
Software implementation of SHA-3 family using AVX2
Roberto Cabral, Julio López ∗

1Institute of Computing, University of Campinas
cabral@lasca.ic.unicamp.br, jlopez@ic.unicamp.br

Abstract. The Keccak algorithm was the winner of the competition organized by
NIST to choose the new standard hash algorithm, called SHA-3. In this work,
we present the details of our software implementation in conformity with draft
FIPS 202. We follow two approaches for the implementation of SHA-3, the first
one computes the digest for a single message, and the other one computes in
parallel four digests from four different messages. The performance for the sin-
gle implementation was accelerated using vector instructions of 128/256 bits,
and it is as fast as the best implementation optimized for 64 bits published on
eBASH. The parallel implementation is about 2.5× faster than the single mes-
sage implementation. The cryptographic primitive extendable-output functions,
which is part of the draft FIPS 202, were also implemented.

1. Introduction
The family of hash functions SHA (Standard Hash Algorithm) [FIPS 2008], was standard-
ized by the NIST (National Institute of Standards and Technology) and currently is used
in many applications and protocols. Recently, several attacks on hash algorithms of SHA
family were found. In 2005, [Biham et al. 2005] and [Rijmen and Oswald 2005] showed
collision attacks of reduced versions of SHA-1. In the same year, [Wang et al. 2005]
showed an attack that theoretically breaks the resistance to collision. The second version
of SHA, SHA-2, is based on SHA-1 and already had attacks in its reduced versions, as is
shown in [Indesteege et al. 2009]. In 2007, NIST started a new competition to select the
new version of SHA algorithm, called SHA-3 [NIST 2007]. After two rounds of competi-
tion, five finalists were chosen: BLAKE, Grøstl , JH, Keccak and Skein. In 2012, Keccak
[Bertoni et al. 2008] was announced as the winner.

This work shows how to take advantage of the new vector instructions
(AVX/AVX2) introduced on Intel R© Architecture Processors to implement the SHA-3
family. We developed a sequential and a parallel versions of the SHA-3 hash function
for the four security levels 112, 128, 192 and 256 bits; in addition, the extendable-output
functions (XOFs) were implemented for 128 and 256 bit security levels.

2. AVX2
In 2013 was released the newest Intel micro-architecture, called Haswell. This architec-
ture contains the AVX2 (Advanced Vector Extensions 2) instruction set, which operates
on 128-bit or 256-bit registers. Unlike the former AVX, AVX2 has vector instructions
to perform integer arithmetic operations and permutations of words (8 - 64 bits) within
registers. Using such instructions allow us to implement SHA-3 exploiting the data level
parallelism present; in Table 1 one can see the instructions used in our implementation.

∗The authors were supported in part by the Intel Labs University Research Office.

XIV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2014

330 c©2014 SBC — Soc. Bras. de Computação



Category Instructions Latency
Logical XOR, AND, ANDN 1,1,1
Shift SHIFT, VSHIFT 1,2
Permutation SHUFFLE,VPERM 1,3
Merge UNPACK, VBLEND, PRBLEND 1,1,3

Table 1. The main AVX2 instructions used in our implementation of SHA-3.

3. SHA-3
According to the draft FIPS 202 [FIPS 2014], SHA-3 family consists of six functions,
four of them are hash functions and the others are extendable-output functions. The
hash functions are SHA3-224, SHA3-256, SHA3-384 and SHA3-512 and the XOFs are
SHAKE128 and SHAKE256, in Table 2 are shown the parameters of these functions.

An extendable-output function maps an arbitrary-length message producing a
variable-length digest. This function can be used when an application requires a cryp-
tographic hash function with a non-standard digest length. We note that the security of
these special functions is directly related to the size of the digest.

The SHA-3 family shares a sponge construction structure, which is a simple
iterated construction for building a function with variable-length input and arbitrary-
length output based on a permutation f operating on a state of r + c = 1, 600 bits
[Bertoni et al. 2007]; the state can be visually represented as a 5 × 5 matrix of 64-bit
words.

The permutation function is divided into five steps: θ, ρ, π, χ and ι; the following,
a short description of these steps:

1. In the θ step is computed an XOR of each word of the state with the parity of the
left column and the right column rotated one bit.

2. In the ρ step each word of the state is rotated a fixed amount of bits.
3. In the π step the words of the state are permuted.
4. In the χ step is processed a non-linear function between the elements of the same

row.
5. In the ι step is computed an XOR between the first element of the state with a

constant value.

4. Implementations
The SHA-3 algorithm processes a state of 25 words of 64 bits using a permutation function
f , which is composed of some steps that can be vectorized. We stored the state among

Function Bitrate (r) Capacity (c) Security Level
SHA3-224 1,152 448 112
SHA3-256 1,088 512 128
SHA3-384 832 768 192
SHA3-512 576 1,024 256
SHAKE128 1,344 256 min(N/2, 128)
SHAKE256 1,088 512 min(N/2, 256)

Table 2. SHA-3 parameters.

XIV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2014

331 c©2014 SBC — Soc. Bras. de Computação



registers in different ways for each implementation.

4.1. Single message hash computation
We developed two implementations of hash function with a single message; in the first
one we represent the state as 13 registers of 128 bits, this allow us to vectorize the steps
θ, ρ and χ processing two words per instruction; in the other one, the state is represented
as 7 registers of 256 bits, thus we can process four words per instruction. The step π can
not be vectorized, but there is an AVX2 instruction to perform this permutation, however,
this instructions is too expensive for registers of 256 bits, as we shown in Table 1.

These two implementations can also be adapted to the XOF functions, the only
difference is that in the squeezing phase the computation is performed just on the last
state produced after the absorbing phase, thus the computation is mainly performed in
registers.

4.2. 4-way hash computation
In this implementation, the state is represented as 25 registers of 256 bits and the oper-
ations between registers are performed totally in parallel, achieving the computation of
four digests. Here the π permutation is implemented faster than in the single message
implementation, additionally we can compute four words per instruction in all the steps,
thus giving a significant speedup; the only drawback of this implementation is the amount
of registers needed to store the four states, because the Haswell micro-architecture has
only 16 available registers.

5. Preliminary results
We benchmark our implementations on a Core-i7 4770 processor, following the guide-
lines on [Bernstein and Lange 2014]. In Figure 1 we show the cycles per byte to compute
the digests from messages of size 4KB to 2GB.

Figure 1. Cycles per byte to compute the digest from messages of size 4KB to
2GB.

The x64 implementation, developed by Ronny Van Keeris, is the fastest on eBASH
for this processor. This implementation was optimized for 64 bits and does not use vector
instructions.

XIV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2014

332 c©2014 SBC — Soc. Bras. de Computação



Absorbing Squeezing
SHAKE128 7.79 7.7
SHAKE256 9.62 9.24

Table 3. Cycles per byte of SHAKE from a message of 4 KB.

Table 3 shows the cycles per byte to compute the absorbing and the squeezing
phase in the XOFs implementations for a message of 4KB; as one can see the absorbing
phase is more expensive than the squeezing phase, this happens because in the squeezing
phase we do not need to process the message with the state, we only get the first r bits
from state and then, process the state again through the function f until get all the digest
required.

6. Conclusion
These preliminary results show that the use of vector instructions are useful for the effi-
cient implementation of SHA-3. Using the AVX/AVX2 instructions allow us to achieve
almost the same performance than the fastest 64-bit implementation for a single mes-
sage setting. We observed that unlike the 64-bit implementation, the use of permutation
instructions between vector registers is an expensive operation, since each permutation
takes 3 clock cycles. For the 4-way setting, we obtained 2.5× of speedup against the
fastest single message implementation. This work is currently in progress and we are still
looking for new optimization techniques to improve the results.

References
Bernstein, D. J. and Lange, T. (2014). ebacs: Ecrypt benchmarking of cryptographic

systems.

Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G. (2007). Sponge functions. In
ECRYPT hash workshop, volume 2007. Citeseer.

Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G. (2008). Keccak specifications.
Submission to NIST, 42.

Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., and Jalby, W. (2005). Collisions
of sha-0 and reduced sha-1. In Advances in Cryptology–EUROCRYPT 2005, pages 36–
57. Springer.

FIPS, P. (2008). 180-3. Secure Hash Standard.

FIPS, P. (2014). 202. SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions.

Indesteege, S., Mendel, F., Preneel, B., and Rechberger, C. (2009). Collisions and other
non-random properties for step-reduced sha-256. In Selected Areas in Cryptography,
pages 276–293. Springer.

NIST (2007). The sha-3 cryptographic hash algorithm competition.

Rijmen, V. and Oswald, E. (2005). Update on sha-1. In Topics in Cryptology–CT-RSA
2005, pages 58–71. Springer.

Wang, X., Yin, Y. L., and Yu, H. (2005). Finding collisions in the full sha-1. In Advances
in Cryptology–CRYPTO 2005, pages 17–36. Springer.

XIV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2014

333 c©2014 SBC — Soc. Bras. de Computação


