Amiel et al. 2009]

A common requirement for several countermeasures against simple side-channel attacks
is that multiplication and squaring field operations are indistinguishable from the side-
channel analysis point of view, i.e., both squaring and multiplication must be computed
using the same algorithm. Particularly, atomic blocks [Chevallier-Mames et al. 2004,
Chen et al. 2009, Giraud and Verneuil 2010] and Unified formulas [Brier and Joye 2002,
Bernstein and Lange 2007, Joye et al. 2010] countermeasures rely on this property. How-
ever, that’s not usually the case. Amiel’s attack [Amiel et al. 2009] is based on distin-
guishing between multiplications and squarings using the instantaneous power consump-
tion trace. This is possible because the Hamming weight probability distribution of the
result of a multiplication is distinct from that of a squaring operation, and they can be
distinguished in the power traces.

Notice that the computation of multiplications Z = Z1Z2 and U1U2 in R = T 2 −
U1U2 + aZ2, when a point addition is performed, are different from those when a point
doubling operation is performed. The computation of Z = Z2

1 and U2
1 in R will be

squaring operations and, hence, Amiel’s attack can be applied to such implementations.

4.1.4. Passive and Active Combined Attack (PACA) [Amiel et al. 2007]

Amiel et al. [Amiel et al. 2007] presented a Passive and Active Combined Attack (PACA)
on a (supposedly) side channel resistant implementation of the square and multiply algo-
rithm. Although not a pure SSCA attack, because of the required fault insertion step (the
active part of the attack), we present it here for completeness.

The main idea of the PACA attack is as follows. An attacker applies a fault in the
register storing the Z coordinate of point P1, say setting Z1 = 0 after the fault. Then, in
the Unified formulas of Brier-Joye, we have two different patterns for the calculation, Z =
Z1·Z1 = 0·0 (if it is a doubling) and Z = Z1·Z2 = 0·Z2 (withZ2 6= 0, if it is an addition),
and both can be identified in a power trace [Amiel et al. 2007, Schmidt et al. 2010]. This
allows an SSCA attacker to distinguish between point doubling and addition operations
and consequently to recover the secret scalar.

4.2. Double-and-add-always algorithm of Coron [Coron 1999]
The double-and-add-always algorithm of Coron [Coron 1999] (Algorithm 1) uses a
dummy point addition when the scalar bit ki is 0, such that the sequence of operations
to compute the scalar multiplication is independent of the value of the secret scalar.

Therefore an adversary cannot guess the bit ki by SPA. A drawback of this method
is its low efficiency. It requires nA + nD field operations, a 33% increase in the amount
of field operations in comparison to the (unprotected) binary left-to-right algorithm.
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Algorithm 1 Double-and-add always algorithm resistant against SPA
INPUTS: Point P ∈ E(Fq), k = (kn−1, . . . , k1, k0)2 ∈ N
OUTPUTS: Q = [k] · P
1: R0 ← P∞
2: for i from n− 1 to 0 do
3: R0 ← 2R0

4: R1 ← R0 + P
5: R0 ← Rki

6: end for
7: return R0

The Double-and-add always algorithm of Coron is prone to the following attacks.

4.2.1. Fouque and Valette’s Doubling Attack [Fouque and Valette 2003]

The doubling attack of Fouque-Valette [Fouque and Valette 2003] is based on the fact that
it is possible to detect if two intermediate values are equal when the algorithm computes
the scalar multiplication for points chosen points P and 2P. Several algorithms protected
against SPA are vulnerable to Fouque and Valette’s attack, such as the classic binary
left-to-right algorithm, including those derived from it, such as Coron’s double-and-add-
always algorithm.

In Coron’s double-and-add-always algorithm (Algorithm 1), the partial sums are
computed as follows: Sm(P ) =

∑m
i=1 kn−i2

m−iP =
∑m−1

i=1 kn−i2m−1−i(2P )+kn−mP =
Sm−1(2P ) + kn−mP . So, the intermediate result of the algorithm at step m when given
input P will be equal to the intermediate result at step m− 1 when given input 2P , if and
only if, kn−m = 0. Therefore, an attacker can obtain the secret scalar by comparing the
doubling computation at step m + 1 for P and at step m for 2P to recover the bit kn−m.
If both computations are identical, kn−m = 0, otherwise kn−m = 1. It has been shown
that with only two scalar multiplication requests chosen by the attacker, it is possible to
recover all the bits of the scalar 8.

4.3. Montgomery Ladder of Brier-Joye [Brier and Joye 2002]

Another possible countermeasure is the Montgomery ladder method [Montgomery 1987],
originally designed for a special type of curve, the so-called Montgomery curve in large
characteristic. Brier and Joye [Brier and Joye 2002] extended this method to Weierstrass
curves of large characteristic. Their algorithm requires 9M + 2S for point addition and
6M+3S for point doubling. The classic Montgomery powering ladder is prone toM safe-
error fault attacks 9 [Sung-Ming et al. 2002], Joye and Yen [Joye and Yen 2003] proposed
modifications in order to counteract them (Algorithm 2).

The modified Montgomery ladder makes it impossible to insert safe faults,
thus providing a natural protection against SPA, M safe-error and C safe-error at-
tacks 10 [Joye and Yen 2003]. An important observation is that this algorithm al-

8The attacker collects one power trace for the computation of kP and one for the computation of k(2P ).
For each iteration m = 1, ..., n, he runs the attack as described and finds kn−m.

9A M safe-error is a memory safe-error in which bits of a register are maliciously modified, and the
change is temporary, i.e. the register can be overwritten later.

10A C safe-error stands for computational safe-error, and consists in timely induce a temporary fault in
the ALU for determining whether an operation is dummy or effective.
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lows one to compute scalar multiplication on elliptic curves using the x-coordinate
only [Brier and Joye 2002, Fischer and Giraud 2002, Izu and Takagi 2002a]. In Table 1
we present the cost of this countermeasure, including its refined forms.

Algorithm 2 Montgomery ladder resistant against SPA and safe fault attacks
INPUTS: A point P ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N
OUTPUTS: Q = [k] · P
1: R0 ← P∞, R1 ← P
2: for i from n− 1 to 0 do
3: b← ki,
4: R1−b ← R1−b +Rb

5: Rb ← 2Rb

6: end for
7: return R0

Table 1. Computing cost for algorithms based on Montgomery ladder

Algorithm In # regs. Total cost
Classic Montgomery ladder of Brier-Joye [Brier and Joye 2002] 8 n(12M + 13S) + 1I + 3M + 1S

X−only Montgomery ladder [Brier and Joye 2002, Izu and Takagi 2002a] 7 n(9M + 7S) + 1I + 14M + 3S
(X,Y )−only co−Z Montgomery ladder Alg. 15 in [Goundar et al. 2011] 6 n(8M + 6S) + 1I + 1M

The Montgomery Ladder of Brier-Joye is prone to the following attacks.

4.3.1. Relative Doubling Attack of Yen et al [Yen et al. 2006]

Yen et al. [Yen et al. 2006] proposed the relative doubling attack, which uses the same
chosen input (P and 2P ) as described in Fouque and Valettes’s doubling attack (Section
4.2.1). In this attack it is just required to determine the relation between two adjacent
secret scalar bits (i.e., if ki = ki−1 = 0 or ki = ki−1 = 1 holds), thereby decreasing the
number of key candidates.

4.4. Double-add algorithm of Joye [Joye 2007]

Joye’s double-add algorithm [Joye 2007] (Algorithm 3), like Montgomery ladder for
right-to-left scalar multiplications, always repeats the same pattern of effective opera-
tions. Table 2 shows the cost for the classic Joye’s double-add algorithm and the variant
using the Co-Z technique [Goundar et al. 2011]. There is no known SSCA attack against
this algorithm.

Algorithm 3 Joye’s double-add resistant against SPA
INPUTS: A point P ∈ E(Fq) and k = (kn−1, . . . , k1, k0)2 ∈ N
OUTPUTS: Q = [k] · P
1: R0 ← P∞, R1 ← P
2: for i from 0 to n− 1 do
3: b← ki,
4: R1−b ← 2R1−b +Rb

5: end for
6: return R0
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Table 2. Computing cost of Joye’s double-add
Algorithm In # regs. Total cost

Classic Joye’s double-add Alg. 5 in [Joye 2007] 10 n(13M + 8S) + 1I + 3M + 1S
Co-Z Joye’s double-add Alg. 14 in [Goundar et al. 2011] 8 n(9M + 7S) + 1I − 9M − 6S

4.5. Signed Digit Methods of Goundar et al. [Goundar et al. 2011]
In order to prevent SPA-type attacks, Goundar et al [Goundar et al. 2011] proposed the
use of the zeroless signed-digit expansion (ZSD) in the binary left-to-right or right-to-left
algorithms. The odd scalar k, is recoded with digits in the set {−1, 1}. The recoding is
on-the-fly, taking place inside the main loop (Algorithm 4).

The computational costs for the most efficient algorithms using the signed digit
method are shown in Table 3: the right-to-left signed-digit algorithm using the Co-Z
technique and the corresponding left-to-right algorithm. The latter also applies the (X,Y)-
only technique, which simplifies some of the curve operations, rendering the Z coordinate
(in projective coordinates) unnecessary and thus improving the cost.

Algorithm 4 Classic Signed-digit method: Left-to-right
INPUTS: Point P ∈ E(Fq), k = (kn−1, . . . , k1, k0)2 ∈ N with k0 = 1
OUTPUTS: Q = [k] · P
1: R0 ← P ; R1 ← P
2: for i from n− 1 to 1 do
3: κ← (−1)1+ki

4: R0 ← 2R0 + (κ)R1

5: end for
6: return R0

Table 3. Computing cost of Signed-digit method

Algorithm In # regs. Total cost
Right-to-left algorithm

Co−Z signed-digit algorithm Alg. 17 in [Goundar et al. 2011] 8 n(9M + 7S) + 1I − 9M − 6S
Left-to-right algorithm
(X,Y )−only co−Z signed-digit algorithm Alg. 16 in [Goundar et al. 2011] 6 n(8M + 6S) + 1I − 5M − 4S

4.6. Atomic Blocks of Chevallier-Mames et al. [Chevallier-Mames et al. 2004]
Atomic blocks [Chevallier-Mames et al. 2004] is a method to secure scalar multiplica-
tion against SSCA consisting in partitioning point operations into small homogeneous
atomic blocks, which cannot be distinguished from each other through SSCA. The origi-
nal atomic block of Chevallier-Mames has a (M,A,N,A) 11 structure of field operations.

One important assumption was made in the atomic blocks of Chevallier-
Mames: multiplication and squaring are indistinguishable from a side-channel per-
spective. This was later proved wrong by [Amiel et al. 2009] (see Section 4.1.3)
and [Hanley et al. 2011].

Longa and Miri [Longa and Miri 2008] presented a new atomic block structure
based on the sequence (S,N,A,M,N,A,A) 12 of field operations. Their atomic block

11Multiplication-Addition-Negation-Addition.
12Squaring-Negation-Addition-Multiplication-Negation-Addition-Addition.
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Table 4. Costs of scalar multiplication using the atomic blocks of Abarzúa and
Thériault [Abarzúa and Thériault 2012]

Algorithm In # regs. Total cost
Right-to-left algorithm
Modified Doubling and General Addition [Abarzúa and Thériault 2012] 16 n(8.5M + 8.5S) + 1I + 3M + 1S
Left-to-right algorithm

Doubling and Mixed Addition [Abarzúa and Thériault 2012] 11 n(7M + 7S) + 1I + 3M + 1S

structure have been applied to doubling, tripling and mixed addition for elliptic curves in
Jacobian coordinates.

Abarzúa and Thériault [Abarzúa and Thériault 2012] built new sets of atomic
blocks designed to protect against both SSCA and C-safe fault attacks. These atomic
blocks are structured with the sequence of field operations (S,N,A,A,M,A). They
applied these atomic blocks to various operations in Jacobian coordinates: doubling,
tripling, and quintupling, as well as mixed Jacobian-affine addition. Formulas were also
given to the general Jacobian addition and Modified-Jacobian doubling for use in right-
to-left scalar multiplication. Finally, they presented a variation of the Jacobian doubling
formula that requires the same number of blocks as the mixed Jacobian-affine addition,
essentially giving the atomic equivalent of unified formulas.

Table 4 summarizes the scalar multiplication costs using these atomic blocks in
the right-to-left and left-to-right algorithms.

5. Computational cost versus security comparison

For the computational cost comparison between different algorithms, we consider the fol-
lowing cost ratio for the finite field operations: S/M = 0.8 and I/M = 100. We also
consider that the scalar k is n = 192 bits in length. Tables 5 and 6 summarizes the
expected (theoretical) computational cost and the security issues of the different counter-
measures for scalar multiplication algorithms against SSCA.

Among the right-to-left algorithms, Joye’s double-add and Goundar’s signed-digit
algorithm are tied as the most efficient. Abarzúa and Thériault’s atomic blocks is the
most efficient left-to-right (and overall, in fact) scalar multiplication algorithm protected
against SSCA, and there is not any known attack against it.

Table 5. Comparison of protected left-to-right scalar multiplication algorithms
Countermeasure Coordinate Total Performance Security

Systems Cost n = 192 Problem
Unified Formulas for
Weierstrass curves

P n(13M + 5S) + 1I + 2M 3366M (ψ)
n(16M + 3S) + 1I + 2M 3634.8M (φ)

Double-and-Add-Always J n(10M + 9S) + 1I + 3M + 1S(a) 3406.2M (ϕ)

Montgomery Ladder for
Weierstrass curves

J n(8M + 6S) + 1I + 1M(b) 2558.6M -
n(9M + 7S) + 1I + 14M + 3S(c) 2919.6M -

Signed-digit J n(8M + 6S) + 1I − 5M − 4S(d) 2549.4M -

Atomic Blocks J n(7M + 7S) + 1I + 3M + 1S(e) 2523M (ξ)

Detailed description of computational cost:
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(a) [Abarzúa and Thériault 2012]: fast mixed addition (7M + 4S) and fast doubling
(3M + 5S) with a = −3.

(b) [Goundar et al. 2011]: (X, Y )-only co-Z Montgomery ladder, (8M + 6S) for each
bit.

(c) [Brier and Joye 2002, Izu and Takagi 2002a]: X-only Montgomery ladder, (9M +
7S) for each bit.

(d) [Goundar et al. 2011]: (X, Y )−only co-Z signed-digit algorithm, (8M + 6S) for
each bit.

(e) [Abarzúa and Thériault 2012]: addition (6M + 6S) and doubling (4M + 4S) 13.

Attacks:

(ψ) [Izu and Takagi 2002b, Walter 2004, Amiel et al. 2009, Schmidt et al. 2010].
(φ) [Stebila and Thériault 2006, Amiel et al. 2009, Amiel et al. 2007].
(ϕ) [Fouque and Valette 2003]: doubling attack.
(ξ) [Fouque and Valette 2003, Chen et al. 2009] 14: these attacks do not apply to

Abarzúa-Thériault atomic blocks.

Table 6. Comparison of protected right-to-left scalar multiplication algorithms
Countermeasure Coordinate Total Performance Security

Systems Cost n = 192 Problem
Joye’s double-add J n(9M + 7S) + 1I − 9M − 6S(f) 2889.4M -

Signed-digit J n(9M + 7S) + 1I − 9M − 6S(g) 2889.4M -

Atomic Blocks J n(8.5M + 8.5S) + 1I + 3M + 1S(h) 3041.4M (χ)

Detailed description of computational cost:

(f) [Goundar et al. 2011]: Co-Z Joye’s double-add, (9M + 7S) for each bit.
(g) [Goundar et al. 2011]: Co-Z signed-digit algorithm, (9M + 7S) for each bit.
(h) [Abarzúa and Thériault 2012]: general addition (9M+9S) and doubling (4M+4S).

Attacks:

(χ) Chen’s attack [Chen et al. 2009] 15. This attack does not apply to Abarzúa-Thériault
atomic blocks.

6. Conclusion and future work
Side-channel attacks are a growing threat to implementations of cryptographic systems.
This article examined the state of the art of algorithmic countermeasures for variable-base
scalar multiplication algorithms without precomputation. A comparison has been made
between several classes of proposed countermeasures regarding their computational costs,
claimed security properties and known attacks.

13In this case the algorithm performs nD + n
2A.

14These attacks works because the implementation does not avoid irregular breaks between atomic blocks
within the same group operation and distinct group operations.

15This experimental attack applies because the implementation does not avoid irregular breaks between
atomic blocks within the same group operation and distinct group operations.
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It is known that theoretical computational costs based on finite field operation
counts does not tell which algorithm is in fact the most efficient in practice. Implementa-
tions on the target platform are required to have a true picture of their real performance.
This is even more true when side-channel protected implementations are required, be-
cause implementation-level protections (e.g., against timing analysis) for one algorithm
may be more costly than those for another algorithm, as they may be dependent on the
structure of the algorithm.

Besides the performance results from a real implementation, a security assessment
of the selected algorithms is also required.
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