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Abstract. AVX2 is the newest instruction set on Intel Haswell processor that
provides simultaneous execution of operations over vectors of data. This work
presents the advances on the applicability of AVX2 on the development of prime
field arithmetic, which is a building block for the construction of Elliptic Curve
Cryptosystems. Having as a goal the efficient and secure implementation of
prime field arithmetic, we show some advantages that vector instructions offer
compared against 64-bit implementations. In order to validate the results of our
research, we present a benchmark obtained on a Haswell processor.

1. Research context.
Our research is focused on the efficient implementation of prime field arithmetic, we aim
to use the most efficient techniques that can benefit from the capabilities of the recent
micro-architectures. Implementing prime field operations not only involves the correct-
ness of operations, but also efficient and secure processing. The first goal is achieved by
speeding up operations, extracting parallelism over data and/or using a special instruction
set. Nonetheless, in order to meet the security requirement, the implementation requires
a detailed information flow analysis, also to avoid secret-dependent code branching and
avoiding calculations that could reveal fragments of secret data. In this work, we accom-
plish both requirements, the first one through the use of AVX2 vector instructions and the
second one through the development of constant time execution code.

2. The vector instruction set: AVX2.
Observing the trend of contemporary processors, most of them have replicated execution
units to accomplish with out-of-order execution, thus exploiting the instruction level par-
allelism present on programs. Another interesting trend on the micro-architectures design
is the use of SIMD (Single Instruction Multiple Data) processing, i.e. processors are pro-
vided of vector instructions that simultaneously compute an operation on every element
of vector registers. Haswell micro-architecture is an example of this trending, it includes
sixteen 256-bit registers (hereafter referred as YMM registers) and is the first one to support
the AVX2 vector instruction set.

The AVX2 set includes instructions mostly oriented to perform integer arithmetic
operations, variable-shift on registers and permutations of 64-bit words between registers.
The release of AVX2 extends most of the integer arithmetic from 2 to 4 simultaneous
operations per instruction. Instructions for integer arithmetic are so attractive for the
implementation of prime field arithmetic, where usually the size of operands implies the
use of multi-precision arithmetic, i.e. the size of operands is greater than the size of the
native word machine (nowadays 64 bits).
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3. Prime field arithmetic.
Prime fields are denoted as Fp where p is a prime number. Usually, the elements of Fp
are represented by the integers in the set {0, 1, . . . , p − 1}. Addition (ADD), subtraction
(SUB) and multiplication (MUL) of elements are performed modulo p. Modular multi-
plication is processed in two steps: first, the integer multiplication (iMUL) of both inputs
is computed, and secondly a modular reduction (MOD) is performed. The special case of
integer multiplication when both inputs are equal, it is known as integer squaring (iSQR).

We focus on the application of prime fields for the construction of Elliptic Curve
Cryptography (ECC) schemes. ECC is well known to provide stronger security with
shorter key lengths when compared to the RSA cryptosystem. Recently, new propos-
als for selecting parameters of elliptic curves and prime fields were published, such as
[Bernstein 2006, Bos et al. 2014, Aranha et al. 2013]. These proposals claim that such
new parameters will accelerate the execution performance of prime field operations. Ta-
ble 1 shows the prime fields recently proposed and also the prime field currently used in
standardized ECC by NIST1 [Gallagher et al. 2009].

4. The radix-R representation.
Here is presented an efficient representation of prime field elements, called radix-64. In
order to understand what radix-R is, first we will show two examples of commonly used
representations:

1. The size of primes is always greater than 64 bits, which is the size of registers
in commodity processors. We can use an array of 64-bit words to store elements
of the prime field. This kind of approach is commonly used in multi-precision
mathematical libraries and is also known as radix-64 representation.

2. In [Bernstein 2006], author proposes the use of radix-25.5, for which an element
A ∈ Fp is represented by the following polynomial: A(x) =

∑k−1
i=0 aix

i where k
is the number of floating point registers used to represent that element and each ai
is bounded according to the precision of floating point registers.

These representations can be generalized to radix-R representation, thus an el-
ement A ∈ Fp is represented by the following polynomial: A(x) =

∑k−1
i=0 aix

i where

ai ∈ [0, 2R) are integer coefficients and k =
⌈
lg(p)
R

⌉
is the number of R-bit words used to

representA. Now, we will describe the algorithms used to compute prime field operations
using radix-R representation:

• Addition/Subtraction. Given two elements A and B on radix-R representation
we can compute C = A ± B as ci = ai ± bi for i ∈ [0, k). Notice that these
operations are totally independent and admit a parallel processing.
• Integer multiplication. It computes an intermediate result Ci+j ←

∑
aibj for

i, j ∈ [0, k), here k2 word multiplications are processed. These operations have
no carry dependencies between them.
• Modular reduction. When pseudo-Mersenne primes are used (p = 2m − c),

modular reduction only requires to process Ci = Ci + cCi+k, for i ∈ [0, k).
Notice that for these primes modular reduction can be done faster than for the
NIST’s primes.

1NIST stands for National Institute of Standards and Technology.
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5. Efficient implementation using AVX2.

As one can see, we can benefit from the parallelism presented on the operations . Now, we
will present an efficient and secure implementation of prime field arithmetic in radix-R
representation using AVX2 instructions. A similar work of this implementation is found in
[Bernstein and Schwabe 2012], where NEON vector instructions were used to accelerate
cryptographic primitives using an ARM architecture.

Since a YMM register stores four 64-bit words, our implementation uses t =
⌈
k
4

⌉

YMM registers to store the integer coefficients of radix-64 representation. In order to com-
pute modular addition, the AVX2 instruction set contain the VPADDQ (VPSUBQ for sub-
traction) instruction that computes four simultaneous 64-bit additions. However the last
carry bit of each addition is lost. In order to overcome this issue, we restrict the R param-
eter to be R < 64, so each 64-bit operation has at least an extra available bit to store the
carry bit produced by the addition operation. This restriction also applied to the case of
integer multiplication. In order to compute A×B, one has to add k intermediate products
aibj for i, j ∈ [0, k). To determine a bound for R we have:

k(2R − 1)2 < 264

log2(k) + 2R < 64

log2(log2(p))− log2(R) + 2R < 64

R− 1
2
log2(R) <

1
2
(64− log2(log2(p))). (1)

Then, the larger integer that holds (1) is R = 30, which nicely fits with the interface of
VPMULDQ instruction. This instruction performs four simultaneous 32× 32 bit multi-
plications. Finally, in the computation of the modular reduction, the terms cCi+k are
computed using shifts on vector registers instead of multiplications, and this can be done
easily through the use of VPSLLQ and VPSRLQ instructions.

6. Preliminary results.

In the Table 1, we show the timings for the main operations on prime fields. The radix-64
row refers to the implementation that uses native 64-bit instructions, such as a 64× 64 bit
multiplier (MULX instruction) and a 64-bit adder that computes addition with carry (ADC
instruction). The results of our AVX2 implementation are shown in the vec-radix-30 row.

We highlight that most of our timings using AVX2 instructions are competitive
with the radix-64 implementation, for example, a modular multiplication (MUL) using
the Curve25519’s prime can be computed in 52 clock cycles on radix-64; while using the
AVX2 implementation, it takes only 53 clock cycles, achieving almost the same perfor-
mance. For the case of modular squaring (SQR), when is compared to radix-64 imple-
mentation, our implementation is faster by 4 and 9 clock cycles for the Curve25519 and
Curve1174 prime fields, respectively.

Modular addition and subtraction operations present almost the same performance
8-9 clock cycles. For vector implementation, we have thatR < 32, this allows to compute
more than one modular addition before a coefficient reduction be needed. The coefficient
reduction is an operation that reduces each coefficient to the range [0, 2R) propagating the
carries to the next significant coefficient.
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NISTp256 Curve25519 Curve1174
F2256−2224+2192+296−1 F2255−19 F2251−9

iMUL iSQR ADD MOD ADD MOD ADD MOD
radix-64 37 30 14 53 8 15 8 15
vec-radix-30 35 23 9 60 9 18 9 13

Table 1. Clock cycles measured to process each prime field operation on a
Haswell processor Intel Core i7-4770.

The idea behind radix-R representation is to enable parallel computation that
AVX2 vector instructions can take advantage. Our results show that the use of AVX2
is worthwhile on the implementation of prime field arithmetic. However, this represen-
tation also presents some side issues that results on additional operations, such as the
coefficient reduction which takes around 28 clock cycles to be computed.

We keep investigating on optimization techniques for coefficient reduction and
the application of the lazy reduction technique in order to minimize the impact of this
modular operation. In order to compare our results against other implementations we will
make a proof of concept on an elliptic curve cryptography protocol.

Acknowledgments: We would like to thank the anonymous reviewers for their
helpful suggestions and comments. This research was supported in part by the Intel Labs
University Research Office.

References
Aranha, D. F., Barreto, P. S. L. M., Pereira, G. C. C. F., and Ricardini, J. E. (2013).

A note on high-security general-purpose elliptic curves. Cryptology ePrint Archive,
Report 2013/647. http://eprint.iacr.org/.

Bernstein, D. and Schwabe, P. (2012). NEON Crypto. In Prouff, E. and Schaumont, P.,
editors, Cryptographic Hardware and Embedded Systems – CHES 2012, volume 7428
of Lecture Notes in Computer Science, pages 320–339. Springer Berlin Heidelberg.

Bernstein, D. J. (2006). Curve25519: New Diffie-Hellman Speed Records. In Yung, M.,
Dodis, Y., Kiayias, A., and Malkin, T., editors, Public Key Cryptography, volume 3958
of Lecture Notes in Computer Science, pages 207–228. Springer.

Bos, J. W., Costello, C., Longa, P., and Naehrig, M. (2014). Selecting Elliptic Curves
for Cryptography: An Efficiency and Security Analysis. Cryptology ePrint Archive,
Report 2014/130. http://eprint.iacr.org/.

Gallagher, P., Foreword, D. D., and Director, C. F. (2009). FIPS PUB 186-3 FED-
ERAL INFORMATION PROCESSING STANDARDS PUBLICATION Digital Sig-
nature Standard (DSS).

XIV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2014

341 c©2014 SBC — Soc. Bras. de Computação


