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Abstract. Committed Oblivious Transfer (COT) is a two-party primitive that
combines one-out-of-two oblivious transfer with bit commitment. In the begin-
ning of COT, a sender is committed to bits b0,b1 and a receiver to a choice bit
c. In the end, the receiver is committed to bc without learning anything about
b1−c, while the sender learns nothing about c. This primitive implies secure
multi-party computation assuming that a broadcast channel is available. In
this paper, we introduce the first universally composable unconditionally secure
committed oblivious transfer protocol based on a Trusted Initializer (TI), which
pre-distributes data to the parties. Our protocol builds on simple bit commit-
ment and oblivious transfer protocols, using XOR commitments to prove simple
relations in zero-knowledge. Besides providing very high security guarantees,
our protocols are significantly simpler and more efficient than previous results,
since they rely on pre-computed operations distributed by the TI.

Keywords. Committed Oblivious Transfer, Commodity based cryptography, Uncondi-
tional Security, Universal Composability.

1. Introduction

Committed Oblivious Transfer (COT) was introduced by Crépeau, van de Graaf and Tapp
in [Crépeau et al. 1995] and combines one-out-of-two oblivious transfer and bit commit-
ment. In a nutshell, COT is a variation of Oblivious Transfer where the parties are com-
mitted to their inputs and end up committed to their outputs. Basically, this added prop-
erty enables the parties to verify input correctness, since they can’t change their inputs
after the commitments are made. It was shown that this primitive implies efficient secure
multi-party computation for dishonest majorities in the presence of a broadcast channel
[Crépeau et al. 1995], while plain oblivious transfer is only able to achieve secure two-
party computation without extra assumptions [Kilian 1988][Goldreich et al. 1987].

Specifically, a COT is defined as a two-party primitive where the sender’s inputs
are commitments to bits b0,b1 and the receiver’s input is a commitment to a choice bit c.
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In the end of the protocol, the receiver is committed to bc but doesn’t learn b1−c, while the
sender learns nothing about c . Security for the sender consists in the receiver learning
nothing about b1−c and security for the receiver consists in the sender learning nothing
about c.

The original COT protocol proposed in [Crépeau et al. 1995] was proven secure
in the stand-alone model, meaning that its security is only guaranteed in a very simple
setting where only one copy of the protocol is executed each time. While this provides
enough guarantees for simple environments, it is desirable to obtain a COT protocol with
arbitrarily composable security, which guarantees that the protocol remains secure even if
multiple copies of other protocols and itself are run concurrently (e.g., as in the Internet).
Moreover, such security guarantees allow protocols and primitives to be securely used
as building blocks for more complex applications. In this paper, we adopt the Universal
Composability (UC) framework introduced by Canetti et al. in [Canetti 2001], which is
one of the main approaches for proving the security of protocols under arbitrary compo-
sition.

1.1. Committed Oblivious Transfer Applications

As mentioned before, COT was originally shown to imply unconditionally se-
cure multiparty computation with dishonest majorities in the stand-alone model
[Crépeau et al. 1995]. Nevertheless, several multiparty computation protocols based on
COT have been proposed since the primitive was first introduced. We present a brief list
of the main COT applications bellow:

• Universally composable unconditionally secure two-party and multi-party compu-
tation with dishonest majorities [Estren 2004] based on [Crépeau et al. 1995].

• Active-secure universally composable two-party and multi-party computation
with dishonest majorities based on joint gate evaluation [Garay et al. 2004].

• Efficient active-secure universally composable two-party computation based on
Yao’s garbled circuits [Jarecki and Shmatikov 2007].

• Efficient active-secure universally composable two-party and multi-party com-
putation with dishonest majorities based on Multi-sender k-out-of-n OT
[Lindell et al. 2011], which is implied by COT.

In light of the broad range of applications, we remark that COT is an important
building block for efficient secure two-party and multi-party computation. Both classical
and recent results show that this primitive is closely related to secure computation with
dishonest majorities achieving nice efficiency. However, it is important to construct COT
protocols that are as efficient as possible, since the efficiency of such secure computation
protocols is directly related to their building blocks.

1.2. Related Works

Building on the notions introduced in the seminal work of Crépeau, van de Graaf and
Tapp [Crépeau et al. 1995], different constructions of COT with diverse security guaran-
tees have been proposed. These constructions are mainly based on two approaches: using
black-box access to primitives [Estren 2004] and building on specific computational as-
sumptions [Garay et al. 2004, Jarecki and Shmatikov 2007, Cramer and Damgård 1997,
Cachin and Camenisch 2000]. While the protocols in [Garay et al. 2004, Estren 2004,
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Jarecki and Shmatikov 2007] offer universally composable security, the protocols in
[Cramer and Damgård 1997, Cachin and Camenisch 2000] have only been proved in the
stand-alone model.

Cramer and Damgård introduced a COT protocol based on the Q’th Residuosity
assumptions with stand-alone security. Cachin and Camenisch proposed another stand-
alone secure Verifiable Oblivious Transfer (VOT) protocol based on the Decisional Diffie
Hellman (DDH) assumption. VOT is slightly different from COT in that the receiver
learns bC instead of a commitment to bc, while both parties are committed to their inputs.
Both protocols achieve nice efficiency but still require a number of modular exponentia-
tions, which is a costly operation.

Estren extended the results of [Crépeau et al. 1995] to the universal compos-
ability framework in [Estren 2004]. This work is basically a UC secure version of
[Crépeau et al. 1995], relying on black-box access to universally composable oblivious
transfer, bit commitment with XOR and authenticated channel functionalities. It requires
no extra computational assumptions and builds on coding and privacy amplification tech-
niques. Even though the generic construction is efficient itself, its concrete efficiency
depends on the specific constructions of the primitives used as its building blocks. Consid-
ering that the most efficient protocol for UC secure oblivious transfer [Peikert et al. 2008]
known in current literature still requires several modular exponentiations, the resulting
protocol is computationally costly.

Protocols for universally composable committed oblivious transfer based on
specific computational assumptions were introduced in [Jarecki and Shmatikov 2007,
Garay et al. 2004]. Both of these protocols use the common reference string model as
a setup assumption. While the construction in [Jarecki and Shmatikov 2007] is based
on Decisional Composite Residuosity (DCR), the result on [Garay et al. 2004] relies on
multiple assumptions, including DCR, strong RSA and Decisional Diffie Hellman. The
protocol in [Jarecki and Shmatikov 2007] achieves string COT, while [Garay et al. 2004]
achieves bit COT. However, both protocols rely on costly operations.

1.3. Our contributions
In this paper, we introduce a universally composable committed oblivious protocol based
on a Trusted Initializer (TI). The TI is an entity that predistributes values to the parties
during a setup phase before the protocol is executed. In contrast to previous protocols,
our construction is round-optimal, only requires simple addition operations and achieves
unconditional security (i.e. the protocol does not rely on any computational assumption).
The main features of our protocol are summarized as follows:

• Unconditional security: the protocol remains secure even against computation-
ally unbounded adversaries.

• Universal Composability: the protocol is proven UC secure.
• Computational Efficiency: we do not require any expensive operations (e.g.

modular exponentiation or complex underlying protocols (e.g. zero-knowledge
proofs).

• Round Optimal: Our protocol requires only two rounds, which is optimal.

Trusted initializers were introduced as part of the Commodity Based Cryptog-
raphy model by Beaver [Beaver 1997, Beaver 1998], which is inspired by client-server
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architectures. The commodity based cryptography model makes perfect sense in the con-
text of universal composability, since it was shown that it is necessary to rely on setup
assumptions to obtain universally composable bit commitment, oblivious transfer and se-
cure multi-party computation in general [Canetti and Fischlin 2001]. As an added advan-
tage, the TI in our scenario can also be used to cheaply predistribute a broadcast channel,
which is necessary for obtaining secure multi-party computation based on COT.

To the best of our knowledge this is the first universally composable COT protocol
to be constructed on the commodity based cryptography model. Building on this model
allowed us to obtain much better efficiency and security by trading off complex building
blocks and assumptions for data predistribution and precomputation. In fact, we obtain the
strongest possible security guarantees, namely unconditional security with universal com-
posability. Moreover, our protocol is very simple in comparison to other protocols that
require zero-knowledge proofs, verifiable encryption and universally composable building
blocks.

1.4. Organization

The remainder of this paper is organized as follows. In Section 2, we establish nota-
tion and discuss preliminary notions and tools that will be used throughout the paper. In
Section 3, we provide a brief discussion of the Universal Composability framework and
define the ideal functionalities that will be used in this paper. In Section 4, we present the
committed oblivious transfer protocol. In Section 5, we present the formal security proof
for the protocol. In Section 6, we conclude with closing remarks and directions for future
research.

2. Preliminaries

In this section, we establish notation and discuss the main tools and notions that we will
use throughout the paper.

2.1. Notation

We will denote by x ∈R D an uniformly random choice of an element x over a do-
main D. All logarithms are to the base 2. If X and Y are families of distributions
indexed by a security parameter λ, we use X

s≈ Y to mean the distributions X and
Y are statistically close, i.e., for all polynomials p and sufficiently large λ, we have∑

x |Pr[X = x]− Pr[Y = x]| < 1. Two sequences Xn, n ∈ N and Yn, n ∈ N of ran-
dom variables are said to be computationally indistinguishable, denoted by X

c≈ Y , if
for every non-uniform Probabilistic Polynomial Time PPT distinguisher D there exists a
negligible function negl.(·) such that for every n ∈ N, | Pr[D(Xn) = 1] − Pr[D(Yn) =
1] |< negl.(n).

Additionally we will denote by [b] a commitment to a bit b and by |b| the infor-
mation necessary to reveal this commitment; by C the co-domain set of the commitments
made with a bit commitment scheme C; by |C| the set of the information necessary to
open a commitment in C. We will use a prime (’) in all the variables on the simulated
environment.
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2.2. Commodity Based Cryptography

In this section, we briefly discuss the Commodity Based Cryptography model introduced
by Beaver [Beaver 1997, Beaver 1998]. This model was inspired by the client-server
distributed computation model, where a powerful server performs complex tasks on behalf
of a client. It is an efficient alternative for obtaining secure multi-party computation.

In this model, a Trusted Initializer precomputes certain operations that are then
used by individual parties to execute a given protocol. The parties access such oper-
ations by requesting correlated predistributed values (the commodities) to the TI be-
fore they start executing the protocol itself. It is possible to obtain very efficient
protocols in this model, since most of the required complex operations can be dele-
gated to the TI and then predistributed to the parties. The Trusted Initializer is al-
ways assumed to be honest. Notably, this model has been used to construct com-
mitments [Rivest 1999, Blundo et al. 2002, Hanaoka et al. 2003] and oblivious transfer
[Beaver 1997].

Notice that the TI has no access to the parties’ secret inputs nor does it receive any
information from the parties. The only communication required between the TI and the
parties occurs during a setup phase, when the TI predistributes information. If the parties
are isolated from the TI during protocol execution it helps reduce the trust put in the TI.
Moreover, data obtained from different TIs can be combined in order to thwart attacks
from a single corrupted TI in more complex situations.

2.3. Bit Commitment with XOR

A bit commitment is a two-party primitive in which the sender’s input is a bit b and the
receiver does not have any input. There are two phases (commit and unveil), and in the
end of the protocol, the receiver accepts the bit revealed bit or not. In the commit phase,
the sender (or committer) makes some computation such that the output appears random
from the receiver’s point of view. It means that in this phase, the receiver learns nothing
about b from the output [b], which is a commitment to b. In the unveil phase, the sender
sends the information necessary to decommit, |b|, (by making the inverse computation, or
making the same computation and comparing the results) and the receiver checks if b is
consistent with the commitment previously received.

For a bit commitment scheme to be considered secure, it needs to be private,
binding and correct. A bit commitment scheme is private if the receiver is unable to learn
anything about the sender’s committed bit before the unveil phase. A bit commitment
scheme is binding if the sender is unable to unveil a bit b̄ 6= b without being caught with
high probability. Finally, a bit commitment scheme is correct if it never fails for honest
parties and the receiver learns the value b that the sender intended to commit to after the
unveil phase.

For the sake of simplicity, lets refer to the sender as Alice and to the receiver as
Bob. Our protocol requires a bit commitment scheme for which it is possible to verify
XOR relationships between commitments without revealing their contents. More pre-
cisely, we want to verify the relation b1 = b2 ⊕ b3 given only the commitments [b1], [b2]
and the public bit b3, without opening the commitments. Starting from any regular bit
commitment scheme, we can use the BCX protocol for this purpose.
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BCX was first described in [Kilian 1992] (partly attributed to Rudich and Bennett).
The protocol works as follows. For Alice to commit to a bit b with a security parameter
n and a bit commitment scheme C, she chooses bL ∈R {0, 1}n. For each bit 1 ≤ i ≤ n,
she sets a new string bR ∈ {0, 1}n, such that biR = biL ⊕ b, where biR is the i-th bit
of bR and biL is the i-th bit of bL. Finally, she uses C to commit to all bits in bR and in
bL. Hence, a commitment to a bit b in BCX consists in 2n commitments using C. Then,
the co-domain of commitments using BCX is C = (C(x)x∈{0,1})2n, where C(x)x∈{0,1} is
the co-domain of commitments using C. To unveil, Alice should unveil all 2n bits. Bob
accepts it if biL ⊕ biR = b, ∀1 ≤ i ≤ n. So, if the information necessary to open a
commitment using C is |C(x)x∈{0,1}|, the information necessary to open a commitment in
BCX is (|C(x)x∈{0,1}|)2n.

Given the commitments [a],[c] and the public value x, Alice proves to Bob that a⊕
c = x by the following procedure. Bob chooses and sends to Alice random permutations
πa, πb to shuffle the bit positions of aiL,aiR, ciL, and ciR. Alice applies the permutations,
sending to Bob Li = aiL ⊕ ciL, Ri = aiR ⊕ ciR, ∀1 ≤ i ≤ n. Bob randomly chooses and
sends to Alice V ∈ {L,R}n. For each i, if Vi = L, then Alice opens [aiL] and [ciL]; else
opens [aiR] and [ciR]. Finally, Bob accepts the proof if ∀1 ≤ i ≤ n, aiL ⊕ ciL = Li, if
Vi = L; or aiR ⊕ ciR = Ri if Vi = R.

This simple XOR proof can be used to prove if two commitments are related to
the same bit ( if the proof that [b1] = [b2] ⊕ 0 is accepted, then b1 = b2 ), or not ( if the
proof that [b1] = [b2] ⊕ 1 is accepted, then b1 6= b2). However, if more than one proof
is generated for the same commitment, Bob may learn b before the unveil phase (e.g. by
learning biL in the first proof and biR in the second proof).

In order to solve this issue, if a commitment [b] is meant to be used for a XOR
proof, Alice creates three more pairs b1L ∈R {0, 1}n, b1R ∈ {0, 1}n, b2L ∈R {0, 1}n, b2R ∈
{0, 1}n, and b3L ∈R {0, 1}n, b3R ∈ {0, 1}n, where each bjiL, and bjiR, 1 ≤ i ≤ n, 1 ≤ j ≤ 3
are commitments with bjiL⊕bjiR = b. Alice concatenates b1L, b

2
L, b

3
L and b1R, b

2
R, b

3
R obtaining

two strings of 3n bits each. Bob sends a random permutation π that shuffles the 3n
position bits. After applying the random permutation to bL and bR, Alice divides bL in
three n bits strings, calling them respectively b1L, b2L and b3L. She does the same to bR,
obtaining again b1R, b

2
R, b

3
R. Let’s say that b1 = b1iL ⊕ b1iR,b2 = b2iL ⊕ b2iR, b3 = b3iL ⊕ b3iR

for all 1 ≤ i ≤ n. For Alice to prove to Bob that b1 = b2 = b3 = b, she uses the same
previous proceeding to prove that b ⊕ b1 = 0. So, if the test is successful, bL, bR, b1L, b

1
R

cannot be used any more, but Bob believes that b2 = b3 = b. At this point, Alice can
discard bL, bR, use b2L, b

2
R in the XOR proof. After finishing the proof, she discards b2L, b

2
R,

sets bL = b3L, sets bR = b3R, and sends the 2n bits of b3L, b
3
R to Bob.

3. Universal Composability

In this section, we present a brief discussion of the Universal Composability framework.
We refer the readers to [Canetti 2001, Canetti and Fischlin 2001] for further details.

In the UC framework we consider a set of parties interacting with an Adversary
A, and a environment Z . The environment is responsible for providing the inputs for the
parties and A, and receiving their outputs. All these entities are modeled as Interactive
Turing Machines.
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The whole point of the UC framework is that Z represents all activity external
to the current execution of the protocol. So, in order to prove the security of a specific
protocol implementation, we must define an ideal version of the protocol and an ideal
adversary S . Then, we have to show that no Z can distinguish between an execution of
the specific protocol implementation with the parties and A, and an execution of the ideal
version with the parties and S .

The ideal version of the protocol is called the ideal functionality F and it does
exactly what the protocol should do in a black box manner. In other words, given the
inputs, the ideal functionality follows the primitive specification and returns the output as
specified. However, the functionality must deal with the actions of corrupted parties, such
as invalid inputs and deviations from the protocol.

Some interesting points about F are: the communication between the parties and
F are made by writing on their input and output tapes; S has no access to the contents
of messages sent between the parties and F unless one or both parties are corrupted; Z
cannot see the messages sent between the parties and F (and cannot see the messages sent
between the parties in the real protocol execution).

The ideal adversary S should be constructed to act in the same way as the adver-
sary A in the interaction with the real protocol. It means that every attack that A can
do in the real protocol must be simulated by S in the ideal execution of the protocol. In
other words, all the attacks can be possibly aimed at the real protocol are those reflected
in the ideal functionality. Hence, if the ideal functionality specifies a secure primitive,
any attack against a protocol that securely implements such functionality will not disrupt
the functionality’s security guarantees. A point that should be clarified here is that S does
not deliver any message between the parties. It just simulates the messages of the hon-
est parties (if any) to the corrupted party and delivers messages from parties to the ideal
functionality.

It is said that a real protocol securely realizes an ideal functionality (i.e., the
protocol implementation is secure under the UC framework) if for every adversary A
in the real protocol there exists an ideal adversary S such that a ZZZ cannot dis-
tinguish an execution of the specific protocol implementation with the parties and A
from an execution of the ideal version with the parties and S . Formally, we have:
∀A, ∃S, s.t. ∀Z : REALΠ,A,Z

c≈ IDEALF ,S,Z , where the probability distribution is
taken over all random tapes of the parties; REAL is the output of the environment Z
when it interacts with A and the other parties running the real protocol, and, similarly,
IDEAL is the output of the environment Z when it interacts with S and the other parties
in the ideal execution of the protocol. Without loss of generality, let us define REAL and
IDEAL as single bits.

In our work, we will show that the parties’ random tapes are fed with the same
probability distribution in the real execution and in the ideal one. Thus, we can actually
show that the real execution is perfectly indistinguishable from the ideal simulation.

3.1. Ideal Functionalities

The Trusted Initializer functionality is defined as follows.
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IDEAL FUNCTIONALITY FTI

• When first activated, choose r0, r1, d ∈R {0, 1}, compute the commitments
[r0], [r1], [d], [rd] (where rd ∈ {r0, r1}), set |r0|, |r1|, |d|, |rd| as the information
to open the respectively commitments, and distribute (r0, r1, |r0|, |r1|, [d], [rd])
to Alice and (d, rd, |d|, |rd|, [r0], [r1]) to Bob .

The following COT ideal functionality FCOT is based on functionalities presented
in [Estren 2004, Jarecki and Shmatikov 2007]. Each commitment has a unique identifier
cid and each FCOT instance has a unique identifier sid. The parties PR, PS refer to Sender
and Receiver, respectively, and Pi may refer to any of them. S is the ideal world adversary.

Ideal Functionality FCOT

• Upon receiving a (COMMIT, Pi,sid, cid, b) message from Pi:
– If cid has not been used for any previous commitment, then store b and

broadcast a (RECEIPT, Pi,sid, cid, [b]), where [b] is the commitment of
bit b with identifier cid.

– Otherwise, do nothing.
• Upon receiving msg = (STARTCOT, PS , PR, sid, cid0, cid1, cidn, cidc) from
PR:

– If cid0 and cid1 refer to existing valid unopened commitments by PS

to the respective bits b0 and b1, cidc refers to an existing unopened
commitment by PR to bit c, and cidn does not refer to any previous
commitment, then record msg and forward it to PS .

– If any of the conditions defined in the immediately previous item fails,
broadcast message (COTFAILED, PS, PR,sid).

• Upon receiving (COMPLETECOT, PS , PR, sid, cid0, cid1, cidn, cidc) from PS:
– FCOT verifies that a message (STARTCOT, PS , PR,

sid, cid0, cid1, cidn, cidc) has been recorded. In such a case, FCOT

generates a commitment to bc under cidn and sends a message
(TRANSFERCOT, PS , PR, sid, cid0, cid1, cidn, cidc, bc).

– If no such record exists, FCOT sends message (COTFAILED,
PS, PR,sid).

4. The Protocol
In this section we describe our COT protocol. Our protocol is constructed in the commod-
ity based model, where a Trusted Initializer predistributes a number of correlated values
to Alice and Bob, allowing them to perform COT. Alice inputs commitments [b0], [b1]
to bits b0, b1 for which she knows the opening information |b0|, |b1|, whereas Bob knows
[b0], [b1]. Likewise, Bob inputs a commitment [c] to a bit c for which he knows the opening
information |c|, whereas Alice knows [c]. In the end of the protocol, Alice learns nothing,
while Bob receives bc and the opening information |bc| but learns nothing about b1−c.

Intuitively, this protocol builds on the techniques of [Crépeau et al. 1995], com-
bining a plain oblivious transfer protocol and a bit commitment scheme with XOR.
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We obtain the commitment scheme with XOR from any regular bit commitment (e.g.
[Rivest 1999]) through the BCX construction [Kilian 1992]. The basic idea is to have
both parties run the OT protocol with committed inputs instead of plain bits. The OT
protocol is slightly modified so that, in the end of the protocol, the receiver learns both
the commitment corresponding to bc and the necessary opening information (i.e. learning
bc itself). The receiver then uses the XOR property of the commitment scheme to check
that the transferred commitment is indeed one of Alice’s initial commitments (using the
procedures described in Section 2.3).

The basic oblivious transfer protocol used in our construction is predistributed by
the TI as Alice’s values r0, r1 ∈R {0, 1} and Bob’s values d ∈R {0, 1}, rd ∈ {r0, r1}. In
order to run the OT protocol, Bob computes e = c ⊕ d and sends it to Alice in Step 1.
Alice computes f0 = b0 ⊕ re, f1 = b1 ⊕ r1−e and sends these values to Bob in Step 2.
Finally, Bob recovers bit bc by computing bc = fc ⊕ rd in Step 3. Notice that fc = bc ⊕ rd
and f1−c = b1−c ⊕ r1−d. Hence, Bob can’t recover b1−c because he does not know r1−d,
while Alice can’t recover c because she does not know d.

Alice Bob
TI r0, r1 ∈R {0, 1} d ∈R {0, 1}

rd ∈ {r0, r1}
[d], [rd], |r0|, |r1| [r0], [r1], |d|, |rd|

Data sent µA := (r0, r1, |r0|, µB := (d, rd, |d|,
by TI |r1|, [d], [rd]) |rd|, [r0], [r1])
Input b0, b1 ∈ {0, 1} c ∈ {0, 1}

|b0|, |b1|, [c] |c|, [b0], [b1]
Step l e = c⊕ d

Send µ1 := (e) to Alice
Step 2 If e /∈ {0, 1}, then abort

Otherwise, do:
f0 := b0 ⊕ re
f1 := b1 ⊕ r1−e

Compute:
[f0], |f0| and [f1], |f1|
Send µ2 := ([f0], [f1],

|f0|, |f1|, f0, f1) to Bob
Step 3 Check if f0 6= [b0]⊕ [re]

or f1 6= [b1]⊕ [r1−e], then abort
Otherwise, open f0, f1,
Set bc = fc ⊕ rd and
if (f0, f1) = (0, 0) then [bc] := [rd]
if (f0, f1) = (1, 1) then [bc] := ¬[rd]
if (f0, f1) = (0, 1) then [bc] := [c] + [rd]
if (f0, f1) = (1, 0) then [bc] := ¬[c] + [rd]

Output ⊥ v := [bc], bc

The COT protocol combines the aforementioned OT protocol with BCX commit-
ments by having the TI predistribute commitments [d], [rd] to Alice and commitments
[r0], [r1] to Bob, besides the regular OT predistributed values. Moreover, as this is a COT
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protocol, Alice is required to send Bob the commitments [b0], [b1] and Bob is required to
send Alice the commitment [c]. The OT protocol is run with its normal inputs, except that
Alice also sends commitments [f0], [f1] and the respective opening information in Step 2.
Upon receiving those commitments Bob uses the XOR property to check that they corre-
spond to f0 = [b0] ⊕ [re] and f1 = [b1] ⊕ [r1−e]. If at least one of these relations hold,
he continues by determining the commitment [bc] by checking the relations over (f0, f1)
specified in Step 3 of the COT protocol.

Notice that Bob can open [bc], since he has the information to open [c] and [rd].
In Step 3, Bob checks whether Alice set the masks f0, f1 appropriately (i.e. f0, f1 are
not random numbers), in order to verify that he correctly received one of Alice’s input
bits. However, we have to verify that f0 = b0 ⊕ re and f1 = b1 ⊕ r1−e without revealing
any of the bits b0, b1, r0, r1. This is the reason why we need a bit commitment with XOR,
meaning that it has the property of evaluating XOR between commitments without having
to open them. If the commitment scheme is homomorphic, we don’t require this XOR
property, since a sum of commitments is also a commitment (i.e., [b0] + [re] = [b0 + re])
and Alice cannot deviate from the protocol. A extended version of this protocol using a
homomorphic bit commitment scheme will be included in the full version.

4.1. Correctness

First we analyze correctness in the case that both parties are honest.

Alice learns nothing about c. Bob sends information about c only in Step 1. In this step,
Bob sends e = c⊕ d, and provided that Alice cannot extract d from the commitments [d]
and [rd], c ⊕ d behaves as a one time pad encryption of c, since Alice does not know d.
Hence, Alice can only guess the value of c.

Bob learns nothing about bc̄. Notice that if c = 0, then e = d and f1 = b1 ⊕ r1−d.
Conversely, if c = 1 then e = 1− d and f0 = b0 ⊕ r1−d. Also notice that Alice computes
f1−c = b1−c + r1−d and Bob doesn’t know r1−d. Hence, he is not able to compute b1−c

from f1−c.

5. Universally Composable Security Analysis

In this section we construct the simulators and prove that our protocol is universally com-
posable.

Remember that the players in a real world protocol execution interact with the
environment Z , with the TI, and with an adversary A, which will be called the real-life
adversary. On the other hand, the players in a execution of the ideal process interact with
the environment Z and TI as well, and with an ideal adversary S (the simulator).

In order to prove the UC security, we have to construct an ideal adversary S such
that the environment cannot guess whether it is interacting with A in the real-life execution
or with S in the ideal simulation with more than a negligible probability. So, we will
construct S by showing the actions that she takes in the ideal process for each situation:
(Alice corrupted ∧ Bob honest) ∨ (Alice honest ∧ Bob corrupted) ∨ (Alice corrupted ∧
Bob corrupted) ∨ (Alice honest ∧ Bob honest).
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5.1. Corrupted Alice and Honest Bob

Simulation. In this case only Alice is corrupted, while Bob acts as an honest party. The
simulator S runs an internal copy of the real-life adversary A called A′ and every input
value that S receives from Z is forwarded to A′ without any alteration. The interactions
between A′ and S correspond to those of Alice in the real protocol execution with Z , TI,
and Bob. S operates as follows:

1. Setup Phase:
• Simulating FTI : S chooses r′0, r

′
1 ∈R {0, 1}, [d′], [r′d′ ] ∈R C, |r′0|, |r′1| ∈R

|C|, and sends µ′
A = (r′0, r

′
1, |r′0|, |r′1|, [d′], [r′d′ ]) to A′ when it requests data

from FTI .
2. Protocol:

(a) Simulating message µ′
1: S chooses random bits d, c ∈R {0, 1} and rd ∈R

{r′0, r′1}, computes e = c⊕ d and sends µ′
1 = e to corrupted Alice.

(b) Extracting b0, b1: Upon receiving message µ2 :=
([f ′

0], [f
′
1], |f ′

0|, |f ′
1|, f ′

0, f
′
1) from corrupted Alice, S computes b′0 = f ′

0 ⊕ re
and b′1 = f ′

1 ⊕ r1−e (notice that S is able to do so, since it knows r0, r1).
S sends the messages (COMMIT, PS ,sid, cid0, b′0), and (COMMIT, PS ,sid,
cid1, b′1) to FCOT .

(c) Finishing the protocol: Upon receiving a message (STARTCOT,
PS , PR, sid, cid0, cid1, cidn, cidc) from FCOT , S sends a message
(COMPLETECOT, PS , PR, sid, cid0, cid1, cidn, cidc) to FCOT .

Indistinguishability. In order to prove that ∀A∃S∀Z : REALΠ,A,Z ≡ IDEALF ,S,Z , we
have to show that the view of the environment Z in the execution of the real-life protocol
in the presence of the real-life adversary A is indistinguishable from the view of Z in the
execution of the ideal protocol in the presence of the ideal adversary S .

Notice that the values r′0, r
′
1 ∈R {0, 1}, [d′], [r′d′ ] ∈R C, |r′0|, |r′1| ∈R |C| simulated

by S in the setup phase have the same distribution as in the real protocol. Hence the pre-
distributed values are perfectly indistinguishable from values in the real world execution.

Apart from that, the only difference in the simulated protocol is that S chooses a
random value for c. However, since d is also chosen randomly, e = c ⊕ d acts as an one
time pad encryption of c. Thus, there’s no difference in the distribution of the values sent
to corrupted Alice in the simulation.

Notice that S obtains corrupted Alice’s inputs b′0, b
′
1 since it knows r′0, r

′
1, which S

chose itself in the setup phase.

5.2. Honest Alice and Corrupted Bob

Simulation.

As in the previous case, S runs an internal copy of the real-life adversary A called
B′, and every input value that S receives from Z is forwarded to B′ without any alteration.
The interactions between B′ ansdS are those of Bob in the real protocol execution with
Z , the TI and Alice. S works as follows:

1. Setup Phase:
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• Simulating FTI : S chooses d′, r′d′ ∈R {0, 1}, |d′|, |r′d′ | ∈R |C|, [r′0], [r′1] ∈R

C, and sends µ′
B = (d′, r′d′ , |d′|, |r′d′ |, [r′0], [r′1]) to B′.

2. Protocol:
• Extracting c: Upon receiving message µ′

1 = (e), S computes c = e ⊕ d′

(notice that this is possible since S knows d′). S sends message (COMMIT,
Pi,sid, cidc, c) to FCOT .

• Obtaining bc: S waits for two messages messages (RECEIPT, PS ,sid, cid0,
[b′0]) and (RECEIPT, PS ,sid, cid1, [b′1]) from FCOT and then sends a mes-
sage (STARTCOT, PS , PR, sid, cid0, cid1, cidn, cidc) to FCOT .

• Simulating µ′
2 and Finishing the protocol: Upon receiving a message

(TRANSFERCOT, PS , PR, sid, cid0, cid1, cidn, cidc, b
′
c), S selects random

values r′0, r
′
1 ∈R {0, 1}, [d′], [r′d′ ] ∈R C, |r′0|, |r′1| ∈R |C| and a random

message b′1−c. It computes f ′
0, f

′
1, [f

′
0], [f

′
1], |f ′

0|, |f ′
1| as in the real protocol

using messages b′c, b
′
1−c (where b′c was obtained from FCOT .

Indistinguishability. As in the previous case, all the predistributed values d′, r′d′ ∈R

{0, 1}, |d′|, |r′d′ | ∈R |C|, [r′0], [r′1] ∈R C simulated by S are distributed exactly as in the
real world protocol. Hence, the only difference lies in message b′1−c, that is randomly
selected.

It is easy to notice that S can obtain c by computing c = e⊕ d, since it generated
d and knows its value.

However, since the only information that corrupted Bob obtains about b′1−c is
f1−c, |f1−c|, [f1−c], corrupted Bob cannot distinguish b′1−c in the simulation from the mes-
sage in the real execution, since f1−c = b1−c⊕r1−d and corrupted Bob doesn’t know r1−d,
which is randomly selected.

Notice that the distribution of all values exchanged between S corrupted Bob and
the environment is exactly the same as in the real world execution. Thus, the simulation
is perfectly indistinguishable from the real world protocol execution.

5.3. Both parties are honest or corrupted
When both parties are corrupted or honest, S simply forwards all messages between par-
ties and from parties to FCOT .

6. Conclusion
We introduce the first unconditionally secure and universally composable committed
oblivious transfer protocol in the commodity based cryptography model. Our protocol
achieves the highest security guarantee known in current literature while conserving com-
munication efficiency, since it is round-optimal. Moreover, being based on predistributed
values and precomputation by a Trusted Initializer, our protocol is extremely efficient,
not requiring any costly operations such as modular exponentiations. We remark that this
COT protocol can also be used as a verifiable oblivious transfer protocol with minor mod-
ifications. As a future work, we suggest to obtain a modified version of this protocol based
on homomorphic commitments, which could achieve even better efficiency. Another in-
teresting related line of work is applying the commodity based cryptography model to
perform secure two-party computation on arithmetic circuits (i.e. in Zp) without relying
on COT.
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