
Decentralized management of One-Time Pad key material
for a group

Jeroen van de Graaf

1Departamento de Ciência da Computação, UFMG

jvdg@dcc.ufmg.br

Abstract. Suppose a group of users share copies of a large file of truly random
bits, possibly distributed through portable USB sticks or external hard drives. In
this note we present a randomized, distributed key management scheme allowing
these users to use this file as a One-Time Pad key, without fear of two users using
the same key material twice.

1. Motivation and problem
Consider the following setting: a small group of people, who meet on some regular ba-
sis, collaborate on some project. They wish to protect the texts they themselves pro-
duce: emails, chats, some typed documents maybe. Suppose that these people are closely
watched by three- and four-letter agencies with lots of expertise in cryptography, like
journalists working on classified information. In this situation it makes perfect sense to
use the One-Time Pad (OTP). The amount of information to be encrypted is very small
relative to current storage media such as SD cards, USB memory sticks or external hard
drives, the latter being able to store 1 terabyte. So key transportation is possible through
personal meetings or through couriers, personal or commercial (FedEx).

As a concrete example, suppose that these persons share a 1 GB random file which
has been reliably distributed to each member by copying it to USB sticks on an air-gapped,
and otherwise protected, secure hardware platform. They would like to interchange doc-
uments over the internet, encrypting them using the file as an OTP key. We assume this
OTP key to be secret towards outsiders, in particular the spy agency.

However, it is well-known that an OTP key should never be used twice, since in
that case the OTP loses its security properties, and a statistical analysis allows partial
recovery of the plaintexts[2]. So the problem they need to solve is this: How to avoid
collision of the key material? How to avoid that different members use the same part of
the OTP key to encrypt different documents? How to decide who uses which part of the
OTP key file considering these constraints?

One solution is to have a central server controling key distribution, allocating parts
of the OTP key to the members. However, this would require the group members to be
online, and constitutes a single point of failure. It also constitutes a single point for a spy
agency to monitor: even not having access to the OTP key file, they might be able to find
out who communicates with whom, and the sizes of the messages sent. Traffic analysis,
in other words. So we prefer a solution without a central server.

Another solution is letting a sender choose a start position p at random, and use
the bits from that position onward as a OTP key. This p is included as meta data, sent in
the clear (for simplicity of exposition–we can do better), to inform the recipient where to

XIV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2014

326 c©2014 SBC — Soc. Bras. de Computação

find the position of the decrypt key. However, in this case there is a risk that two members
choose the same start position, and confidentiality is compromised. For concreteness,
suppose that the 1GB key file is divided into 1024 blocks of 1MB each, and that the group
members send 1MB messages. From the birthday paradox (see for instance [3, 4] we
know that after only 1.17

√
1024 ≈ 37 message we have 50% chance that a least two

messages collide and have been compromised. The question addressed in this note is: can
we do better? The answer is YES.

2. Towards a better solution

In order to reduce the collision probability, we let a sender choose several start positions,
and derive a OTP subkey from each. In other words, the sender chooses N start positions
at random, where N = 16 (this choice will be discussed later). Again, the random start
positions p1, . . . , pN are added as metadata to the encrypted message.

Now let M be a plaintext message of size 1MB, let K be the OTP key of 1GB,
and let C be the ciphertext. We divide K in 1024 blocks of size 1MB each, and define
Kp as the pth block, to be used as a OTP sub-key. Now randomly choose N different
start positions p1, . . . , pN with pi ∈ {1 . . . 1024}. Then compute the net OTP key as
K∗ := Kp1 ⊕Kp2 ⊕ . . . ⊕Kpn and the ciphertext C := M ⊕K∗, where ⊕ denotes the
bitwise xor operation.

Observe that now, for two parties to collide, they would have to choose the same
subset ofN positions in a total of 1024 possibilities. So the space of possibilities is of size(
1024
N

)
, and applying the approximation for the birthday paradox to this example, we obtain

1.17 ·
(
1024
N

)1/2
. For N = 16 this gives 1.17 ·

(
1024
16

)1/2 ≈ 1.17 · (1034.79)1/2 ≈ 2.91 · 1017.
This means that around 2.91 · 1017 messages would be needed to have a 50% change of
a collision occuring. Even though 50% is much higher than desirable, it shows that our
approach is promising.

We also address the efficiency of the scheme, analysing what percentage of the
available random key material can be used without making compromising security. We
claim that, even for reasonably small values of N , the users can essentially use 99% of
the random key material, while the probability of having collisions remains neglible.

3. More on the collision probability

The preceding approximation of the collision probability is incomplete, in the sense that
it calculates how many message can be sent in order to have a collision with 50% chance.
However, a collision is a catastrophic event, and its probability should be kept very low:
ε = 10−10 or less.

Let S be the total set size, and k be the number of elements chosen. (For the
birthday paradox S = 365, k = 23). Let ε = p(S, k) be the probability of having
a collision. A well-known approximation for p(S, k) = 1 − ε based on Taylor series
[3] is p(S, k) = e−(k(k−1))/2S . Approximating k − 1 ≈ k and taking logs on both
sides, we get k2 = 2 ln(1

ε
) × S. For the birthday paradox, with ε = 1/2, this gives

us k =
√

2 ln(2)
√
S ≈ 1.17

√
S, the approximation used in the first example using only

1 position, and which is known to give the correct answer, k = 23, for S = 365.

XIV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2014

327 c©2014 SBC — Soc. Bras. de Computação

Now using the numbers of the second example we have S =
(
1024
16

)
≈ 1034, and

setting ε = 10−10 we obtain k =
√

2 ln(1
1−ε)
√
S =

√
2(10−10)

√
1034 = 1.41 · 1012. Here

we used that ln(1
1−ε) ≈ ln(1+ε) ≈ ε for ε very small. This formula shows that the failure

probability q and the the size of the possibility space S balance fairly: if we want to fix
the number of messages k, but want to reduce ε by a factor 10 (say), we need to multiply
S by 10. The value k = 1.41 · 1012 is higher than we need, as the discussion in the next
section shows.

4. Higher order collisions
The preceding analysis cannot be the complete picture since the limit on the number of
message seems to be very high, whereas we know for sure that after 1024 messages of
1MB we must have exhausted the 1GB key material. The point is that the analysis above
only explores collisions between two different messages, whereas much more complicated
collisions are conceivable.

Let pr1, . . . , prA denote the OTP key positions chosen when encrypting message
r, where A is the total number of positions (above A = 1024). Let us describe these N
positions as a 0/1 row vector P , where

−→
P ri = 1 iff i ∈ {pr1, . . . , prN}. By vertically

listing the row vectors, we obtain a T ×A matrix over F2 called P , after T messages have
been sent. As soon as PT×A has a linear dependency we have a problem, since it means
that there exists a non-empty subset I ⊆ {1 . . . T} such that

⊕
i∈I Ci =

−→
0 , implying that⊕

i∈IMi =
⊕

i∈I K
∗
i . So if

⊕
i∈I K

∗
i = 0 the adversary knows that

⊕
i∈IMi = 0. The

collision described in the previous section is a special case of this, with #I = 2.

So we must answer the following question: if we have row vectors of size A, and
we keep on adding rows, what is the probability that the resulting matrix has a linear
dependency after having added T rows? Obviously, T cannot exceed A but the question
is how close we can get.

For random matrices, where each entry is 0 or 1 with 50% chance, the formula for
the expected dimension (rank) of PT×A is known ([1], §3.5). However, a downside using
this approach is that each row has an expected Hamming weight of 512, so we need to do
N = 512 file seeks and xors on average. We would like to reduce N to a much smaller
value, though very small values, like N = 1, 2 or 3, lead to collisions. But how about
N = 8 or N = 12? How large can T be before we have a linear dependency?

Though similar problems have been studied in the context of low-density parity
check codes, we have not yet been able to find a relevant reference or derive an exact
formula. Instead we did some computer simulations: we randomly generate a new row
vector of Hamming weightN , we check if the new vector is independent and use straight-
forward Gaussian elimination over F2 to eliminate all zeroes below the diagonal. The
results of these simulations for A = 1024 over 100 experiments are as follows:

N 1 2 3 4 5 6 7 8 10 12
avg 39.6 459.2 937.4 996.8 1014.9 1018.2 1021.4 1021.1 1021.3 1021.7
min 3 110 906 984 1008 1010 1015 1013 1014 1015
max 110 639 961 1013 1023 1023 1024 1023 1023 1023

These results show that forA = 1024 and a value forN as low as 8 the dimension-
ality of the matrix essentially behaves as a random matrix, meaning that the probability of

XIV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2014

328 c©2014 SBC — Soc. Bras. de Computação

linear dependencies is extremely low until T approaches A. Given the data it seems safe
to conjecture that for N ≥ 8 and T = 1000, the probability that a dependency occurs is
negligible. Finding an analytical formula for this probability is one of our main research
priorities; otherwise more efficient and more simulations are needed.

5. Some observations and conclusion
(1) The random OTP file should be stored in encrypted form, so that if it falls into the
wrong hands not everything is compromised. Security then degrades to cryptographic
security. Using counter mode with a strong symmetric cipher is a good option because
we want random access to the file. (2) The positions used could be included using sym-
metric encryption to make the adversary’s task harder. (3) One should include message
authentication such as an adaptation of Galois Counter Mode, where the OTP blocks are
interpreted as if they were the blocks generated by the counter mode. (4) To protect against
leakage of individual bits one could apply unconditional all-or-nothing transforms [5] be-
fore encryption. (5) Choosing the right block size (1MB in the example) depends on the
application. Maybe more than one size is useful.

Bruce Schneier once discarded the OTP as follows: “What a one-time pad system
does is take a difficult message security problem – that’s why you need encryption in the
first place – and turn it into a just-as-difficult key distribution problem. It’s a ‘solution’
that doesn’t scale well, doesn’t lend itself to mass-market distribution, is singularly ill-
suited to computer networks, and just plain doesn’t work.” I see his point, but there are
situations in which using the OTP makes perfect sense. People use email and WhatsApp
often with people they meet on a frequent basis. Why can’t they use the OTP here? We
should work harder to make this a viable option.

Note added in proof: One of the referees pointed out that the analysis presented
here does not include so-called meet-in-the-middle attacks, as presented in [6]. These
attacks imply that the actual security level of this scheme is much lower than what is
claimed, so assessing their impact is currently a top research priority.

References
[1] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Van-

gel, D. Banks, A. Heckert, J. Dray, S. Vo A Statistical Test Suite for Random and
Pseudorandom Number Generators for Cryptographic Applications. NIST Special
Publication 800-22 Revision 1a, April 2010.

[2] C. Shannon, Communication Theory of Secrecy Systems. Bell System Technical Journal
28 (4): 656–715..

[3] P. Halmos. I Want to Be a Mathematician. Springer-Verlag. ISBN 978-0387960784.

[4] Anonymous. Birthday Problem http://en.wikipedia.org/wiki/Birthday_
problem

[5] Stinson, D. Something About All or Nothing (Transforms). Designs, Codes and Cryptog-
raphy, Volume 22 Issue 2, March 2001, Pages 133–138

[6] K. Nishimura and M. Sibuya, Probability To Meet in the Middle. J. Cryptology, vol 2 (1),
1990.

XIV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2014

329 c©2014 SBC — Soc. Bras. de Computação

