
Fault Attacks against a
Cellular Automata Based Stream Cipher

José Carrijo 1, Anderson C. A. Nascimento 1,
Rafael Tonicelli 1, Vinı́cius de Morais Alves1

1Departamento de Engenharia Elétrica, Universidade de Brası́lia
Campus Darcy Ribeiro, 70910-900, Brasilia, DF, Brazil

carrijo@cepesc.gov.br,andclay@ene.unb.br

{tonicelli, vmalves}@redes.unb.br

Abstract. This paper presents fault attacks against a cellular automata based
stream cipher. A fault attack assumes that the adversary is able to physically
operate the cryptographic device and insert some errors into it. As a conse-
quence, the adversary can induce faulty results into the device and use them to
recover the stored secret key. By using this approach we provide extremely effi-
cient and practical cryptanalytic methods: by injecting n/2 + n2/32 faults we
recover the n-bit secret key from a stream cipher based on cellular automaton
rule 30. To the best of our knowledge this is the first application of fault attacks
against cellular automata based stream ciphers.

1. Introduction

1.1. Overview

Traditionally, cryptanalytic methods have been concentrated on exploiting vulnerabilities
in the algorithmic structure of the target cryptosystem. The conventional approach of-
ten ignores the inherent physical properties of the implementation. In this context, the
fault analysis model emerged as an alternative that allowed the development of a variety
of realistic attacks against symmetric and asymmetric cryptographic protocols. The fault
analysis model relies on the principle that the adversary can physically control the cryp-
tographic device, and induce it to abnormally operate, making it to output faulty results.
These faulty results can later on be used by the adversary to derive secret information,
such as recovering a shared secret key. Depending on the implementation, an attacker can
perform fault injections into the device by several ways: exposing it to heat or radiation,
changing its power supply voltage, increasing its external clock, provoking temperature
variations, among other possibilities.

Fault analysis was introduced by Boneh, DeMillo, and Lipton [2], who used this
technique to attack public key cryptosystems, such as digital signature and identification
schemes. Their results stimulated a progressive research in the area, and since then other
significant results have been obtained. Remarkably, Biham and Shamir [1] used differen-
tial fault analysis to attack block ciphers, such as DES. More recently, Hoch and Shamir
[4] developed a systematic study about the vulnerabilities of stream ciphers in the fault
analysis setting. Despite all the active research regarding the field, there are no published
results about the use of fault attacks against cellular automata based stream ciphers. One
of the goals of this paper is to fill this gap by presenting some practical fault attacks against

85



the aforementioned cryptosystem. The effectiveness of the proposed attacks demonstrates
that fault analysis represents a major threat for cellular automata based ciphers.

1.2. Cellular Automata Based Stream Ciphers

Wolfram [9, 10] was the first to notice the usefulness of cellular automata as stream ci-
phers major building blocks. Wolfram pointed out that some rules used to define the
temporal evolution of one-dimensional cellular automata generated seemingly pseudo-
random behaviors. The proposed family of stream ciphers was very fast yielding efficient
implementations in hardware and software. Later analysis [5] showed that the cipher’s
parameters initially proposed by Wolfram were too optimistic, however for appropriate
key sizes all the known attacks against the cipher proposed in [9, 10] have exponential
complexity.

Later, many other ciphers based on cellular automata were proposed [3, 6, 7, 8]
but the overall goal was the same: to exploit the apparently simple rules and architecture
of cellular automata for obtaining efficient ciphers.

1.3. The Attack Model

Roughly speaking, in the fault analysis model, the adversary is focused on attacking the
physical implementation rather than the cryptographic algorithm.

We assume that the adversary has physical access to the device, but no previous
knowledge about the key. The adversary is allowed to run the device several times while
provoking faults into chosen memory areas of the same device. Specifically, we consider
that the adversary is able to apply bit flipping faults to either the RAM or the internal
registers of the device. Moreover, he/she can arbitrarily reset the cryptographic device
and later induce other randomly chosen faults into it.

We also assume that the adversary knows small parts of the plaintext (thus ob-
taining also parts of the keystream). This is a widely used assumption in cryptography
(known as chosen plaintext attacks) and is quite realistic as parts of the message (such as
headers) are usually predictable by an attacker.

1.4. Rule 30 Stream Cipher

Cellular automata theory describes, among other things, how simple and well-defined
rules can lead to complex structures. It is claimed that the random properties of cellular
automata could be used to implement secure, simple, fast, and low cost cryptosystems.
In his seminal paper [9], Wolfram proposed the use of cellular automaton rule 30 as a
keystream generator for a stream cipher. The resultant encryption scheme is the so-called
Rule 30 Stream Cipher.

A cellular automaton consists of a one-dimensional circular register of n cells,
where each cell can present one of two possible states (values), 0 or 1. These cells are
updated in parallel in discrete time steps according to a next state function (or rule). Let
ati denote the value of the i-th cell at time t. The rule 30 is given by:

ati = at−1
i−1 XOR

(
at−1
i OR at−1

i+1

)
(1)

86



2. Fault Analysis of the Rule 30 Stream Cipher
This section introduces our fault attack on the Rule 30 Stream Cipher, described earlier in
section 1.4. For sake of feasibility, the following assumptions are made:

• The adversary knows a sequence of n/2+ 1 bits extracted from the register of the
cryptographic device. I.e., he/she knows ati, for t = 1, . . . , n/2+1. This sequence
is stored in the central column of a matrix A
• The adversary has the capability of changing the content of chosen areas of the

register, i.e., of flipping their stored value. He/she can also reset the device.

This cryptanalytic technique is divided into 3 steps (or phases). In the first step,
we determine the bits of the two columns adjacent to the central column. In the second
step, we proceed with the determination of the bits on the right side of the central column.
In step 3, we determine the bits on the left side of the central column.

As will be shown, as the attack goes on, the actions taken by the cryptanalyst will
depend on the observed configuration of the cells. The method is described below.

STEP 1: Determination of the bits of the two columns adjacent to the central column.

This step consists of provoking a fault into the register for each known pair of bits. It is
possible to determine the two pairs of bits adjacent to the central column.

(
at−1
i−1 at−1

i at−1
i+1

x ati x

)

Configuration 1.1

(
at−1
i−1 at−1

i at−1
i+1

x ati x

)
=

(
at−1
i−1 0 at−1

i+1

x 0 x

)

This configuration is only possible if at−1
i−1 = at−1

i+1 = 1 or at−1
i−1 = at−1

i+1 = 0. If the
attacker flips the bit at−1

i and then recomputes the bit ati, there will be two possibilities:

• If ati = 0, then at−1
i−1 = at−1

i+1 = 1
• If ati = 1, then at−1

i−1 = at−1
i+1 = 0

Configuration 1.2

(
at−1
i−1 at−1

i at−1
i+1

x ati x

)
=

(
at−1
i−1 0 at−1

i+1

x 1 x

)

This configuration is only possible if at−1
i−1 = 0 and at−1

i+1 = 1 or at−1
i−1 = 1 and

at−1
i+1 = 0. If the attacker flips the bit at−1

i and then recomputes the bit ati, there will be two
possibilities:

• If ati = 1, then at−1
i−1 = 0 and at−1

i+1 = 1
• If ati = 0, then at−1

i−1 = 1 and at−1
i+1 = 0

87



Configuration 1.3

(
at−1
i−1 at−1

i at−1
i+1

x ati x

)
=

(
at−1
i−1 1 at−1

i+1

x 0 x

)

This configuration allows one to immediately determine at−1
i−1 = 1. However, at−1

i+1

remains undefined. If the attacker flips the bit at−1
i and then recomputes the bit ati, there

will be two possibilities:

• If ati = 1, then at−1
i−1 = 1 and at−1

i+1 = 0
• If ati = 0, then at−1

i−1 = 1 and at−1
i+1 = 1

Configuration 1.4

(
at−1
i−1 at−1

i at−1
i+1

x ati x

)
=

(
at−1
i−1 1 at−1

i+1

x 1 x

)

This configuration allows one to immediately determine at−1
i−1 = 0. However, at−1

i+1

remains undefined. If the attacker flips the bit at−1
i and then recomputes the bit ati, there

will be two possibilities:

• If ati = 1, then at−1
i−1 = 0 and at−1

i+1 = 1
• If ati = 0, then at−1

i−1 = 0 and at−1
i+1 = 0

STEP 2: Determination of the bits on the right side of the central column.

Assume the following notation.

(
α β
x δ

)
=

(
at−1
i−1 at−1

i

x ati

)

One can easily see that there are 8 different possibilities for the bits {α, β, δ}. Basing on
equation 1, an adversary in possession of the bits {α, β, δ} can determine the bit at−1

i+1 by
applying one fault into the register.

We shall now analyze these 8 possibilities.

Configuration 2.1

(
at−1
i−1 at−1

i at−1
i+1

x ati x

)
=

(
0 0 at−1

i+1

x 0 x

)

• This configuration is only possible for at−1
i+1 = 0.

Configuration 2.2

(
at−1
i−1 at−1

i at−1
i+1

x ati x

)
=

(
0 0 at−1

i+1

x 1 x

)

88



• This configuration is only possible for at−1
i+1 = 1.

Configuration 2.3
(
at−1
i−1 at−1

i at−1
i+1

x ati x

)
=

(
0 1 at−1

i+1

x 0 x

)

• This configuration is not possible.

Configuration 2.4
(
at−1
i−1 at−1

i at−1
i+1

x ati x

)
=

(
0 1 at−1

i+1

x 1 x

)

If the attacker flips the bit at−1
i and then recomputes the bit ati, there will be two

possibilities:

• If ati = 1, then at−1
i+1 = 1.

• If ati = 0, then at−1
i+1 = 0.

Configuration 2.5
(
at−1
i−1 at−1

i at−1
i+1

x ati x

)
=

(
1 0 at−1

i+1

x 0 x

)

• This configuration is only possible for at−1
i+1 = 1.

Configuration 2.6
(
at−1
i−1 at−1

i at−1
i+1

x ati x

)
=

(
1 0 at−1

i+1

x 1 x

)

• This configuration is only possible for at−1
i+1 = 0.

Configuration 2.7
(
at−1
i−1 at−1

i at−1
i+1

x ati x

)
=

(
1 1 at−1

i+1

x 0 x

)

If the attacker flips the bit at−1
i and then recomputes the bit ati, there will be two

possibilities:

• If ati = 1, then at−1
i+1 = 0.

• If ati = 0, then at−1
i+1 = 1.

Configuration 2.8
(
at−1
i−1 at−1

i at−1
i+1

x ati x

)
=

(
1 1 at−1

i+1

x 1 x

)

89



• This configuration is not possible.

STEP 3: Determination of the bits on the left side of the central column.

Assume the following notation.

(
α β
δ x

)
=

(
at−1
i−1 at−1

i

ati−1 x

)

One can easily see that there are 8 different possibilities for the bits {α, β, δ}. Basing
on equation 1, an adversary in possession of the bits {α, β, δ} can determine the bit at−1

i−2

without applying any fault into the register.

We shall now analyze these 8 possibilities.

Configuration 3.1(
at−1
i−2 at−1

i−1 at−1
i

x ati−1 x

)
=

(
at−1
i−2 0 0
x 0 x

)

• This configuration is only possible for at−1
i−2 = 0.

Configuration 3.2

(
at−1
i−2 at−1

i−1 at−1
i

x ati−1 x

)
=

(
at−1
i−2 0 0
x 1 x

)

• This configuration is only possible for at−1
i−2 = 1.

Configuration 3.3

(
at−1
i−2 at−1

i−1 at−1
i

x ati−1 x

)
=

(
at−1
i−2 1 0
x 0 x

)

• This configuration is only possible for at−1
i−2 = 1 .

Configuration 3.4

(
at−1
i−2 at−1

i−1 at−1
i

x ati−1 x

)
=

(
at−1
i−2 1 0
x 1 x

)

• This configuration is only possible for at−1
i−2 = 0.

Configuration 3.5

(
at−1
i−2 at−1

i−1 at−1
i

x ati−1 x

)
=

(
at−1
i−2 0 1
x 0 x

)

90



• This configuration is only possible for at−1
i−2 = 1.

Configuration 3.6

(
at−1
i−2 at−1

i−1 at−1
i

x ati−1 x

)
=

(
at−1
i−2 0 1
x 1 x

)

• This configuration is only possible for at−1
i−2 = 0.

Configuration 3.7

(
at−1
i−2 at−1

i−1 at−1
i

x ati−1 x

)
=

(
at−1
i−2 1 1
x 0 x

)

• This configuration is only possible for at−1
i−2 = 1.

Configuration 3.8

(
at−1
i−2 at−1

i−1 at−1
i

x ati−1 x

)
=

(
at−1
i−2 1 1
x 1 x

)

• This configuration is only possible for at−1
i−2 = 0.

3. Further Explanation on the Rule 30 Stream Cipher Fault Analysis
In this part, we explain in-depth why our fault attack on the rule 30 stream cipher works.

The main idea is simple and quite intuitive. We recall that the attacker knows a
sequence of n/2+1 cells, which are located on the central column of a matrix A. We also
recall equation 1.

ati = at−1
i−1 XOR

(
at−1
i OR at−1

i+1

)

In the first step of our attack, the cryptanalyst intends to discover the values at−1
i−1

and at−1
i+1, given the values that he/she knows, i.e., ati and at−1

i . However, he/she has two
variables and only a boolean equation (this initial configuration is displayed in figure 1).

1
1



t
ia

1
1



t
ia 1

1



t
ia 1

1



t
ia

1
1



t
ia

1
1



t
ia

1
1



t
ia

x x

Bits to be determined

t
ia

1t
ia

Known cells

Figure 1. Initial configuration.

91



Our fault analysis capabilities allow the cryptanalyst to obtain another boolean
equation by flipping the bit at−1

i and observing the new value assumed by ati after the
fault injection. So, at the end of this action, the cryptanalyst will have a simple system of
the form: 

[ati]
before
flipping = at−1

i−1 XOR
(
b OR at−1

i+1

)
[ati]

after
flipping = at−1

i−1 XOR
(
b OR at−1

i+1

) (2)

where [ati]
before
flipping and [ati]

after
flipping denote the values observed at cell ati before and after the

fault injection, respectively. Before, the fault injection at−1
i = b and after this, at−1

i = b,
where b is the complementary value of b. It is easy to find the solution for this system.
The action performed is illustrated in figure 2.

1
1



t
ia

1
1



t
ia 1

1



t
ia 1

1



t
ia

1
1



t
ia

1
1



t
ia

1
1



t
iab

x x BFt
ia

Bit to be flipped

Fault Injection 1
1



t
ia

1
1



t
ia 1

1



t
ia 1

1



t
ia

1
1



t
ia

1
1



t
ia

1
1



t
ia

x x

Flipped bit

b

 AFt
ia

Observe modified 
value

Figure 2. Illustration of the main idea involved in the first step of our attack.

Steps 2 and 3 are trivial, and we hardly have to perform a flip action, because,
usually, we have equation with only one variable to be determined. Figure 3 suggests
that.

1
2



t
ia

1
1



t
ia 1

1



t
ia 1

1



t
ia

1
1



t
ia

1
1



t
iax x

Bit to be determined

Known cells1
2



t
ia 1

1



t
ia 1t

ia
t
ia 1

Figure 3. Illustration of step 3 configuration.

Regarding the complexity of the attack, it is easy to obtain an estimation on the
number of faults required to break the cryptosystem. At step 1, we provoke n/2 fault
injections to determine the two pairs of bits adjacent to the central column. At step 2,
there are (1/2)× [(n/2)× (n/2)] bits, and, on average, we provoke 0.25 fault for each bit
to be determine. So, step 2 requires n2/32 faults. At step 3, as explained previously, no
faults need to be realized. Thus,

Number of Faults Rule30 =
n2

32
+
n

2

92



3.1. Fault Analysis Effect on Rule 30 Stream Cipher
One of the most known cryptanalytic techniques against the rule 30 stream cipher was
proposed by Meier and Staffelbach [5]. Their statistical technique allows one to determine
secret keys with lengths varying between 300 and 500 bits by using personal computers.
However, it is claimed that the recovery of secret keys of 1,000 bits would demand the
use of large scale parallel computers.

On the other hand, the attack based on fault analysis assumptions has proven to be
efficient and feasible for a large set of key lengths. For instance, to obtain a secret key of
256 bits, the cryptanalyst should inject 27+211 faults and know (256/2)+1 = 129 bits of the
generated sequence. To obtain a key of 1,024 bits, 29+215 fault injections and 512 known
bits are needed. This amount of operations can be performed by any personal computer
equipped with current technology. Besides that, the operations required to implement
the attack are simple (comparisons and fault injections) and can be performed by any
unsophisticated computational system.

4. Conclusions
Cellular automata based stream ciphers were designed to respond to the increasing need of
fast and low-cost cryptographic mechanisms. However, we have shown how devastating
fault analysis can be when applied to some of those cryptosystems.

Our fault attack against the rule 30 stream cipher needs, in order to determine a
secret key of length n, only n/2 + n2/32 fault injections and a sequence of n/2 + 1 bits.

It is an interesting future research direction to see how well the results introduced
here apply to other ciphers designed for low-cost, high performance cryptographic de-
vices.

References
[1] Eli Biham, Adi Shamir. A New Cryptanalytic Attack on DES: Differential Fault Analysis.

Preprint, October 1996.

[2] Dan Boneh, Richard A. DeMillo and Richard J. Lipton. On the Importance of Checking
Cryptografic Protocols for Faults. Advances in Cryptology – EUROCRYPT 1997,
Lecture Notes in Computers Science vol.1233, Springer-Verlag, pp. 37–51, May
1997.

[3] A. Fuster-Sabater, P. Caballero-Gil and M.E. Pazo-Robles, Application of Linear Hybrid
Cellular Automata to Stream Ciphers, EUROCAST 2007, Lecture Notes in Com-
puter Science vol. 4739, pp. 564-571, 2007

[4] Jonathan J. Hock and Adi Shamir. Faut Analysis of Stream Ciphers. CHES 2004, Lecture
Notes in Computer Science vol. 3156, Springer-Verlag, pp. 240–253, 2004.

[5] Willi Meier and Othmar Staffelbach. Analysis of Pseudo Random Sequences Gener-
ated by Cellular Automata. Advances in Cryptology – EUROCRYPT 1991, Lecture
Notes in Computer Science vol. 547, Springer-Verlag, pp. 186–199, 1991.

[6] S. Nandi, B.K. Par, P. Pal Chaudhuri. Theory and Application of Cellular Automata in
Cryptography, IEEE Transactions on Computers, vol 43, Issue 12, pp.1346-1357,
1994

93



[7] F. Seredynsky, P. Bouvry and A. Zomaya. Cellular Automata Computations and Secret
Key Cryptography. Parallel Computing, Vol. 30, Issues 5-6, pp. 753-766, 2004.

[8] M. Tomassini and M Perrenoud. Cryptography with Cellular Automata, Applied Soft
Computing, vol 1, Issue 2, pp. 151-160, 2001.

[9] S. Wolfram. Cryptography with Cellular Automata. Advances in Cryptology - CRYPTO
1985, Proceedings, Springer-Verlag, pp. 429–432, 1986.

[10] S. Wolfram. Random Sequence Generation by Cellular Automata. Advances in Applied
Mathematics 7, pp. 123–169, 1986.

94


	02_ANAIS
	06


