
Dynamic Detection of Address Leaks

Gabriel Silva Quadros, Rafael M. Souza and Fernando Magno Quintão Pereira

1Departamento de Ciência da Computação – UFMG
Av. Antônio Carlos, 6627 – 31.270-010 – Belo Horizonte – MG – Brazil

{gabrielquadros,rafaelms,fernando}@dcc.ufmg.br

Abstract. An address leak is a software vulnerability that allows an adversary to
discover where a program is loaded in memory. Although seemingly harmless,
this information gives the adversary the means to circumvent two widespread
protection mechanisms: Address Space Layout Randomization (ASLR) and Data
Execution Prevention (DEP). In this paper we show, via an example, how to ex-
plore an address leak to take control of a remote server running on an operating
system protected by ASLR and DEP. We then present a code instrumentation
framework that hinders address disclosure at runtime. Finally, we use a static
analysis to prove that parts of the program do not need to be instrumented;
hence, reducing the instrumentation overhead. We claim in this paper that the
combination of the static and dynamic analyses provide us with a reliable and
practical way to secure software against address leaks.

Resumo. Um vazamento de endereço é uma vulnerabilidade de software que
permite a um adversário descobrir em que parte da memória estão carrega-
dos os diversos módulos que compõem um programa. Embora aparente-
mente inócua, esse tipo de informação dá ao adversário meios para con-
tornar dois populares mecanismos de proteção usados em sistemas opera-
cionais: a randomização de espaços de endereçamento (ASLR) e a Prevenção
de Execução de Dados (DEP). Neste artigo mostraremos, via um exemplo,
como explorar vazamentos de endereço para tomar controle de um servidor
remoto executando sobre um sistema operacional protegido tanto por ASLR
quanto DEP. Mostraremos em seguida um arcabouço para instrumentação de
programas que previne vazamentos em tempo de execução. Finalmente, nós
usaremos uma análise estática de código que prova que algumas partes do
programa não precisam ser instrumentadas para reduzir o custo imposto pela
instrumentação. Defendemos assim, neste artigo a tese de que a combinação
de análises estáticas e dinâmicas é um recurso efetivo e prático para proteger
programas contra o vazamento de endereços.

1. Introduction

Modern operating systems use a protection mechanism called Address Space Layout Ran-
domization (ASLR) [Bhatkar et al. 2003, Shacham et al. 2004]. This technique consists
in loading the binary modules that form an executable program at different addresses
each time the program is executed. This security measure protects the software from
well-known attacks, such as return-to-libc [Shacham et al. 2004] and return-oriented-
programming (ROP) [Buchanan et al. 2008, Shacham 2007]. Because it is effective, and

XII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2012

44 c©2012 SBC — Soc. Bras. de Computação

easy to implement, ASLR is present in virtually every contemporary operating system.
However, this kind of protection is not foolproof.

Shacham et al. [Shacham et al. 2004] have shown that address obfuscation meth-
ods are susceptible to brute force attacks; nevertheless, address obfuscation slows down
the propagation rate of worms that rely on buffer overflow vulnerabilities substantially.
However, an adversary can still perform a surgical attack on an ASLR protected program.
In the words of the original designers of the technique [Bhatkar et al. 2003, p.115], if “the
program has a bug which allows an attacker to read the memory contents”, then “the at-
tacker can craft an attack that succeeds deterministically”. It is this very type of bug that
we try to prevent in this paper.

In this paper we focus on dynamic techniques to prevent address leaks. We have
developed an instrumentation framework that automatically converts a program into a
software that cannot contain address leaks. This transformation, which we introduce in
Section 2, consists in instrumenting every program operation that propagates data. In this
way, we know which information might contain address knowledge, and which informa-
tion might not. If harmful information reaches an output point that an adversary can read,
the program stops execution. Thus, by running the instrumented, instead of the original
software, the user makes it much harder for an adversary to perform attacks that require
address information to succeed.

Non-surprisingly, the instrumentation imposes on the target program a very large
runtime overhead: the sanitized program can be as much as 10x slower than the original
code. However, we use a static program analysis to reduce this overhead. As we explain in
Section 2.1, we only instrument the pieces of code that can deal with potentially harmful
data. Innocuous operations, which the static analysis identifies, are not instrumented. We
are currently using the static analysis that we had previously designed and implemented to
detect address disclosure vulnerabilities [Quadros and Pereira 2011]. The combination of
static analysis and dynamic instrumentation lets us produce code secured against address
leaks that is, on the average, less than 50% slower than the original code.

We have implemented our instrumentation framework, and the companion static
analysis in the LLVM compiler [Lattner and Adve 2004]. The experiments that we de-
scribe in Section 3 show encouraging results. We have used our tool to analyze a large
number of programs, and in this paper we show results for two well-known benchmark
collections: FreeBench and Shootout. Instrumented programs can be 2% to 1,070%
slower than the original programs, with an average slowdown of 490%. The static analysis
contributes substantially to decrease this overhead. By only instrumenting the operations
that the static analysis has not been able to prove safe, we get slowdowns ranging from
0% to 420%, with an average slowdown of 44%.

1.1. Address Leak in one Example

We illustrate the address disclosure vulnerability via the echo server seen in Listing 1.
The information leak in this example let us perform a stack overflow attack on a 32-bit
machine running Ubuntu 11.10, an operating system protected by ASLR and DEP. In
this example, the vulnerable program keeps listening for clients at port 4000, and when
a client connects, it echoes every data received. DEP hinders a buffer overflow attach in
the classic Levy style [Levy 1996], because it forbids the execution of writable memory

XII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2012

45 c©2012 SBC — Soc. Bras. de Computação

space. However, we can use a buffer overflow to divert program execution to one of
libc’s functions. Such functions allows us to fork new processes, to send e-mails and
to open socket connections, for instance. In this example we shall open a telnet terminal
in the server’s machine. This type of attack, usually called return-to-libc, depends on
the adversary knowing the address of the target function, e.g., libc’s system in this
example. This information is not easily available in a ASLR protected system, unless the
target software contains an address leak.

Listing 1. An echo server that contains an address leak.

1 void * l i b c ;
2 void p r o c e s s i n p u t (char * i n b u f , i n t l en , i n t c l i e n t f d) {
3 char l o c a l b u f [4 0] ;
4 i f (! s t r c m p (i n b u f , ” debug\n ”)) {
5 s p r i n t f (l o c a l b u f , ” l o c a l b u f %p\ nsend () %p\n ” , l o c a l b u f ,
6 dlsym (l i b c , ” send ”)) ;
7 } e l s e { memcpy (l o c a l b u f , i n b u f , l e n) ; }
8 send (c l i e n t f d , l o c a l b u f , s t r l e n (l o c a l b u f) , 0) ;
9 }

10 i n t main () {
11 i n t sockfd , c l i e n t f d , c l e n , l e n ;
12 char i n b u f [5 0 0 1] ;
13 s t r u c t s o c k a d d r i n myaddr , a dd r ;
14 l i b c = d lo pe n (” l i b c . so ” , RTLD LAZY) ;
15 s o c k f d = s o c k e t (AF INET , SOCK STREAM, IPPROTO TCP) ;
16 myaddr . s i n f a m i l y = AF INET ;
17 myaddr . s i n a d d r . s a d d r = h t o n l (INADDR ANY) ;
18 myaddr . s i n p o r t = h t o n s (4 0 0 0) ;
19 b ind (sockfd , (s t r u c t s o c k a d d r *)&myaddr , s i z e o f (myaddr)) ;
20 l i s t e n (sockfd , 5) ;
21 c l e n = s i z e o f (a dd r) ;
22 whi le (1) {
23 c l i e n t f d = a c c e p t (sockfd , (s t r u c t s o c k a d d r *)& addr , &c l e n) ;
24 l e n = r e c v (c l i e n t f d , i n b u f , 5000 , 0) ;
25 i n b u f [l e n] = ’ \0 ’ ;
26 p r o c e s s i n p u t (i n b u f , l e n + 1 , c l i e n t f d) ;
27 c l o s e (c l i e n t f d) ;
28 }
29 c l o s e (s o c k f d) ; d l c l o s e (l i b c) ;
30 re turn 0 ;
31 }

The information leak in our example occurs at function process input.
Whenever the server recognizes the special string “debug” it returns two internal ad-
dresses: the base of localbuf, which is a stack address, and the address of send,
a function from libc. To build the exploit, we use the address of send to calculate the
address of system and exit, two functions present in libc. We then use the stack
address of localbuf’s base pointer, to find the address of system’s arguments. A
Python script that performs this exploit is shown in Listing 2. This script makes two con-
nections to the echo server. In the first connection it sends the string “debug” to read back
the two leaked addresses. In the second connection it sends the malicious data to create a
connect-back shell. The malicious data is composed of: 52 A’s to fill the stack until before
the return pointer; the address of system, calculated from the leaked address of send;

XII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2012

46 c©2012 SBC — Soc. Bras. de Computação

the address of exit, also computed from the address of send; the address of the string
with the command to create the connect-back shell, calculated from localbuf’s base
pointer; and finally the string containing the command to create the shell. By overwriting
the return address of process input with the address of system we gain control of
the remote machine. By calling exit at the end of the exploit we ensure that our client
terminates quietly after giving us a shell.

Listing 2. A Python script that exploits the echo server.

1 import s o c k e t
2 import s t r u c t
3 c = s o c k e t . s o c k e t (s o c k e t . AF INET , s o c k e t . SOCK STREAM)
4 c . c o n n e c t ((’ l o c a l h o s t ’ , 4 0 0 0))
5 buf = ” debug\n ”
6 c . send (buf)
7 buf = c . r e c v (5 1 2)
8 l e a k e d s t a c k a d d r = i n t (buf [9 : buf . f i n d (’\n ’)] , 16)
9 l e a k e d s e n d a d d r = i n t (buf [2 7 : buf . r f i n d (’\n ’)] , 16)

10 c . c l o s e ()
11 c = s o c k e t . s o c k e t (s o c k e t . AF INET , s o c k e t . SOCK STREAM)
12 c . c o n n e c t ((’ l o c a l h o s t ’ , 4 0 0 0))
13 command = (’ rm − f b a c k p i p e && mknod b a c k p i p e p &&’
14 ’ t e l n e t l o c a l h o s t 8080 0<b a c k p i p e | / b i n / bash 1>b a c k p i p e \x00 ’)
15 command addr = l e a k e d s t a c k a d d r + 64
16 s y s t e m a d d r = l e a k e d s e n d a d d r − 0 x96dd0 # s y s t e m ()
17 s y s t e m r e t a d d r = s y s t e m a d d r − 0 xa140 # e x i t ()
18 buf = (’A’ * 52 + s t r u c t . pack (’ I ’ , s y s t e m a d d r) +
19 s t r u c t . pack (’ I ’ , s y s t e m r e t a d d r) +
20 s t r u c t . pack (’ I ’ , command addr) + command)
21 c . send (buf)
22 c . c l o s e ()

2. The Proposed Solution

In this section we describe our solution to detect address leaks at runtime. We start by
defining a core language containing the constructs from imperative languages that play a
role in the address disclosure vulnerability. On top of this language we define an instru-
mentation language. Programs implemented with the instrumentation syntax can track
the flow of information at runtime. We then proceed to describe a type system that detects
address leaks statically. This type system let us reduce the amount of instrumentation
necessary to safe-guard programs against address leaks.

Angels: the Subject Language. We define a toy language, which we call Angels, to
explain our approach to dynamic detection of address leaks. Angels is an assembly-like
language, whose syntax is given in Figure 1. This language has six instructions that deal
with the computation of data, and three instructions that change the program flow. The six
data related instructions represent constructs typical of actual C or C++ programs, as the
table in Figure 2 illustrates. We use adr to model language constructs that read the ad-
dress of a variable, namely the ampersand (&) operator and memory allocation functions
such as malloc, calloc or realloc. Simple assignments are represented via the
instruction mov. We represent binary operations via the add instruction, which sums up
two variables and dumps the result into a third location. Loads to and stores from memory

XII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2012

47 c©2012 SBC — Soc. Bras. de Computação

(Variables) ::= {v1, v2, . . .}

(Data Producing Instructions) ::=
– (Get variable’s address) ∣ adr(v1, v2)

– (Assign to variable) ∣ mov(v1, v2)

– (Binary addition) ∣ add(v1, v2, v3)

– (Store into memory) ∣ stm(v0, v1)

– (Load from memory) ∣ ldm(v1, v0)

– (Print the variable’s value) ∣ out(v)

(Control flow Instructions) ::=
– (Branch if zero) ∣ bzr(v, l)

– (Unconditional jump) ∣ jmp(l)

– (Halt execution) ∣ end

(φ-function - data selector) ∣ phi(v,{v1 ∶ l1, . . . , vk ∶ lk})

Figure 1. The syntax of Angels.

are modeled by ldm and stm. Finally, we use out to denote any instruction that gives
information away to an external user. This last instruction represents not only ordinary
printing operations, but also native function interfaces. For instance, a JavaScript program
usually relies on a set of native functions to interact with the browser. A malicious user
could use this interface to obtain an internal address from the JavaScript interpreter.

We work with programs in the Static Single Assignment (SSA)
form [Cytron et al. 1991]. This intermediate representation has the key property
that every variable name has only one definition site in the program code. To ensure this
invariant, the SSA intermediate representation uses φ-functions, a special notation that
does not exist in usual assembly languages. Figure 1 shows the syntax of φ-functions.
This representation is not necessary for computational completeness; however, as we
will see in Section 2.1, it simplifies the static analysis of programs. Additionally, the
SSA format is used by our baseline compiler, LLVM, and many other modern compilers,
including gcc. Thus, by adopting this representation we shrink the gap between our
abstract formalism and its concrete implementation.

Figure 3 describes the small-steps operational semantics of Angels. We let an
abstract machine be a five-element tuple ⟨P,pc′,pc,Σ,Θ⟩. We represent the program P
as a map that associates integer values, which we shall call labels, with instructions. We
let pc be the current program counter, and we let pc’ be the program counter seen by
the last instruction processed. We need to keep track of the previous program counter to
model φ-functions. These instructions are used like variable multiplexers. For instance,
v = φ(v1 ∶ l1, v2 ∶ l2) copies v1 to v if control comes from l1, and copies v2 to v if control
comes from l2. The previous program counter points out to us the path used to reach
the φ-function. Σ, the memory, is an environment that maps variables to integer values,
and Θ is an output channel. We use the notation f[a ↦ b] to denote the updating of
function f ; that is, λx.x = a ? b ∶ f(x). For simplicity we do not distinguish a memory of
local variables, usually called stack, from the memory of values that out-live the functions
that have created them, usually called heap. We use a function ∆ to map the names of

XII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2012

48 c©2012 SBC — Soc. Bras. de Computação

v1 = &v2 adr(v1, v2)

v1 = (int*)malloc(sizeof(int)) adr(v1, v2) where

v2 is a fresh memory location

v1 = *v0 ldm(v1, v0)

*v0 = v1 stm(v0, v1)

*v1 = *v0 ldm(v2, v0), where v2 is fresh

stm(v1, v2)

v1 = v2 + v3 add(v1, v2, v3)

*v = v1 + &v2 adr(v3, v2), where v3 is fresh

add(v4, v1, v3), where v4 is fresh

stm(v, v4)

f(v1, &v3), where f is declared mov(v2, v1)

as f(int v2, int* v4); adr(v4, v3)

Figure 2. Examples of syntax of C mapped to instructions of Angels.

variables to their integer addresses in Σ. We represent the output channel as a list Θ. As
we see in Rule [OUTSEM], the only instruction that can manipulate this list, by consing
a value on it, is the out instruction. We denote consing by the operator ∶∶, as in ML and
Ocaml.

Angels is a Turing Complete programming language. Given an infinite surplus
of variables, we can implement a Turing Machine on it. Figure 4 shows an example
of a program written in Angels. The program in Figure 4(a) prints the contents of an
array, and then the base address of the array itself. Figure 4(b) shows the equivalent
Angels program. We have outlined the label of the first instruction present in each basic
block of this example. We have also marked in gray the initial memory used in this
example. Angels does not have instructions to load constants into variables; however, we
compensate this omission by starting programs with a non-empty memory.

The program in Figure 4 contains an address disclosure vulnerability, a notion
that we introduce in Definition 2.1. An Angels program P contains such a vulnerability
if an adversary can reconstruct the map ∆ for at least one variable that P uses. Notice
that we are not assuming that P terminates. We only require that the program outputs
any information that an adversary can read. Our running example contains an address
leak vulnerability, because it prints the base address of the array f . Thus, by reading the
output channel, the adversary would be able to find ∆(f).

Definition 2.1 THE ADDRESS DISCLOSURE VULNERABILITY. An Angels program P ,
such that ⟨P,0, λx.0, []⟩ → ⟨Σ,Θ⟩, where λx.0 is the environment that maps every vari-
able to zero, and [] is the empty output channel, contains an address disclosure vulnera-
bility if it is possible for an adversary to discover ∆(v) for some v used in P , given the
knowledge of Θ plus the source code of P .

The Instrumented language. In order to secure a program against address disclosures,

XII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2012

49 c©2012 SBC — Soc. Bras. de Computação

[ADRSEM]
∆(v2) = n Σ′ = Σ[∆(v1) ↦ n]

⟨adr(v1, v2),Σ,Θ⟩→ ⟨Σ′,Θ⟩
[OUTSEM]

Σ[∆(v)] = n Θ′ = n ∶∶ Θ

⟨out(v),Σ,Θ⟩→ ⟨Σ,Θ′⟩

[MOVSEM]
Σ[∆(v2)] = n Σ′ = Σ[∆(v1)↦ n]

⟨mov(v1, v2),Σ,Θ⟩→ ⟨Σ′,Θ⟩

[ADDSEM]
Σ[∆(v2)] = n2 Σ[∆(v3)] = n3 Σ′ = Σ[∆(v1)↦ n2 + n3]

⟨add(v1, v2, v3),Σ,Θ⟩→ ⟨Σ′,Θ⟩

[STMSEM]
Σ[∆(v0)] = x Σ[∆(v1)] = n Σ′ = Σ[x↦ n]

⟨stmem(v0, v1),Σ,Θ⟩→ ⟨Σ′,Θ⟩

[LDMSEM]
Σ[∆(v0)] = x σ[x] = n Σ′ = Σ[∆(v1)↦ n]

⟨ldmem(v1, v0),Σ,Θ⟩→ ⟨Σ′,Θ⟩

[ENDSEM]
P [pc] = end

⟨P,pc′,pc,Σ,Θ⟩→ ⟨Σ,Θ⟩

[JMPSEM]
P [pc] = jmp(l) ⟨P,pc, l,Σ,Θ⟩→ ⟨Σ′,Θ′⟩

⟨P,pc′,pc,Σ,Θ⟩→ ⟨Σ′,Θ′⟩

[BZRSEM]
P [pc] = bzr(v, l) Σ[∆(v)] ≠ 0 ⟨P,pc,pc + 1,Σ,Θ⟩→ ⟨Σ′,Θ′⟩

⟨P,pc′,pc,Σ,Θ⟩→ ⟨Σ′,Θ′⟩

[BNZSEM]
P [pc] = bzr(v, l) Σ[∆(v)] = 0 ⟨P,pc, l,Σ,Θ⟩→ ⟨Σ′,Θ′⟩

⟨P,pc′,pc,Σ,Θ⟩→ ⟨Σ′,Θ′⟩

[PHISEM]

P [pc] = phi(v,{v1 ∶ l1, . . . , vk ∶ lk})
pc′ = li ⟨mov(v, vi),Σ,Θ⟩→ ⟨Σ′,Θ⟩ ⟨P,pc,pc + 1,Σ′,Θ⟩→ ⟨Σ′′,Θ′⟩

⟨P,pc′,pc,Σ,Θ⟩→ ⟨Σ′′,Θ′⟩

[SEQSEM]
P [pc] ∉ {bzr,end,phi,jmp} ⟨P [pc],Σ,Θ⟩→ ⟨Σ′,Θ′⟩ ⟨P,pc,pc + 1,Σ′,Θ′⟩→ ⟨Σ′′,Θ′′⟩

⟨P,pc′,pc,Σ,Θ⟩→ ⟨Σ′′,Θ′′⟩

Figure 3. The Operational Semantics of Angels.

phi(e1, e0, e2)

phi(a1, a0, a2)

bzr(a1, 9)

add(a2, a1, b)

ldm(c, e1)

out(c)

add(e2, e1, d)

jmp(l)

out(e1)

end

adr(e0, f)0:

1:

4:

9:

d = 1; b = −1; a0 = 4
int main() {

 int i = 0, f[4];

 for (i = 0; i < 4; i++) {

 printf("%d\n", f[i]);

 }

 printf("%u\n", f);

}
(a) (b)

Figure 4. A C program translated to Angels.

we will instrument it. In other words, we will replace its original sequence of instructions
by other instructions, which track the flow of values at runtime. It is possible to instrument
an Angels program using only Angels instructions. However, to perform the instrumen-

XII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2012

50 c©2012 SBC — Soc. Bras. de Computação

[ADRINS]
⟨adr,Σ,Θ⟩ → ⟨Σ′,Θ⟩ ∆(v1) = n1 Σ′′ = Σ′[n1 +D ↦ tainted]

⟨sh adr(v1, v2),Σ,Θ⟩→ ⟨Σ′′,Θ⟩

[OUTINS]
∆(v) = nv Σ[nv +D ↦ clean] ⟨out(v),Σ,Θ⟩→ ⟨Σ,Θ′⟩

⟨sh out(v),Σ,Θ⟩→ ⟨Σ,Θ′⟩

[MOVINS]
⟨mov(v1, v2),Σ,Θ⟩→ ⟨Σ′,Θ⟩ Σ′[∆(v2) +D] = t Σ′′ = Σ′[∆(v1) +D ↦ t]

⟨sh mov(v1, v2),Σ,Θ⟩→ ⟨Σ′′,Θ⟩

[ADDINS]

⟨add(v1, v2, v3),Σ,Θ⟩→ ⟨Σ′,Θ⟩
Σ′[∆(v2) +D] = t2 Σ′[∆(v3) +D] = t3 t1 = t2 ⊓sh t3 Σ′′ = Σ[∆(v1) +D ↦ t]

⟨sh add(v1, v2, v3),Σ,Θ⟩→ ⟨Σ′′,Θ⟩

[STMINS]
Σ[∆(v0)] = x Σ[∆(v1)] = n Σ′ = Σ[x↦ n] Σ′[∆(v1) +D] = t Σ′′ = Σ′[x +D ↦ t]

⟨sh stm(v0, v1),Σ,Θ⟩→ ⟨Σ′′,Θ⟩

[LDMINS]
Σ[∆(v0)] = x Σ[x] = n Σ′ = Σ[∆(v1)↦ n] Σ′[x +D] = t Σ′′ = Σ′[∆(v1) +D ↦ t]

⟨sh ldm(v1, v0),Σ,Θ⟩→ ⟨Σ′′,Θ⟩

[PHIINS]

P [pc] = sh phi(v,{v1 ∶ l1, . . . , vk ∶ lk})
pc′ = li ⟨sh mov(v, vi),Σ,Θ⟩→ ⟨Σ′,Θ⟩ ⟨P,pc,pc + 1,Σ′,Θ⟩→ ⟨Σ′′,Θ′⟩

⟨P,pc′,pc,Σ,Θ⟩→ ⟨Σ′′,Θ′⟩

Figure 5. The Operational Semantics of the instrumented instructions.

tation in this way we would have to make this presentation unnecessarily complicated.
To avoid this complexity we define a second set of instructions, whose semantics is given
in Figure 5. The instrumentation framework defines an equivalent shadow instruction for
out and for each instruction that can update the memory Σ. To hold the meta-data pro-
duced by the instrumentation we create a shadow memory. For each variable v, stored
at Σ[∆(v)], we create a new location Σ[∆(v) + D], where D is a displacement that
separates each variable from its shadow. In other words, information about shadow and
original variables are kept into the same store. The shadow values can be bound to one
of two values, clean or tainted. Instrumented programs are evaluated by the same rules
seen in Figure 3, augmented with the six new rules given in Figure 5. It is important to
notice that the instrumented programs might terminate prematurely. Rule OUTINS does
not progress if we try to print a variable that is shadowed with the tainted value. The meet
operator used in the definition of sh add, ⊓sh is such that n1 ⊓sh n2 = tainted whenever
one of them is tainted, and is clean otherwise.

Figure 6 defines a relation ι that converts an ordinary Angels program into an
instrumented program. Every instruction that can store data into the memory is instru-
mented; thus, we call this relation the full instrumentation framework. Notice that the
instructions that control the execution flow are not instrumented. They do not need to be
instrumented because neither of them generates new data in the store.

Theorem 2.2 Let P be an angels program, and P ι be such that P
ι
Ð→ P ι. Let I ∈ P and

I ι ∈ P ι such that I
ι
Ð→ I ι. If a variable v is used at an instruction I ∈ P , and v is data

dependent on some address, then Σ[∆(v) +D] contains the value tainted when v is used
at I ι.

Theorem 2.3 If P is an angels program, and P ι is such that P
ι
Ð→ P ι, then

⟨P ι,0,0, λx.0, []⟩ does not contain an address disclosure vulnerability.

XII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2012

51 c©2012 SBC — Soc. Bras. de Computação

adr(v1, v2)
ι
Ð→ sh adr(v1, v2)

out(v)
ι
Ð→ sh out(v)

mov(v1, v2)
ι
Ð→ sh mov(v1, v2)

add(v1, v2, v3)
ι
Ð→ sh add(v1, v2, v3)

phi(v,{.., vi ∶ li, ..})
ι
Ð→ sh phi(v,{.., vi ∶ li, ..})

stm(v0, v1)
ι
Ð→ sh stm(v0, v1)

ldm(v0, v1)
ι
Ð→ sh ldm(v0, v1)

bzr(v, l)
ι
Ð→ bzr(v, l)

jmp(l)
ι
Ð→ jmp(l)

end
ι
Ð→ end

Figure 6. The full instrumentation of an angels program.

2.1. Using Static Analysis to Reduce the Instrumentation Overhead.
As we will show empirically, a fully instrumented program is considerably slower than
the original program. In order to decrease this overhead, we couple the dynamic instru-
mentation with a static analysis that detects address leaks. We have developed this static
analysis in a previous work [Quadros and Pereira 2011]. This static analysis is a form of
tainted flow analysis [Schwartz et al. 2010]. Thus, the objective of the static analysis is to
find a path from a source of sensitive data, i.e., an adr instruction, to a output channel,
i.e., an out instruction. Paths are formed by dependency relations. If a variable v1 is
defined by an instruction i that uses a variable v2, then we say that v1 depends on v2. As
an example, v1 depends on v2 if the instruction mov(v1, v2) is in the program.

We call the graph formed by all the dependencies in the program the dependence
graph. We say that a variable v is tainted if: (i) v transitively depends on some variable v1
created by an adr instruction; and (ii) there is some variable v2 used in an out instruction
that depends on v. Our static analysis [Quadros and Pereira 2011] determines the set of
program variables that are tainted.

Partial Instrumentation. Given the result of our static analysis, we can reduce the
amount of instrumented code in the target program that the ι relation from Figure 6 in-
serts. With such purpose, we define a new instrumentation framework as the γ relation,
which is given in Figure 7. Contrary to the algorithm in Figure 6, this time we only change
an instruction if (i) it defines a variable that has the tainted type; or (ii) it is the output
operation, and uses a tainted variable. Theorem 2.4 proves that the partial instrumentation
is correct. For the sake of space, we omit from Figure 7 the rules that do not change the
target instruction. An instruction might remain unchanged in the instrumented program,
either because this instruction has been deemed safe by the static analysis, or because it
does not create values in memory.

Theorem 2.4 If P is an angels program, and P γ is such that P
γ
Ð→ P γ , then

⟨P γ,0,0, λx.0, []⟩ does not contain an address leak.

Figure 8 shows the result of applying the static analysis onto the program seen
in Figure 4(b). Figure 8(a) shows the dependence graph that the target program induces.
Each variable in this graph has been annotated with the abstract state that our static analy-
sis infers to it. Thus, a variable may have been assigned the type clean (C) or tainted (T).
In this case, the variables e0, e1 and e2 have been marked tainted (T). The partial instru-
mentation framework changes the instructions that either define these variables, or output
them. Figure 8(b) shows the result of this transformation. The figure shows that only
four, out of 11 instructions have been instrumented. This partially instrumented program
is certainly more efficient than the fully instrumented program.

XII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2012

52 c©2012 SBC — Soc. Bras. de Computação

Γ ⊢ v1 = tainted ⇒ ⟨adr(v1, v2),Γ,Π⟩
γ
Ð→ sh adr(v1, v2)

Γ ⊢ v = tainted ⇒ ⟨out(v),Γ,Π⟩
γ
Ð→ sh out(v)

Γ ⊢ v1 = tainted ⇒ ⟨mov(v1, v2),Γ,Π⟩
γ
Ð→ sh mov(v1, v2)

Γ ⊢ v1 = tainted ⇒ ⟨add(v1, v2, v2),Γ,Π⟩
γ
Ð→ sh mov(v1, v2, v3)

∃x ∈ Π[v0],Γ ⊢ x = tainted ⇒ ⟨stm(v0, v1),Γ,Π⟩
γ
Ð→ sh stm(v0, v1)

Γ ⊢ v1 = tainted ⇒ ⟨ldm(v1, v0),Γ,Π⟩
γ
Ð→ sh ldm(v1, v0)

Figure 7. The relation γ that partially instruments Angels programs.

sh_phi(e1, e0, e2)

phi(a1, a0, a2)

bzr(a1, 9)

add(a2, a1, b)

ldm(c, e1)

out(c)

sh_add(e2, e1, d)

jmp(l)

sh_out(e1)

end

sh_adr(e0, f)0:

1:

4:

9:b

c

d

e0

e1

e2

a0

a1

a2

f

adr phi

phi

bzr

add

ldm

out

add

out

T

C

T

T

C

C

C

C

C

C

(a) (b)

Figure 8. (a) The result of the static analysis applied on the program seen in
Figure 4(a). (b) Partially instrumented program.

3. Experiments
We have implemented our algorithm on top of the LLVM compiler
[Lattner and Adve 2004], and have tested it in an Intel Core 2 Duo Processor with
a 2.20GHz clock, and 2 GB of main memory on a 667 MHz DDR2 bus. The operating
system is Ubuntu 11.04.

The benchmarks: We have run our instrumentation framework on programs taken from
two public benchmarks. The first, FreeBench (FB) 1, is used to measure system’s work-
loads. This benchmark consists of six applications that include cryptography algorithms,
neural networks and data compression. The second benchmark suite, shootout (ST) 2,
consists of eight programs used in a popular website that compares different program-
ming languages. Some characteristics of these benchmarks are given by Figure 9. In this
section we will consider that an address leaks to the outside world if it is used as an ar-

1http://code.google.com/p/freebench/
2http://shootout.alioth.debian.org/

XII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2012

53 c©2012 SBC — Soc. Bras. de Computação

Benchmark Application LoC Sinks Sources Assembly
ST fasta 133 0 23 218
ST fannkuch 104 3 27 281
ST n-body 141 9 49 463
ST nsieve-bits 35 5 7 130
ST partialsums 67 1 38 212
ST puzzle 66 1 12 210
ST recursive 54 1 6 174
ST spectral-norm 52 2 20 258
FB distray 447 8 260 1,379
FB fourinarow 702 1 109 2,124
FB mason 385 11 303 690
FB neural 785 16 156 1,425
FB pcompress2 903 14 180 1,606
FB pifft 4,185 3 1,857 19,320

Figure 9. Characteristics of the benchmarks. LoC: number of lines of C. Assem-
bly: number of instructions in the binary representation of the original program.

gument of the standard printf(char*, ...) function. Thus, “sinks”, in Figure 9
is the total number of occurrences of the printf function in the text of the application.
Sources are instructions that produce address information, such as the ampersand (&)
operator.

The results of the static analysis: Figure 10 shows the results of our static analysis. We
compare the size of the constraint graph that the static analysis builds for each program
with the fraction of that graph that has been marked as tainted. The tainted nodes belong
into a path from a source function, e.g., code that generates address information, to a sink
function, e.g., code that disclosures address information. As it is possible to see, about
one fourth of each constraint graph is marked as tainted. In other words, the program slice
that must be instrumented corresponds to about one fourth of the original program.

Instrumentation overhead: Figure 11 compares the runtime overhead of full and partial
instrumentation. We have fed each program – original, fully instrumented and partially
instrumented – with the reference input of each benchmark. As we can see, the full
instrumentation imposes a non-trivial overhead on the programs. On average, fully in-
strumented programs are 4.9x, e.g., (74.77secs/15.25secs) slower than the original pro-
grams. The partially instrumented programs are only 1.4x, e.g., (22.04secs/15.25secs)
slower. However, there are some cases, such as pifft and puzzles, in which the
partially instrumented programs are considerably slower. These large slowdowns happen
because the instrumentation code is inserted inside critical paths in the program code,
such as deeply nested loops.

4. Related Work

We believe that this paper describes the first attempt to detect dynamically address dis-
closure vulnerabilities. However, much work has been done to detect dynamically other
types of vulnerabilities. For instance, in 2005, James Newsome designed and imple-

XII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2012

54 c©2012 SBC — Soc. Bras. de Computação

Application CG TG %Tainted
fasta 91 23 25.27%
fannkuch 118 27 22.88%
n-body 171 49 28.65%
nsieve-bits 70 7 10.00%
partialsums 192 38 19.79%
puzzle 80 25 31.25%
recursive 91 6 6.59%
spectral-norm 121 20 16.53%
distray 993 260 26.18%
fourinarow 1242 109 8.78%
mason 704 303 43.04%
neural 855 156 18.25%
pcompress2 929 180 19.38%
pifft 7669 1901 24.79%

Figure 10. Data produced by the static analysis. CG: number of nodes in the
program’s constraint graph. TG: number of tainted nodes in the constraint graph.
%Tainted = TG/CG.

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

di
st
ra
y 

fo
ur
in
ar
ow
 

m
as
on
 

ne
ur
al
 

pc
om
pr
es
s2
 

pi
fft
 

fa
st
a 

fa
nn
ku
ch
 

n‐
bo
dy
 

ns
ie
ve
‐b
its
 

pa
r@
al
su
m
s 

pu
zz
le
 

re
cu
rs
iv
e 

sp
ec
tr
al
‐n
or
m
 

Full instrumenta@on  Par@al instrumenta@on 

Figure 11. Runtime of the instrumented program (full or partial) divided by the
runtime of the original program. The shorter the bar, the slower is the program.

mented a dynamic instrumentation framework that, contrary to previous approaches, was
able to generate very efficient code [Newsome and Song 2005]. Newsome has been able
to achieve this efficiency by applying different optimizations on the instrumented code.
One of these optimizations, fast path, consists in duplicating the program code, in such a
way that non-instrumented code is executed if the program inputs are not tainted. Simi-
larly, Clause et al. [Clause et al. 2007] have proposed an instrumentation library that can
be customized to track different forms of data. Clause et al.’s tool is not as efficient as
the framework proposed by Newsome; however, it is much more general. None of these
previous work has tracked address leaks. They also did not use static analysis to mitigate
the instrumentation overhead.

There are many previous works that have proposed to combine static and dy-

XII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2012

55 c©2012 SBC — Soc. Bras. de Computação

namic analysis to secure programs. Huang et al., for instance, have used static analy-
sis to reduce the amount of runtime checks necessary to guard PHP programs against
SQL injection attacks [Huang et al. 2004]. Similar approaches have been proposed by
Zhang et al. [Zhang et al. 2011], Balzarotti et al. [Balzarotti et al. 2008] and Keromytis
et al. [Keromytis et al. 2011]. None of these previous works tracks address leaks.

Finally, there is a large body of literature related to the use of pure static analysis
to detect information flow vulnerabilities [Rimsa et al. 2011, Wassermann and Su 2007,
Xie and Aiken 2006]. These works deal mostly with information flow in dynamically
typed languages, such as PHP. The main problem of concern is to detect tainted flow
vulnerabilities. We say that a program contains a tainted flow vulnerability if an adversary
can feed it with malicious data, and this data reaches a sensitive function. Contrary to
us, none of these previous works deal with address leaks, neither try to instrument the
program to secure it dynamically.

5. Conclusion
This paper has presented a framework that tracks information leaks at runtime. This
framework instruments the source code of the target program, shadowing every program
variable and memory location that it uses. These shadow values might be in one of two
states: clean or tainted. If the instrumented program tries to output a value shadowed as
tainted, then we fire an exception, and the program terminates, providing a log back to the
end user. This type of source code instrumentation imposes a heavy burden on the target
program. In order to avoid this overhead, we rely on a static analysis that proves that parts
of the program do not need to be instrumented. This static analysis has been modeled as
the combination of two type inference engines: the first propagates tainted information
forwardly, the second propagates information backwards. We have show empirically that
this static analysis is effective, being able to reduce the instrumentation overhead from 5
to 1.44 times.

Future works: Although we are able to correctly instrument large programs, our frame-
work is still a research artifact. For instance, some partially instrumented programs are
still much slower than the original programs. Our next goal is to decrease this overhead.
We want to apply program optimizations on the instrumented code, such as Qin’s style
code coalescing [Qin et al. 2006], a technique that has been developed to improve the
runtime of binary instrumentation frameworks.

Reproducibility: All the benchmarks used in Section 3 are publicly available at
their websites. The LLVM compiler is open source. Our code and further material
about this project, including a Prolog interpreter of Angels, is available at http://
code.google.com/p/addr-leaks/.

References
Balzarotti, D., Cova, M., Felmetsger, V., Jovanovic, N., Kirda, E., Kruegel, C., and Vigna,

G. (2008). Saner: Composing static and dynamic analysis to validate sanitization in
web applications. In SP, pages 387–401. IEEE Computer Society.

Bhatkar, E., Duvarney, D. C., and Sekar, R. (2003). Address obfuscation: an efficient
approach to combat a broad range of memory error exploits. In USENIX Security,
pages 105–120.

XII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2012

56 c©2012 SBC — Soc. Bras. de Computação

Buchanan, E., Roemer, R., Shacham, H., and Savage, S. (2008). When good instructions
go bad: generalizing return-oriented programming to RISC. In CCS, pages 27–38.
ACM.

Clause, J., Li, W., and Orso, A. (2007). Dytan: a generic dynamic taint analysis frame-
work. In ISSTA, pages 196–206. ACM.

Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck, F. K. (1991). Ef-
ficiently computing static single assignment form and the control dependence graph.
TOPLAS, 13(4):451–490.

Huang, Y.-W., Yu, F., Hang, C., Tsai, C.-H., Lee, D.-T., and Kuo, S.-Y. (2004). Securing
web application code by static analysis and runtime protection. In WWW, pages 40–52.
ACM.

Keromytis, A. D., Stolfo, S. J., Yang, J., Stavrou, A., Ghosh, A., Engler, D., Dacier, M.,
Elder, M., and Kienzle, D. (2011). The minestrone architecture combining static and
dynamic analysis techniques for software security. In SYSSEC, pages 53–56. IEEE
Computer Society.

Lattner, C. and Adve, V. S. (2004). LLVM: A compilation framework for lifelong program
analysis & transformation. In CGO, pages 75–88. IEEE.

Levy, E. (1996). Smashing the stack for fun and profit. Phrack, 7(49).

Newsome, J. and Song, D. X. (2005). Dynamic taint analysis for automatic detec-
tion, analysis, and signaturegeneration of exploits on commodity software. In NDSS.
USENIX.

Qin, F., Wang, C., Li, Z., Kim, H.-s., Zhou, Y., and Wu, Y. (2006). LIFT: A low-overhead
practical information flow tracking system for detecting security attacks. In MICRO,
pages 135–148. IEEE.

Quadros, G. S. and Pereira, F. M. Q. (2011). Static detection of address leaks. In SBSeg,
pages 23–37.

Rimsa, A. A., D’Amorim, M., and Pereira, F. M. Q. (2011). Tainted flow analysis on
e-SSA-form programs. In CC, pages 124–143. Springer.

Schwartz, E. J., Avgerinos, T., and Brumley, D. (2010). All you ever wanted to know
about dynamic taint analysis and forward symbolic execution (but might have been
afraid to ask). In S&P, pages 1–15. IEEE.

Shacham, H. (2007). The geometry of innocent flesh on the bone: return-into-libc without
function calls (on the x86). In CCS, pages 552–561. ACM.

Shacham, H., Page, M., Pfaff, B., Goh, E.-J., Modadugu, N., and Boneh, D. (2004). On
the effectiveness of address-space randomization. In CSS, pages 298–307. ACM.

Wassermann, G. and Su, Z. (2007). Sound and precise analysis of web applications for
injection vulnerabilities. In PLDI, pages 32–41. ACM.

Xie, Y. and Aiken, A. (2006). Static detection of security vulnerabilities in scripting
languages. In USENIX-SS. USENIX Association.

Zhang, R., Huang, S., Qi, Z., and Guan, H. (2011). Combining static and dynamic analysis
to discover software vulnerabilities. In IMIS, pages 175–181. IEEE Computer Society.

XII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2012

57 c©2012 SBC — Soc. Bras. de Computação

