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Abstract. In this paper, we analyse block-cipher-based hash functions, which
means hash functions that use block ciphers as compression functions in a mode
of operation, such as Davies-Meyer (DM), Matyas-Meyer-Oseas (MMO) and
Miyaguchi-Preneel (MP), for instance. We use impossible differentials (ID) to
distinguish the compression (or hash) function from an ideal primitive (a ran-
dom oracle) by detecting a nonrandom behavior. We applied an ID analysis to
an 8-round variant of the 3D block cipher used in MMO mode, as a compres-
sion function of a hypothetical hash function. This attack effectively improves
upon the previously known distinguishing ID attacks on reduced-round 3D. We
can also attack a hash function using 3D as compression function in DM mode.
Finally, we attacked the compression function in Whirlpool with a 5-round W
cipher in MP mode with 2100 time and 264 memory.

Keywords: impossible differentials, block-cipher-based hash functions, modes of
operation, Whirlpool hash function.

1. Introduction
There are several properties a hash function is expected to satisfy, depending on its ap-
plication. The most well-known are: collision resistance, preimage resistance and second
preimage resistance [17]. But, there are also other relevant properties such as partial
preimage resistance, and nonrandom properties [11, 19, 13] that although not leading to
collisions nor to (second) preimages, may turn the hash function unsuitable to applications
that expect it to behave as a random mapping [22], in some particular (abstract) model.
Thus, detectable evidence of nonrandom behavior demonstrates that the hash function is
not an ideal primitive, which is expected for a high-security cryptographic function. For
instance, in the SHA-3 competition [23], NIST has requested that candidate hash func-
tion algorithms behave as close as possible to random oracle. In this paper, we apply the
impossible-differential (ID) technique to detect nonrandom properties in the compression
or the hash functions.

The impossible differential (ID) approach is a chosen-plaintext technique formerly
described in [12]. To construct ID distinguishers, truncated differentials and the miss-in-
the-middle technique [5] are typically used. In our case, a truncate differential has two
types of difference: zero and nonzero (byte) difference. Moreover, the nonzero difference
value is not relevant (so we do not pay in probability for any specific difference pattern).
The idea of the miss-in-the-middle approach is to concatenate two truncated differentials,
say, α

f→ β and ε
g← η, both of which hold with certainty, into a single differential
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α
g−1◦f→ η, where g−1 ◦ f stands for the functional composition of f and g−1 in this order.

Nonetheless, β 6= ε, that is, the differences do not match in the middle of the distinguisher,
which leads to a contradiction. The terminology α

f→ β means that the difference α
causes difference β after the transformation f in the encryption (or forward) direction;
ε

g← η means that the difference η causes difference ε after the transformation g in the
decryption (or backwards) direction. Note the direction of the arrows. Consequently,

α
g−1◦f→ η holds with probability zero, or analogously, α

g−1◦f
6→ η holds with certainty.

The terminology α
g−1◦f
6→ η means that α can never cause the difference η across the

transformations g−1 ◦ f in the encryption direction. Analogously, the same reasoning
applies for the decryption direction. This set of differences α, β, ε, η characterize an ID
distinguisher constructed with the miss-in-the-middle technique. The initial difference α
and the final difference η will be clearly identified in the ID distinguishers (3) and (9) in
this paper.

The ID technique has already been applied to several ciphers, including IDEA and
Khufu [5], Rijndael [2, 6], among others.

Table 1 compares our distinguishing attacks and previous ones on reduced-round
versions of the 3D cipher. Table 2 summarizes attacks on Whirlpool and its compression
function.

This paper is organized as follows: Sect. 2 summarizes the contributions of this
paper; Sect. 3 briefly describes the 3D block cipher; Sect. 3.1 describes a distinguishing
attack on a compression function using an 8-round version of the 3D cipher in the MMO
mode; Sect. 4 presents an attack on the Whirlpool hash function, whose block cipher W
in the compression function is reduced to 8 rounds; Sect. 5 concludes this paper.

2. Contributions

The contributions of this paper include

• new distinguishing attacks on compression and hash functions that use block
ciphers as building blocks in well-known modes of operation such as Matyas-
Meyer-Oseas (MMO), Davies-Meyer (DM) and Miyaguchi-Preneel (MP) [17].
• our attacks use for the first time the impossible differential technique to demon-

strate properties of the underlying block cipher that may propagate to the entire
hash function, depending on the padding, the number of rounds of the block ci-
pher and on the (hashing) mode of operation surrounding the block cipher. In our
case, we attack one or two rounds beyond the ID distinguishers for the underlying
primitives, showing that there is a further margin of insecurity to take into account
when ciphers are used as building blocks.
• we do not aim at traditional attacks such as collisions or (second) preimage, but

our findings are relevant in applications where hash functions are expected to be-
have as random oracles such as (pseudo-)random number generators, and taking
into account NIST’s requirements for the new SHA-3 algorithms [22, 23].
• our targets are a compression function using the 3D block cipher [20] (in MMO

and DM modes), and the W block cipher used in Whirlpool hash function [4] (in
MP mode). For 3D, we effectively improve on previous distinguishing attacks on
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reduced-round 3D (see Table 1), and could attack a hash function in DM mode. In
this respect, the DM mode was more vulnerable than the other modes.

3. Impossible Differential of 8-round 3D Cipher
The 3D block cipher operates on 512-bit blocks under a 512-bit user key, both of which
are represented as a 4× 4× 4 state of bytes [20]. The three-dimensional cipher state for
a 64-byte data block A = (a0, a1, . . . , a63) is denoted as

State =




a0 a4 a8 a12
a1 a5 a9 a13
a2 a6 a10 a14
a3 a7 a11 a15

∣∣∣∣∣∣∣∣

a16 a20 a24 a28
a17 a21 a25 a29
a18 a22 a26 a30
a19 a23 a27 a31

∣∣∣∣∣∣∣∣

a32 a36 a40 a44
a33 a37 a41 a45
a34 a38 a42 a46
a35 a39 a43 a47

∣∣∣∣∣∣∣∣

a48 a52 a56 a60
a49 a53 a57 a61
a50 a54 a58 a62
a51 a55 a59 a63




(1)

that is, bytes are ordered column-wise. The round subkeys follow this same ordering and
structure. We denote the first byte of subkey ki as ki,0, the second byte as ki,1, and so on.
Each set of 16 bytes in a 4 × 4-byte square is called a slice of the state. In total, the 3D
cipher iterates 22 rounds. The round transformations in 3D have a clear correspondence
with those of the AES [7, 10]. Using the terminology of [20]:

• κi: bit-wise xor with round subkey, equivalent to AddRoundKey in AES;
• γ: a byte-wise application of the AES S-box, equivalent to SubBytes in AES;
• θ1, θ2: equivalent to ShiftRows in AES but applied to each slice of the state alter-

nately; θ1 in the odd-numbered rounds, θ2 in the even-numbered rounds;
• π: matrix multiplication with columns of the state, equivalent to MixColumns in

AES.

Each round transformation stands for a fraction of 0.25 (a quarter) of a round. Distin-
guishers for 3D may sometimes cover fractions of a round, such as 5.25 rounds, for in-
stance (see Table 1). The i-th full round of 3D, encrypting a text block X , is denoted
τi(X) = π ◦ θi mod 2+1 ◦ γ ◦ κi(X) = π(θi mod 2+1(γ(κi(X)))). The last round does not
include π. The key schedule of 3D follows a similar framework as encryption. We refer
to [20] for further details.

3.1. A distinguishing attack on the compression function

Suppose an 8-round variant of the 3D cipher, with the first round starting with θ1, is
used as compression function in a hash function in Matyas-Meyer-Oseas (MMO) mode
[17]. We show that the impossible-differential technique can be used to distinguish this
variant as compression function from a random oracle (RO), that is, to detect a nonrandom
behavior of an 8-round 3D variant. Recall that we apply a distinguish-from-random type
of attack. This nonrandom property does not imply a collision nor a (second) preimage.

Let E : {0, 1}n × {0, 1}k → {0, 1}n denote an n-bit block cipher parameterized
by a k-bit key K. Let Hi denote the i-th chaining variable during the hash computation,
with the initial value IV= H0; let mi ∈ {0, 1}n denote the i-th block of message being
hashed; and let g : {0, 1}n → {0, 1}k. The MMO mode computes

Hi = mi ⊕ Eg(Hi−1)(mi), (2)

that is, g adapts the (i− 1)-th chaining variable of n bits to the key input of k bits. In our
case, E is the 3D cipher, k = n = 512, and g becomes the identity mapping.
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The setting of this attack is against the compression function only. H0 and mi are
known, and Hi = mi⊕EHi−1

(mi) in the MMO mode. Notice that the feedforward of mi

in (2) can be moved: EHi−1
(mi) = Hi ⊕ mi. Thus, for a fixed key Hi−1, the adversary

has access to the input and output of E. Using the terminology of Sect. 1, α = mi ⊕m∗i
and η = EHi−1

(mi)⊕ EHi−1
(m∗i ) because Hi−1 is the key and is kept fixed.

The 6-round impossible differential (ID) distinguisher used in this attack is de-
picted in (3), where ’0’ denotes a zero byte difference and ’∆’ denotes an (arbitrary)
nonzero byte difference. Informally, this ID distinguisher means that a single-byte text
difference in any of the 64 positions in the message input mi (input text difference is de-
noted α) cannot lead to a 16-byte zero difference pattern (denoted η) after 6-round 3D (a
very structured difference pattern). This is a slightly modified version of the distinguisher
whose construction details can be found in [21]. In summary, there is a contradiction after
π of the third round: there are only ∆ bytes in each column of the leftmost slice before
π, but only zero byte differences in all four columns after π, which contradicts the branch
number of π which is five1. In other words, Pr(α → η) = 0. Notice that there are four
impossible output difference patterns, by choosing one of the four patterns of rows with
zero byte difference in η. Note that the output difference η contains zero byte differences
only in positions (0, 4, 8, 12, 19, 23, 27, 31, 34, 38, 42, 46, 49, 53, 57, 61) of the state
(1). Following this construction, let us call η1, η2 and η3 the three other impossible output
difference patterns with zero byte differences in positions (1, 5, 9, 13, 16, 20, 24, 28, 35,
39, 43, 47, 50, 54, 58, 62), (2, 6, 10, 14, 17, 21, 25, 29, 32, 36, 40, 44, 51, 55, 59, 63) and
(3, 7, 11, 15, 18, 22, 26, 30, 33, 37, 41, 45, 48, 52, 56, 60), respectively.

The attack framework is depicted in (4), where ’*’s denote chosen input byte
positions before the 6-round distinguisher (3). Thus, i = 2 in κi. We use text struc-
tures to cover the first two rounds and the 6-round ID distinguisher afterwards, for a
total of eight rounds. Note that starting one round before the distinguisher provides only
232(232 − 1)/2 ≈ 263 text pairs for the attack, which is not enough, while starting the
attack three rounds before the distinguisher would require the full codebook. So, two

1The branch number [7, 10] is a measure of the diffusion power of a mapping F : GF(2n)m → GF(2n)m. In
the case of 3D, n = 8 and m = 4. The branch number of F is BF = minx 6=0{HW (x) +HW (F (x))}, where HW
denotes the Hamming weight. Let F be π which consists of a 4×4 matrix from an MDS code. From the theory of error
correcting codes [15], the MDS code guarantees a minimum distance of 5 between two codewords, that is, Bπ = 5.
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rounds before the distinguisher as in (4) is the best trade-off.

α =




∆ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



π◦θ1◦γ◦κi→




∆ 0 0 0
∆ 0 0 0
∆ 0 0 0
∆ 0 0 0

∣∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




θ2◦γ◦κi+1→




∆ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
∆ 0 0 0

∣∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
∆ 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣

0 0 0 0
∆ 0 0 0
0 0 0 0
0 0 0 0




π→




∆ 0 0 0
∆ 0 0 0
∆ 0 0 0
∆ 0 0 0

∣∣∣∣∣∣∣∣

∆ 0 0 0
∆ 0 0 0
∆ 0 0 0
∆ 0 0 0

∣∣∣∣∣∣∣∣

∆ 0 0 0
∆ 0 0 0
∆ 0 0 0
∆ 0 0 0

∣∣∣∣∣∣∣∣

∆ 0 0 0
∆ 0 0 0
∆ 0 0 0
∆ 0 0 0




θ1◦γ◦κi+2→




∆ 0 0 0
0 0 0 ∆
0 0 ∆ 0
0 ∆ 0 0

∣∣∣∣∣∣∣∣

∆ 0 0 0
0 0 0 ∆
0 0 ∆ 0
0 ∆ 0 0

∣∣∣∣∣∣∣∣

∆ 0 0 0
0 0 0 ∆
0 0 ∆ 0
0 ∆ 0 0

∣∣∣∣∣∣∣∣

∆ 0 0 0
0 0 0 ∆
0 0 ∆ 0
0 ∆ 0 0




π→




∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

∣∣∣∣∣∣∣∣

∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

∣∣∣∣∣∣∣∣

∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

∣∣∣∣∣∣∣∣

∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆



θ2◦γ◦κi+3→




∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

∣∣∣∣∣∣∣∣

∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

∣∣∣∣∣∣∣∣

∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

∣∣∣∣∣∣∣∣

∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆




π
6→




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

∣∣∣∣∣∣∣∣

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

∣∣∣∣∣∣∣∣

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?



κi+4◦γ−1◦θ−1

1 ◦π
−1

←




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣

∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

∣∣∣∣∣∣∣∣

∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

∣∣∣∣∣∣∣∣

∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆




κi+5◦γ−1◦θ−1
2 ◦κi+6←




0 0 0 0
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

∣∣∣∣∣∣∣∣

∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
0 0 0 0

∣∣∣∣∣∣∣∣

∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
0 0 0 0
∆ ∆ ∆ ∆

∣∣∣∣∣∣∣∣

∆ ∆ ∆ ∆
0 0 0 0
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆


 = η (3)




∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗

∣∣∣∣∣∣∣∣

∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗

∣∣∣∣∣∣∣∣

∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗

∣∣∣∣∣∣∣∣

∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗



θ1◦γ◦κ0→




∗ 0 0 0
∗ 0 0 0
∗ 0 0 0
∗ 0 0 0

∣∣∣∣∣∣∣∣

∗ 0 0 0
∗ 0 0 0
∗ 0 0 0
∗ 0 0 0

∣∣∣∣∣∣∣∣

∗ 0 0 0
∗ 0 0 0
∗ 0 0 0
∗ 0 0 0

∣∣∣∣∣∣∣∣

∗ 0 0 0
∗ 0 0 0
∗ 0 0 0
∗ 0 0 0




π→




∗ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣

0 0 0 0
∗ 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
∗ 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
∗ 0 0 0



θ2◦γ◦κ1→




∗ 0 0 0
∗ 0 0 0
∗ 0 0 0
∗ 0 0 0

∣∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




π→ 6-round ID distinguisher (3) (4)

The attack proceeds as follows: in (4) consider a (text) structure consisting of (28)16 =
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2128 chosen plaintextsmi, in which each byte, denoted by ’*’ in (4), in the diagonal of each
slice of the state of 3D assumes all possible byte values, while the remaining state bytes
are constants. Each structure of 2128 plaintexts contains 2128(2128 − 1)/2 = 2255 − 2127

text pairs Pi ⊕ Pj , for i 6= j. After one full round, with probability 16 · (2−8·3)4 = 2−92,
there will be a single nonzero byte difference per slice of the state, that is, each column
of nonzero byte difference, the ’*’s, will collapse into a single nonzero byte difference.
Notice that there are four possibilities for the single nonzero byte differences to be placed
in specific positions for the next round so that they will align into a single column after
θ2. In summary, for the given configuration of ’*’s in (4) there are four possible columns
where the four ’*’s can end up after the first round, and for each column there are four
possible places they can be after two rounds. We expect (2255 − 2127) · 2−92 = 2163 −
235 pairs to survive this filtering per structure. After the second round, with probability
4 · 2−24 = 2−22, we expect that the four nonzero byte differences lead to a single nonzero
byte difference, which is exactly the input difference to the 6-round ID distinguisher (3).
This filtering leaves (2163 − 235) · 2−22 = 2141 − 213 pairs.

Thus, these 2141−213 text pairs will never lead to a forbidden output difference of
(3), since they lead to an impossible differential. The remaining 2255 − 2127 − 2141 + 213

pairs may satisfy the output difference of (3), which has sixteen zero byte differences. We
expect that a remaining pair can satisfy one of the four output differences (η, η1, η2, η3)
with probability 2−128 × 4 = 2−126. We expect that (2255 − 2127 − 2141 + 213) · 2−126 =
2129 − 2 − 215 + 2−113 pairs to survive this filtering. For a random permutation on the
same plaintext space as 3D, we expect (2255−2127) ·2−126 = 2129−2 pairs to survive. We
exclude from the random permutation set the dual ciphers of 3D, in a similar setting as
the duals of the AES [3], which would behave as 3D under the ID distinguisher. Thus, we
can distinguish 8-round 3D cipher from a random permutation mapping using 2128 blocks
of memory (for storing the ciphertexts) and effort of 2128 8-round computations. Note that
unlike in conventional impossible-differential attacks, we use both the text pairs that lead
to the ID distinguisher differences and those that do not.

In a block cipher setting, the data complexity is 2128 chosen plaintexts, but in a
compression/hash function setting there is no secret key, or more precisely, the key is
known, so the adversary does not depend on the legitimate parties to obtain data. There-
fore, in the latter, there is no data complexity, since the adversary knows the key e.g.
a chaining variable. Note that the work effort consists in checking the difference in text
pairs corresponding simply to the xor of two text blocks. But this xor is much cheaper
than a single encryption and is done offline by the adversary. For this attack, in particular,
we are interested only in the ciphertext pairs, Ci ⊕ Cj . Therefore, the 2255 text pairs do
not account for the time complexity. The effort actually come from 2128 texts encrypted
in a structure.

The difference between the number of surviving pairs for reduced-round 3D and
a random permutation is just 215, which means an advantage of only 215/2129 = 2−114.
Following [1][Sect.6.7], in a distinguish-from-random setting times, to achieve a high
success rate attack, the number of queries shall be proportional to (2−114)−2 = 2228. Since
we already use 2128 texts in a structure, this means that the attack shall be repeated 2100

times which means using 2100 structures in total. This factor leads to an updated effort of
2100 · 2128 = 2228 8-round 3D computations, but the memory cost remains the same since
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we do not need to store all structures at the same time. There is no shortage of structures
to repeat the attack. Simply choose other constant values for the zero-difference bytes
of the state in (3). Since there are 48 bytes with difference zero, one can choose up to
25648 = 2384 constants and thus up to 2384 structures.

We could describe other 6-round ID distinguishers for 3D, as well as attacks on
8-round 3D versions using these distinguishers simultaneously, just like (3) and (4) with-
out increasing the attack complexities. These additional distinguishers demonstrate that
there are large sets of text pairs inside 8-round 3D that never lead to a set of forbidden
differences, in comparison to a random permutation. As an example of these distinguish-
ers, note that at the minimum we only need four zero byte differences in η, for instance,
in positions (0, 19, 34, 49) of the state (1). These four byte differences will lead to a
single column of zeros after π of the 4th round, leading to a contradiction. Note further
that there are sixteen such zero-byte difference patterns, leading to sixteen 6-round ID
distinguishers for 3D: (4, 23, 38, 53), (8, 27, 42, 57), and so on.

Notice that the text structure in (4) has bytes with nonzero difference over the
padding part, assuming the Merkle-Damgård paradigm and a message space with size at
least 264, which implies bytes a56 until a63 of the state (1) are reserved for the original
message size. Thus, the attack is restricted to the compression function only, and does not
apply to the hash function.

The distinguishing attack described in this section improves on the attack de-
scribed in [21], which was restricted to 6-round 3D, both in terms of number of rounds
and attack complexities.

3.2. A distinguishing attack on the hash function

Consider now the same 8-round variant of the 3D cipher in Sect. 3.1, but this time the
mode of operation is Davies-Meyer (DM) [17] and the target is the hash function using
the Merkle-Damgård (MD) padding scheme [8, 18]. In the MD scheme the padding
consists of a single ’1’ bit followed by ’0’ bits up to 512− l bits, so that the last l bits store
the size of the original message to be hashed. For instance, if l = 128, then the bytes in
positions a48 until a63 of the state (1) are reserved for the message size.

In the attack setting, H0 = IV and mi are known, and the updating rule in the
DM mode is

Hi = Hi−1 ⊕ Emi(Hi−1). (5)

Notice that the feedforward of Hi−1 can be moved: Emi(Hi−1) = Hi ⊕ Hi−1.
Thus, for a fixed key mi, the adversary has access to the input and output of E (that is
8-round 3D).

In this section we show that this hash function can be distinguished from a ran-
dom oracle (RO) using the impossible-differential technique. The attack is on 2-block
messages, M = m0‖m1, with m0,m1 ∈ {0, 1}512, but can be extended to larger mes-
sages M as well. The attack proceeds as follows:

• we vary the value of the first 512-bit block, m0 to generate text pairs for the attack
on the second E instance; in the DM mode, H1 = H0 ⊕ Em0(H0) vary. Note that
Em0(H0) behaves as a random function for variable m0 and fixed H0. We need
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2228 distinct values ofH1 as input to the secondE instance, according to the attack
described in Sect. 3.1. Following [24], we expect about 2224 · e ≈ 2225.44 values of
m0 to obtain 2224 distinct values of H1.
• we keep m1 always fixed in all messages M ; recall that m1 contains the padding

and message size since it is the last message block.
• since m1 is fixed, the second E instance performs a permutation, with input H1,

from which we can generate difference pairs for the impossible differential attack
in Sect. 3.1.
• we can therefore, detect differences in H2 for the impossible differential, and the

attack complexities of Sect. 3.1 hold, but this time the analysis is applied to the
hash function, not to the compression function. The H1 value can be computed
and separated from H2 to obtain the output of Em1(H1) only.

Since we have encryptions of m0‖m1 that is, two E computations at a time, the
attack effort becomes 2226.44 8-round 3D computations.

For larger messages, M , say, t-block messages, the idea is to vary m1, m2, . . .,
mt−1, but not the last blockmt, which contains the padding and message size (512 ·t bits),
forming the Merkle-Damgård strengthening.

In the impossible-differential attack setting, the DM mode is weaker than the
MMO mode, since an adversary can control the key input in DM mode (which is a mes-
sage block) making the underlying cipher in the compression function to behave as a
permutation, which is the setting needed for an impossible-differential attack.

4. A distinguishing attack on 5-round W in Whirlpool

The Whirlpool hash function was designed by Barreto and Rijmen [4] in 2003, according
to the wide-trail design strategy. Whirlpool follows the Merkle-Damgård strengthening
(message size is limited to 2256 bits) and uses a block cipher called W : {0, 1}512 ×
{0, 1}512 → {0, 1}512 in MP mode. The cipher W is similar to the AES but operates on
an 8 × 8 state of bytes where bytes are input row-wise, and W iterates ten rounds. An
example of a state of W indicating the byte ordering is depicted in (6).

State =




a0 a1 a2 a3 a4 a5 a6 a7
a8 a9 a10 a11 a12 a13 a14 a15
a16 a17 a18 a19 a20 a21 a22 a23
a24 a25 a26 a27 a28 a29 a30 a31
a32 a33 a34 a35 a36 a37 a38 a39
a40 a41 a42 a43 a44 a45 a46 a47
a48 a49 a50 a51 a52 a53 a54 a55
a56 a57 a58 a59 a60 a61 a62 a63




(6)

Following the terminology of [4], the rounds operations in W are

• γ: nonlinear layer; byte-wise application of an 8× 8-bit S-box;
• π: byte permutation, i.e. column j is cyclically shifted down by j positions, where

columns are numbered from 0 in left-to-right order;
• θ: diffusion layer; multiplication of each row of the state by an 8×8 MDS matrix;
• σk: exclusive-or between the state and the k-th round subkey (which are prede-

fined constants).

The k-th full round of W , operating on a text block X , consists of τ(X) = σk ◦ θ ◦ π ◦
γ(X) = σk(θ(π(γ(X))). There is a pre-whitening layer consisting of σ0.
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The ID distinguisher (9) for Whirlpool (in the appendix) covers four rounds, and
was constructed with the miss-in-the-middle technique. It consists of two truncated dif-
ferentials: one in the encryption direction covering three rounds, and the other differential
in the decryption direction covering one round. The contradiction (or miss-in-the-middle)
happens in the top row of the state after the third round. A row with all eight nonzero
byte differences cannot cause a row with only zero byte differences because the MDS
matrix used in θ has branch number nine [7]. Notice that there are 64 · 8 equivalent 4-
round ID distinguishers since the initial nonzero ∆ byte can be in any of the 64 positions
of the state, and the output pattern of eight zero byte differences can follow eight possi-
ble patterns. The attack framework is depicted in (7) and starts one round before the ID
distinguisher (9) covering a total of five full rounds of W .




∗ 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ∗
0 0 0 0 0 0 ∗ 0
0 0 0 0 0 ∗ 0 0
0 0 0 0 ∗ 0 0 0
0 0 0 ∗ 0 0 0 0
0 0 ∗ 0 0 0 0 0
0 ∗ 0 0 0 0 0 0




π◦γ◦σi→




∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




θ→ 4-round ID distinguisher (9) (7)

The attack setting is the following: Whirlpool uses the MP mode. Let H0 = IV
denote the initial value of the chaining variable; let mi denote the i-th message block (the
input to W ). We aim to find a nonrandom behaviour of the compression function.

The Miyaguchi-Preneel (MP) mode [17] is the following:

Hi = mi ⊕Hi−1 ⊕ EHi−1
(mi), (8)

where E is the block cipher W in this case. For Whirlpool, the text and key input of W
have the same size. We keep Hi−1 fixed as key input, so that WHi−1

(mi) behaves as a
permutation.

The attack proceeds as follows: consider a (text) structure consisting of (28)8 =
264 chosen messages (plaintexts) mi, in which the eight bytes in the pattern (7) of the
state W denoted ’*’ assume all possible byte values, while the remaining state bytes are
constants. Each structure of 264 plaintexts contain about 264(264 − 1)/2 = 2127 − 263 text
pairs mj

i ⊕mk
i , for k 6= j. After one full round, with probability 8 · (2−8)7 = 2−53, there

will be a single nonzero byte difference in the first row of the state, that is, the first row
will collapse into a single nonzero byte difference in one of the first eight positions in that
row. Notice that there are eight possibilities for the single nonzero byte difference ∆ to be
placed in specific positions after the first round. We expect (2127− 263) · 2−53 = 274− 210

pairs to survive this filtering per structure. This single-byte difference is exactly the input
difference to the 6-round ID distinguisher (9). The remaining 2127− 263− 274 + 210 pairs
may satisfy an output difference of (9) which has eight zero byte differences.

The pattern η in (9) has zero byte differences in positions (0, 9, 18, 27, 36, 45, 54,
63), the main diagonal of the state (6). Notice that the eight zero byte differences could
follow any of eight possible patterns, each in a sub-diagonal of the state. Thus, in total,
there are eight forbidden output patterns, including η, and we expect that a remaining pair
can satisfy one of these output differences with probability 8 · 2−64 = 2−61.

Using a single structure, we expect that (2127 − 263 − 274 + 210) · 2−61 = 266 −
22 − 213 + 2−51 pairs survive for 5-round W as compression function. But, for a random
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permutation, we expect (2127 − 263) · 2−61 = 266 − 22 pairs to survive. Thus, due to the
deficit in the number of surviving pairs for each cipher, we can distinguish a compres-
sion function containing 5-round W from a random mapping (oracle) using 264 blocks of
memory and an effort of 264 5-round W computations.

The difference between the number of surviving pairs for reduced-round W and a
random permutation is just 213, which means an advantage of 213/263 = 2−50. Following
[1][Sect.6.7], in a distinguish-from-random setting, to achieve a high success rate attack,
the number of queries shall be proportional to (2−50)−2 = 2100. Since we already use 264

texts in a structure, this means that the attack shall be repeated 236 times which means
using 236 structures. This factor leads to an updated effort of 236 · 264 = 2100 5-round
W computations, but the memory cost remains the same since we do not need to store
all structures at the same time. There is no shortage of structures to repeat the attack. To
find more structures simply choose other constant values for the zero-difference bytes of
the state in (7). Since there are 56 bytes with difference zero in (7), one can choose up to
25656 = 2448 constants and thus, up to 2448 structures.

Notice that the text structure in (7) has (message) bytes with nonzero difference
across a sub-diagonal of the state (6). That means these bytes straddle over the padding
and message length parts, assuming the Merkle-Damgård paradigm and a message space
with size 2256. Even if the message space were as low as 264, the attack would still be
restricted to the compression function only.

5. Conclusions
This paper presented distinguishing attacks on block-cipher-based compression and hash
functions using the impossible-differential technique. In particular, we analysed block-
cipher-based hash functions in three classical hash modes: Davies-Meyer (DM), Matyas-
Meyer-Oseas (MMO) and Miyaguchi-Preneel (MP). Our attacks focused on reduced-
round versions of the 3D and W block ciphers as compression functions.

Table 1 lists the complexities of ours attacks on a compression function and pre-
vious attacks using the 3D cipher. This comparison is for completeness purposes only,
since the attack settings are not the same (block cipher and compression/hash function).
Our results are not a threat to the full 22-round 3D cipher, but compare quite favorably
with the 6-round distinguishing attack in [21]. Note that our results apply in a distinguish-
from-random setting, while other attacks operate in key-recovery settings since the latter
does not make sense for compression and hash functions. Notice that in a block cipher
setting there is a secret key and thus, in a chosen-plaintext attack the adversary needs
the legitimate parties to encrypt/decrypt texts for him, because he does not know the key.
In a compression function setting the key to the underlying block cipher is not secret,
so the adversary does not depend on the legitimate parties to encrypt or decrypt. In this
latter case, there is no data complexity, since the adversary can encrypt/decrypt any text
(offline).

Table 2 compares the complexities of ours and previous attacks on reduced-round
Whirlpool, not just the compression function. It is not straightforward to compare our
results with previous attacks since we do not aim at collisions or (second) preimages. Our
motivation in looking for nonrandom behavior of the compression and hash function con-
structions was based in [22, 23], where NIST stated the need for candidate hash functions
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Table 1. Attack complexities on reduced-round versions of the 3D cipher.

Technique Time Data Memory #Rounds Ref. Setting
Multiset 219.5 29 CP 28 4.75 [20] block cipher

ID 265.5 236 CP 232 5.75 [20] block cipher
Multiset 2139 2129 CP 2128 5.75 [20] block cipher

ID 2256 2256 CP 2256 6 [21] block cipher
Known-key 28 28 CP negligible 7.75 [21] block cipher

ID 2228 — 2128 8 Sect. 3.1 comp. function (MMO mode)
ID 2226.44 — 2128 8 Sect. 3.2 hash function (DM mode)

Known-key 256 256 CP negligible 9.75 [21] block cipher
ID 2401 2501 CP 2311 10 [21] block cipher

Known-key 2200 2200 CP 28 15 [9] block cipher
CP: Chosen Plaintext/messages

Table 2. Attack complexities on reduced-round W cipher of Whirlpool.

Technique Time Memory #Rounds Ref. Comments
rebound 2120 216 4.5 [16] collision

ID 2100 264 5 Sect. 4 non-randomness (comp. function)
rebound 2120 216 5.5 [16] semi-free start collision
rebound 2128 216 7.5 [16] semi-free start near-collision
rebound 2184 28 7.5 [14] collision
rebound 2176 28 9.5 [14] near-collision
rebound 2188 28 10 [14] distinguisher

to behave as close as possible to ideal functions (random oracles).

In [13], integral distinguishers were found for up to seven rounds of Whirlpool,
but they were not applied further to derive attacks.
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A. Appendix

α =




∆ 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




θ◦π◦γ◦σi→




∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




π◦γ◦σi+1→




∆ 0 0 0 0 0 0 0
0 ∆ 0 0 0 0 0 0
0 0 ∆ 0 0 0 0 0
0 0 0 ∆ 0 0 0 0
0 0 0 0 ∆ 0 0 0
0 0 0 0 0 ∆ 0 0
0 0 0 0 0 0 ∆ 0
0 0 0 0 0 0 0 ∆




θ→




∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆




θ◦π◦γ◦σi+2

6→




0 0 0 0 0 0 0 0
∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆




σi+4◦γ−1◦π−1◦σi+5←




0 ∆ ∆ ∆ ∆ ∆ ∆ ∆
∆ 0 ∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ 0 ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ 0 ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ 0 ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ 0 ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆ 0 ∆
∆ ∆ ∆ ∆ ∆ ∆ ∆ 0




= η (9)
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