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Abstract. Physical keys are easy to use but difficult to manage securely for large

institutions. Digital replacements have been created, but dedicated hardware

such as smartcards or RFID tags can have the same problems as physical keys.

Several commercial products try to solve this by using the users’ Bluetooth-

enabled mobile devices as keys, but the built-in security of the Bluetooth stan-

dard is insufficient. Furthermore, to manage a varying set of users, such systems

may require the door locks to be connected to the Internet which may require ex-

pensive infrastructure.

We present a cryptographic protocol and a prototype implementation that solves

these problems by letting door locks communicate with a central server using

the Internet connections of the users’ mobile devices. The protocol is specified

formally in the applied π-calculus and security through secrecy and authenticity

is verified using the cryptographic protocol verifier ProVerif. A prototype of the

system is implemented for Android smartphones.

1. Introduction

Keys have for centuries been a central part of managing access rights to buildings. Phys-

ical keys are easy to use, but difficult to manage, especially for large institutions with a

large and varying number of users and even worse when access rights to a building change

over time. Digital replacements for physical key systems can solve this problem and they

have been around for several decades, but until recently required dedicated hardware to

be issued to the user, e.g. smartcards or RFID tags, which to some extent are as cumber-

some to manage as their physical key counter parts. With the proliferation of commodity

smartphones the idea of using a smartphone as a wireless key has been commercialized

by several vendors such as MVC-Data [1], Bluelon ApS [2], Flexipanel Ltd. [3], Steab

AB [4], ECKey [5], and SOREX [6]. Several of these commercial systems are based on

establishing a Bluetooth connection between door and smartphone and rely on the Blue-

tooth stack for security. Although this provides ”good enough” security between the door

and the smartphone for many practical uses, it is possible to compromise the security with

some effort and modified consumer hardware [7]. Furthermore, to manage a varying set

of users, such systems either require the door locks to be connected to the Internet, or

manual entry of each user in each door lock.

In this paper we present a system, developed in collaboration withMVC-Data, that

can solve both problems mentioned above. The system is designed so that each door lock
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requires no knowledge of the individual users, as well as no direct Internet connection.

Instead, the door locks use the Internet connection provided by the user’s smartphone to

set up a secure connection with a central server which holds the information about each

user, their access rights and audit logs. For communication between the door lock and the

smartphone, the system uses an insecure Bluetooth connection without pairing. Figure 1

illustrates the architecture. Informally, the protocol works as follows: The smartphone

app runs a service in the background that keeps a connection to the server and scans for

door units. When the smartphone gets within a predefined range of a door unit, it connects

to the door unit and asks it to unlock. To find out if it should open, the door unit consults

the server through the Internet connection of the smartphone.

Figure 1. The architecture: a smartphone creates a link between a door module and a server through Bluetooth

and an Internet connection.

This paper has two main contributions: a formal protocol and verification of rel-

evant security properties of the protocol. The protocol uses a public key infrastructure

where a central authentication server is able to authenticate users for individual door locks,

based on their private key which they save on their smartphones. It is designed to allow

users to securely unlock doors through an insecure Bluetooth connection and authenti-

cate them through an insecure Internet connection. The protocol provides a secure layer

using hybrid encryption such that asymmetric encryption is used for authentication and

to establish a faster, symmetric encryption for larger message exchanges. The protocol

is formalized in the applied π-calculus [8, 9]. Furthermore, the protocol is verified using

ProVerif [10] to be secure against eavesdropping (by strong secrecy), man-in-the-middle

attacks, and replay attacks.

To the best of our knowledge, ours is the first formally verified wireless protocol

using Bluetooth and 3G communication.

ProVerif has been used to verify the security of several protocols including an

electronic voting protocol [11] and implementations of TLS [12]. Additionally, in [13],

ProVerif was used to analyze the authentication process of Bluetooth device pairing,

where it was able to determine an attack strategy that confirms a previously known vul-

nerability. A list of these and other publications using ProVerif can be found in [14].

The rest of this paper is organized as follows: in Section 2, an informal description

of the protocol is given followed by a classic protocol narration in the form of message

sequence charts. In Section 3 the applied π-calculus is introduced and in Section 4 it is

used to formalize the protocol. The applied π-calculus is used as an intermediate step

which helps in the description and verification of properties using ProVerif in Section 5.

Section 6 describes the implementation and illustrates how the ProVerif model relates to

the prototype implementation. Section 7 concludes.
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2. The Protocol Narration

The protocol narration describes each step in the protocol in a manageable way, but it

leaves out many details such as checks that must be done at each step to know when

to abort communication because of an attack. These details are instead included in the

applied π-calculus model. Table 1 describes the notation we use in the protocol narration.

Table 1. Notation for the protocol narration.

M,S,D Identities of the mobile unit, server and door unit

KX ,K
−1
X The public and private key of principal X

{x}K ,{x}K−1 Public and private encryption (signature) of message x

[x] A cryptographic hash of message x

Nx A nonce named x

EKXY ,AKXY Encryption and authentication keys for symmetrically encrypted

communication from X to Y

KXY Key material for deriving EKXY , AKXY , EKYX , and AKYX

[x]hAK MAC of message x using authentication key AK

{x}sEK Symmetric encryption of message x with encryption key EK

x An arbitrary value

“foo” A string literal

mx = . . . A subexpression introduced for clarity

Before interacting with any doors, the mobile unit M connects to the server S and

is authenticated by the server using asymmetric encryption. Figure 2 shows the messages

exchanged during this first phase. The data that is encrypted asymmetrically is key ma-

terial that will be used to encrypt all following messages symmetrically. Nonces are sent

in every step to avoid replay attacks and each nonce is returned to prove the receiver was

able to decrypt the nonce. After the symmetric keys are exchanged and the principals

trust each other, the channel is ready to send arbitrary messages as shown by the message

x and the ellipsis. The mobile unit can now look for a door unit to connect to.

When the connection to the server S is established and the mobile unit M wants

to connect to a door unit D, it queries S for the public key of D. It then uses asymmetric

encryption to share key material with D for the symmetrically encrypted communication

with nonces being sent and returned. Figure 3 shows this process. As before, the mobile

unit verifies the identity of its communication partner, but since the server will later decide

if the mobile unit is allowed access, the door does not need to verify the identity of the

mobile unit.

Figure 4 shows what happens when the user wants to unlock the door after having

established connections to the server and the door. It is the most complicated figure since

communication is relayed through the mobile unit which takes the output from one secure

channel and sends it over the other while the messages themselves are the encrypted
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Server Mobile
M,{NMS,KMS}KS

{NMS,NSM, [NMS,NSM]
h
AKSM

}sEKSM

{{[NSM,N
′
MS]}K−1

M
,N′

MS, [{[NSM,N
′
MS]}K−1

M
,N′

MS]
h
AKMS

}sEKMS

{N′
MS, [N

′
MS]

h
AKSM

}sEKSM

{x, [x]hAKMS
}sEKMS

...

Figure 2. The mobile unit connects to the server.

Server Mobile Door
{D, [D]hAKMS

}sEKMS

{KD, [KD]
h
AKSM

}sEKSM

{NMD,KMD}KD

{NMD, [NMD]
h
AKDM

}sEKDM

{x, [x]hAKMD
}sEKMD

...

Figure 3. The mobile unit connects to a door after having established a connection with the server.

challenges between door and server. When the door is authenticated the server looks up

whether the owner of the mobile unit has access to the door at that time and sends “1” or

“0” in m4 depending on whether the user is allowed access or not.

3. The Applied π-calculus

The applied π-calculus was proposed by Abadi and Fournet [15] as a generalization of

the many extensions of the π-calculus [16] in existence. Since then, Blanchet has used a

version of the applied π-calculus as the basis of the ProVerif tool.

While the protocol narration describes the messages exchanged, the applied π-

calculus model formalizes exactly what properties must be checked by each principal at

each step.
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Server Mobile Door

{“unlock”, [“unlock”]hAKMD
}sEKMD

m1 = D,{NDS}KS

{m1, [m1]
h
AKDM

}sEKDM

{m1, [m1]
h
AKMS

}sEKMS

m2 = {[NDS,NSD]}K−1
S
,{NSD}KD

{m2, [m2]
h
AKSM

}sEKSM

{m2, [m2]
h
AKMD

}sEKMD

m3 = {[NSD,N
′
DS]}K−1

D
,{N′

DS}KS

{m3, [m3]
h
AKDM

}sEKDM

{m3, [m3]
h
AKMS

}sEKMS

m4 = {[“1”,NSD]}K−1
S
,{“1”,NSD}KD

{m4, [m4]
h
AKSM

}sEKSM

{m4, [m4]
h
AKMD

}sEKMD

...

Figure 4. The door is unlocked after having the mobile unit establish connections to server and door so that the

door and server can communicate through the mobile unit.

The syntax of applied π-calculus processes presupposes a set of terms built from

a finite signature and a countable set of names, ranged over by x,y,z . . .. The syntax of

processes is then given by the following formation rules where terms are here ranged over

byM and N.

P ::= x(y).P1 | x〈N〉.P1 | (P1|P2) | (νx)P1 | !P1 | {M/y} | [M = N]P1

Here, x(y).P1 denotes an input process that on the channel named x can receive a name,

instantiating y within the continuation P1. The output process x〈N〉.P1 sends out the term
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N on channel x. P1|P2 denotes the parallel composition of processes P1 and P2. (νx)P1
denotes that the name x is private to and bound within P1. !P1 denotes an unbounded

supply of parallel components of the form P1. An active substitution, {M/y}, denotes
that the name y is bound to M. Finally, [M = N]P1 is a match process that can only

proceed as P1 if the message terms M and N are provably equal.

In our presentation, we sometimes define processes by means of parameterized

definitions of the form

A(~x)
def
= P

where A is an agent identifier that may also occur in the right-hand-side process P.

The semantics of the applied π-calculus uses reduction semantics (see Abadi and

Fournet for the definition) with reductions of the form

P→ P′

We write P→∗ P′, if P becomes P′ within zero or more reduction steps.

4. The Protocol in the Applied π-calculus

The protocol is represented by the following process, where the pk function is defined in

Table 2:

P (K−1
S ,K−1

M ,K−1
D ,ci,cb,cm, lM, fD)

def
=

!PM(K
−1
M ,pk(K−1

S ),ci,cb) |
!PS(K

−1
S ,ci,cm, lM, fD) |

!PD(K
−1
D ,pk(K−1

S ),cb,cm)

The process is parameterized by a number of variables: the private keys of the three par-

ties, the public key of the server, three public channels, a set of mobile units lM represent-

ing the server database of identities of registered mobile units, and a function fD mapping

the Bluetooth addresses of the registered door units to their identities. Channels ci and

cb represent communication over the Internet and over Bluetooth, respectively. When the

communication link between the door and server is set up using the mobile unit as a relay,

the public channel cm is used to model the mobile unit as an untrusted party.

Public channels may be monitored by any attacker and manipulated. Messages

in transit may be dropped, altered, replayed, replaced, etc. This is typically how crypto-

graphic adversaries are modeled.

Table 2. One-way functions

pk(K−1) Derive public key from private key

hash(m) Cryptographic hash of message m

mac(K,m) MAC of message m using key K

ekxy(KXY ) Derive encryption key for symmetric communication X → Y

ekyx(KXY ) Derive encryption key for symmetric communication Y → X

akxy(KXY ) Derive authentication key for symmetric communication X → Y

akyx(KXY ) Derive authentication key for symmetric communication Y → X
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Table 3. Functions with reductions

publicEncrypt(pk(K−1),x) —Abbreviated as {x}pk(K−1)

privateDecrypt(K−1,publicEncrypt(pk(K−1),x)) = x

sign(K−1,x)
stripSign(pk(K−1),sign(K−1,x)) = x

symEncrypt(K, IV,x) —Abbreviated as {x}IVK
symDecrypt(K, IV,symEncrypt(K, IV,x)) = x

mi(x0,x1, . . . ,xn) —Packing components of message i

mi.j(mi(x0,x1, . . . ,xn)) = x j for j ∈ 0,1, . . . ,n —Unpacking

w(x0,x1,x2) —Wrapping message with meta data

w.j(w(x0,x1,x2)) = x j for j ∈ 0,1,2 —Unwrapping

Table 2 shows the one-way functions used in the model while Table 3 shows the

function reductions. Most functions represent standard cryptographic operations in ide-

alized forms. The packing/wrapping functions have no effect on the protocol other than

providing a familiar structure for the processes. Packing is used for grouping arbitrary

components into a single message while wrapping is used for grouping a message with

an initialization vector (IV) and a message authentication code (MAC) for the symmetric

encryption.

For convenience, notation for decryption with pattern matching is introduced as

in [8] such that the process

if ctnXY = {w(νmn
XY ,νIV

n
XY ,νH

n
XY )}

IV n−1
XY

ekyx(KXY )
using ekyx(KXY ) then Q

is equivalent to the following which includes checking that the computed MAC matches

the received MAC:

νmn
XY .νIV

n
XY .νH

n
XY .νHC

n
XY .



{ mn
XY = w.0(symDecrypt(ekyx(KXY ), IV

n−1
XY ,ctnXY ))} |

{ IV n
XY = w.1(symDecrypt(ekyx(KXY ), IV

n−1
XY ,ctnXY ))} |

{ Hn
XY = w.2(symDecrypt(ekyx(KXY ), IV

n−1
XY ,ctnXY ))} |

{ HCn
XY = mac(akyx(KXY ),(m

n
XY , IV

n
XY ))} |

if ctnXY = {w(mn
XY , IV

n
XY ,H

n
XY )}

IV n−1
XY

ekyx(KXY )
and Hn

XY = HCn
XY then Q




The first steps of PM and PS are shown here in order to explain the meaning of

the processes and their interaction. Instead of simply establishing a shared secret in a few

steps as many protocols do, this protocol consists of several parts with variable numbers

of steps each. One specific, minimal run of the full protocol is modeled. Since the pro-

tocol also includes more low-level details (including hybrid encryption) than many other

protocols, the applied π-calculus formalization is relatively long. The full processes are

found in Figures 5, 6, and 7.

First part of PM derives the corresponding public key from its private key and then

creates a nonce, an IV and key material for the symmetric communication. The public

key is sent over the Internet channel along with the nonce, IV, and key material encrypted
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with the public key of the server:

let KM = pk(K−1
M ) in νNMS.νIV

1
MS.νKMS.

ci〈KM,{m1
MS(NMS, IV

1
MS,KMS)}KS

〉

The server receives the messages sent by the mobile unit and checks that it is

registered before continuing. The encrypted message is decrypted and the components

extracted. Then, a new nonce is created a sent back with the one from the mobile unit

using symmetric encryption with the key material and IV sent by the mobile unit. A new

IV is also included in the payload for use with the next message in the communication:

ci(M,ct1MS).ifM ∈ lM then

if ct1MS = {m1
MS(νNMS,νIV

1
MS,νKMS)}KS

using K−1
S

then νNSM.νIV
2
MS.let m

2
MS =m2

MS(NMS,NSM) in

ci〈{w(m2
MS, IV

2
MS,mac(akyx(KMS),(m

2
MS, IV

2
MS)))}

IV 1
MS

ekyx(KMS)
〉

The mobile unit then receives, decrypts, and extracts the reply from the server. If

the nonce previously sent by the mobile unit is returned correctly, it continues to create a

new message containing a third nonce and this nonce hashed with the one generated by

the server. This is then sent to the server:

ci(ct
2
MS).if ct

2
MS = {w(νm2

MS,νIV
2
MS,νH

2
MS)}

IV 1
MS

ekyx(KMS)

using ekyx(KMS) and m
2
MS.0(m

2
MS) = NMS then

νN′
MS.νIV

3
MS.let m

3
MS =m3

MS(sign(K
−1
M ,hash(w.1(m2

MS),N
′
MS)),N

′
MS) in

ci〈{w(m3
MS, IV

3
MS,mac(akxy(KMS),(m

3
MS, IV

3
MS)))}

IV 2
MS

ekxy(KMS)
〉

5. Verification of the Protocol using ProVerif

ProVerif is a tool for verifying cryptographic protocols that supports verification of pro-

tocols using common cryptographic primitives including symmetric and asymmetric en-

cryption. By creating a model of a protocol in the applied π-calculus, it is possible to

write queries that ProVerif can answer to prove certain properties, e.g., whether or not a

message sent between two trusted entities can be obtained by an attacker. The complete

ProVerif model of the protocol can be downloaded at [17].

We will use ProVerif to verify these three security properties:

Secrecy An attacker is not able to read secret data.

Strong secrecy An attacker is not able to discern when secret data changes.

Authenticity An attacker is not able to impersonate a legitimate party of the system.

Our ProVerif model is directly based on the applied π-calculus description of Sec-

tion 4. The remainder of this section shows examples of the use of ProVerif queries to

verify the security of the protocol.
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PM(K
−1
M ,KS,ci,cb)

def
= let KM = pk(K−1

M ) in νNMS.νIV
1
MS.νKMS.

ci〈KM,{m1
MS(NMS, IV

1
MS,KMS)}KS

〉.ci(ct2MS).

if ct2MS = {w(νm2
MS,νIV

2
MS,νH

2
MS)}

IV 1
MS

ekyx(KMS)
using ekyx(KMS)

and m2
MS.0(m

2
MS) = NMS then

νN′
MS.νIV

3
MS.let m

3
MS =m3

MS(sign(K
−1
M ,hash(w.1(m2

MS),N
′
MS)),N

′
MS) in

ci〈{w(m3
MS, IV

3
MS,mac(akxy(KMS),(m

3
MS, IV

3
MS)))}

IV 2
MS

ekxy(KMS)
〉.ci(ct4MS).

if ct4MS = {w(νm4
MS,νIV

4
MS,νH

4
MS)}

IV 3
MS

ekyx(KMS)
using ekyx(KMS)

and m4
MS.0(m

4
MS) = N′

MS then

cb(b).νIV
5
MS.let m

5
MS =m5

MS(b) in

ci〈{w(m5
MS, IV

5
MS,mac(akxy(KMS),(m

5
MS, IV

5
MS)))}

IV 4
MS

ekxy(KMS)
〉.ci(ct6MS).

if ct6MS = {w(νm6
MS,νIV

6
MS,νH

6
MS)}

IV 5
MS

ekyx(KMS)
using ekyx(KMS) then

let KD =m6
MS(m

6
MS) in

νNMD.νIV
1
MD.νKMD.let m

1
MD =m1

MD(NMD, IV
1
MD,KMD) in

cb〈{m1
MD}KD

〉.cb(ct2MD).

if ct2MD = {w(νm2
MD,νIV

2
MD,νH

2
MD)}

IV 1
MD

ekyx(KMD)
using ekyx(KMD)

and m2
MD.0(m

2
MD) = NMD then

νIV 3
MD.let m

3
MD = “unlock” in

cb〈{w(m3
MD, IV

3
MD,mac(akxy(KMD),(m

3
MD, IV

3
MD)))}

IV 2
MD

ekxy(KMD)
〉

Figure 5. The process describing the mobile unit.

5.1. Secrecy and Strong Secrecy

Certain variables have been marked as secret in the ProVerif model. This has been done

to be able to subsequently test if an attacker is able to read encrypted data sent with the

protocol. The following excerpt from the ProVerif model exemplifies this:

1 free access: bool [private].

2 query attacker(access).

3 noninterf access.

The variable access defined as secret (or private) in line 1 is sent from the server to the

door unit and decides if the door unit will unlock the door. The query in line 2 deter-

mines whether secrecy is maintained, and the query in line 3 whether strong secrecy is

maintained. Using the ProVerif tool we have verified that these properties indeed hold;

this means that an attacker is not able to read whether someone was granted or denied

access to a door, and not even whether someone who was previously granted access has

now been denied access.
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PS(K
−1
S ,ci,cm, lM, fD)

def
= ci(M,ct1MS).ifM ∈ lM then

if ct1MS = {m1
MS(νNMS,νIV

1
MS,νKMS)}KS

using K−1
S then

νNSM.νIV
2
MS.let m

2
MS =m2

MS(NMS,NSM) in

ci〈{w(m2
MS, IV

2
MS,mac(akyx(KMS),(m

2
MS, IV

2
MS)))}

IV 1
MS

ekyx(KMS)
〉.ci(ct3MS).

if ct3MS = {w(νm3
MS,νIV

3
MS,νH

3
MS)}

IV 2
MS

ekxy(KMS)
using ekxy(KMS)

and stripSign(KM,m
3
MS.0(m

3
MS)) = hash(NSM,m

3
MS.1(m

3
MS)) then

νIV 4
MS.let m

4
MS =m4

MS(m
3
MS.1(m

3
MS)) in

ci〈{w(m4
MS, IV

4
MS,mac(akyx(KMS),(m

4
MS, IV

4
MS)))}

IV 3
MS

ekyx(KMS)
〉.ci(ct5MS).

if ct5MS = {w(νm5
MS,νIV

5
MS,νH

5
MS)}

IV 4
MS

ekxy(KMS)
using ekxy(KMS)

and m5
MS.0(m

5
MS) ∈ dom( fD) then

let KD = fD(m
5
MS.0(m

5
MS)) in νIV 6

MS.let m
6
MS =m6

MS(KD) in

ci〈{w(m6
MS, IV

6
MS,mac(akyx(KMS),(m

6
MS, IV

6
MS)))}

IV 5
MS

ekyx(KMS)
〉.cm(D,ct1DS).

if D ∈ codom( fD) and ct
1
DS = {νNDS}KS

using K−1
S then

νNSD.let s
2
DS = sign(K−1

S ,hash(NDS,NSD)) and m2
DS =m2

DS(NSD) in

cm〈s2DS,{m2
DS}KD

〉.cm(s3DS,ct3DS).
if ct3DS = {νN′

DS}KS
using K−1

S

and stripSign(KD,s
3
DS) = hash(NSD,N

′
DS) then

νaccess.let s4DS = sign(K−1
S ,hash(access,NSD))

and m4
DS =m4

DS(access,NSD) in

cm〈s4DS,{m4
DS}KD

〉

Figure 6. The process describing the server.

5.2. Authenticity

Listing 1 shows the correspondence query used to determine if a message received by the

door unit about the user’s access rights has been sent by the server.

1 query K_D: pubKey , challenge: bool; inj-event(doorUnlockMessageReceived(access)

) ==> inj-event(serverSendingFinalUnlock(access)).

Listing 1. Proving authenticity of messages from the server.

Correspondence queries prove authenticity using two events: begin and end events. Au-

thenticity is proved if the end event cannot be reached without the begin event being

triggered [18]. In Listing 1, these two events are: serverSendingFinalUnlock which is the

begin event and is triggered when the server is about to send the access variable to the

door, and the end event doorUnlockMessageReceived is triggered when the door has received a

message at the time it expected to receive the access variable. The query thus verifies that
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PD(K
−1
D ,KS,cb,cm)

def
= let KD = pk(K−1

D ) in νb.

cb〈b〉.cb(ct1MD).

if ct1MD = {m1
MD(νNMD,νIV

1
MD,νKMD)}KD

using K−1
D then

νIV 2
MD.let m

2
MD = NMD in

cb〈{w(m2
MD, IV

2
MD,mac(akyx(KMD),(m

2
MD, IV

2
MD)))}

IV 1
MD

ekyx(KMD)
〉.cb(ct3MD).

if ct3MD = {w(νm3
MD,νIV

3
MD,νH

3
MD)}

IV 2
MD

ekxy(KMD)
using ekxy(KMD)

and m3
MD = “unlock” then

νNDS.let m
1
DS =m1

DS(NDS) in

cm〈KD,{m1
DS}KS

〉.cm(s2DS,ct2DS).
if ct2DS = {νNSD}KD

using K−1
D

and stripSign(KS,s
2
DS) = hash(NDS,NSD) then

νN′
DS.let s

3
DS = sign(K−1

D ,hash(NSD,N
′
DS)) and m

3
DS =m3

DS(N
′
DS) in

cm〈s3DS,{m3
DS}KS

〉.cm(s4DS,ct4DS).
if ct4DS = {νaccess,NSD}KD

using K−1
D

and stripSign(KS,s
4
DS) = hash(access,NSD) then

νca.ca〈access〉

Figure 7. The process describing the door unit. The private channel ca models the door unit controlling the door

lock hardware.

a man-in-the-middle attack is not possible. The fact that the query is injective (inj-event)

means that the door will never receive more messages from the server than it actually sent,

thus preventing replay attacks.

5.3. Discovering Security Vulnerabilities

During the development of the protocol, ProVerif was used to detect vulnerabilities. One

example of a vulnerability discovered and fixed during the development was found in

proving authenticity of the server on the door access control unit with the query in List-

ing 1. The following lines are used to prove the authenticity of the message received on

the door from the server:

1 in(mobile , (s4_DS: signature , ct4_DS: asymEncrypted));

2 let message = privDecrypt(Kpriv_D , ct4_DS) in

3 if verifySign(K_S, hash(message), s4_DS) = true then

4 let (access_received: bool, N_SD_returned: bitstring) = message in

5 if N_SD_returned = N_SD then

6 event doorUnlockMessageReceived(access_received);

In line 1, the message is received from the server via the mobile unit. It contains

two parts: s4_DS, the signature of the message, and ct4_DS, the asymmetrically encrypted

message. In line 2, the message is decrypted using the private key used by the door,
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1 event serverSendingMobileChallenge(K_M , N_MS);

2 out(internet , symEncryptWithMAC(ekyx(K_MS), IV1_MS , IV2_MS , akyx(K_MS), (N_MS ,

N_SM)));

3

4 in(internet , ct3_MS: symEncrypted);

5 let (Hc3_MS: mac, H3: mac , IV3_MS: iv, (returnedChallengeSignature: signature ,

Nprime_MS_received: bitstring)) = symDecryptWithMAC(ekxy(K_MS), IV2_MS ,

akxy(K_MS), ct3_MS) in

6 if Hc3_MS = H3 then

7 if verifySign(K_M , hash((N_SM , Nprime_MS_received)), returnedChallengeSignature

) = true then

8 event serverAcceptsMobile(K_M , K_MS);

9

10 (* Send all ok to mobile *)

11 out(internet , symEncryptWithMAC(ekyx(K_MS), IV3_MS , IV4_MS , akyx(K_MS),

Nprime_MS_received));

Listing 2. Excerpt of ProVerif model of the server.

1 N_SM = Rand.rand_bytes(32)

2 message = N_MS + N_SM

3 self.aes_send(message)

4

5 #Verifying returned challenge from phone

6 dec = self.aes_recv()

7 if len(dec) != 256 + 32:

8 raise Error(’Message does not have correct length , aborting’)

9 sig, Nprime_MS_received = dec[:256], dec[256:]

10 if not phone_rsa.verify(sha256(N_SM + Nprime_MS_received).digest(), sig, ’

sha256’):

11 raise Error(’Unable to verify signature of server challenge , aborting’)

12 #Challenge passed, connection ready for use

13 self.aes_send(Nprime_MS_received)

Listing 3. Excerpt of Python implementation of the server.

Kpriv_D, and in line 3, the signature of the message is verified using the public key of the

server K_S. If the signature matches, the message components are extracted in line 4: the

access_received boolean value that tells the door whether or not the user has been granted

access to the door by the server, and N_SD_returned that is a nonce included to prevent replay

attacks by the mobile unit. In line 5, the nonce is compared with the expected value, and

only if it matches is the event doorUnlockMessageReceived triggered in line 6.

In an earlier version of the protocol, the check in line 5 was not present. This

caused the protocol to be vulnerable to replay attacks allowing the user access to doors

where his access had been revoked. However, by verifying the query in Listing 1, ProVerif

was able to find this mistake allowing for its correction.

6. Implementation of the Protocol

Based on the ProVerif model, a working prototype implementation was created to test

the viability for use in an actual end-user product. The server and door units were pro-

grammed in Python and the mobile unit was an Android smartphone with a custom appli-

cation written in Java and C. The level of detail in the protocol specification allowed for

an implementation that has a close correspondence with the ProVerif model.

Listing 2 shows a code excerpt from the ProVerif model from the part of the model

where the server entity communicates with the mobile device in order to verify the mobile
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device authenticity. Listing 3 shows the corresponding part of the server implementation

in Python, where AES is used for symmetric encryption and RSA is used for public key

encryption. In the Python implementation the IVs and keys are hidden within the aes_send

and aes_recv methods, but are otherwise the same as sending and receiving messages with

the symEncryptWithMAC and symDecryptWithMAC functions through the Internet channel in the

ProVerif model. Since the type system in ProVerif is different from that of Python, the

messages in Python are merely strings, and therefore the length of each message is also

verified.

7. Conclusion

In this paper, a protocol was presented that allows secure communication over insecure

Bluetooth and Internet connections between door locks and a central server. By using

only the Internet connection of a smartphone, the cost of deploying an electronic door

lock solution can be minimized, especially for large buildings and institutions. Use cases

include access control at companies, universities, and for home care.

The protocol is designed with implementation in mind and for real-world use. It

is explained as a protocol narration and formalized using applied π-calculus. The detailed

formalization of the protocol allowed us to verify a set of properties using the crypto-

graphic protocol verifier ProVerif. The protocol allows companies such as MVC-Data to

improve security for their door lock units, by using the formalization to implement the

protocol in a consumer product. By integrating the protocol in their current product range

MVC-Data will also be able to address what should happen in (the rare) case where a con-

nection via 3G or Wi-Fi is flaky. In that case the protocol could default to an improved

variant of their current protocol where (a limited number of) authorized users credentials

are cached in the door unit. The caching of user credentials could even piggy-bag on com-

munication in the protocol proposed in this paper when 3G or Wi-Fi is working correctly.

Future work clearly includes a thorough analysis of such a combined protocol.

The current implementations of the protocol assume that both Bluetooth and

3G/Wifi is constantly turned on. To save energy on the mobile device the application

could ask the user to turn the relevant radios on and off. However, that would defeat some

of the purpose of the application as it currently does not require interaction from the user.

The user can keep the mobile device in a pocket and as soon as the user approaches a door,

for which the user has authorized access, the system will unlock the door. To preserve

this property and save energy, it would make sense to extend the protocol to use location

information to make decision on when to turn on and off the relevant radios, i.e. only

when the user approaches a door will the relevant radios be turned on. It is a case for

future studies to investigate the feasibility and energy efficiency of this extension.
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