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Abstract. In this paper we propose a new 5-pass zero-knowledge identification
scheme with soundness error close to 1/2. We use the hardness of the Inho-
mogeneous Small Integer Solution problem as security basis. Our protocol
achieves lower communication costs compared with previous lattice-based zero-
knowledge identification schemes. Besides, our construction allows smaller
public and secret keys by applying the use of ideal lattices. We allow the prover
to possess several pairs of secret and public keys, and choose randomly which
pair is to be used in a given round of execution. We also dealt with nonces
in zero-knowledge schemes in a new way, lowering the number of values ex-
changed between the prover and the verifier. Hence, our scheme has the good
features of having a zero-knowledge security proof based on a well known hard
problem of lattice theory, with worst to average-case reduction, and small size
of secret and public keys.

1. Introduction
Identification schemes are cryptographic tools applied to provide access control. A com-
mon realization of such schemes comes in the form of protocols between two entities
called Prover and Verifier. The former is expected to establish the validity of its identity
to the latter. In order to accomplish such goal, the Prover makes used of the knowl-
edge of a secret key, that is connected to its identity. The application of zero-knowledge
constructions helps to ensure that no information about such key is leaked as the pro-
tocol is performed. The only knowledge gained by the Verifier is that the claim made
by the Prover about the possession of the secret key is valid with overwhelming proba-
bility. Lattice-based instantiations of this kind of protocol have recently been proposed:
[Lyubashevsky 2008], [Kawachi et al. 2008] and [Cayrel et al. 2010]. An interesting fea-
ture of some lattice-based systems in Cryptography, as seen in the seminal work from
Ajtai [Ajtai 1996], is the possibility of allowing reductions from wost-cases to average-
cases of well known hard problems. In the present work we use some of these results and
propose an identification scheme that achieves better communication costs.
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There is an standard construction of signature schemes from identification
schemes through the usage of the Fiat-Shamir heuristic, secure under the random oracle
model [Fiat and Shamir 1986]. It is of pivotal importance, however, that the communica-
tion costs of the identification scheme be small in order to have efficient conversion.

Among the good characteristics that our system possesses we stress the resilience
to existing quantum attacks, like Shor’s [Shor 1994]. In addition to that, the rela-
tively small soundness error per round and the algorithm that prevents exchange of
large vectors enables to achieve small communication costs in contrast to other lattice-
based solutions, such as those seen in [Lyubashevsky 2008], [Kawachi et al. 2008] and
[Cayrel et al. 2010]. This is conveyed by the Table 1, where we consider a scenario with
an overall soundness error of 2−16, and make the assumption that all the random choices
involve the use of seeds that are 128 bits long. For a setting applying k pairs of keys, our
scheme has soundness error 1/2+1/k2. Then, it suffices to run 17 rounds of the protocol
in order to reach such goal. The best zero-knowledge identification scheme in term of
communication cost, the CLRS scheme has soundness error of (q+1)/q, considering that
it is based on q-ary lattices over Zq. Given that we are working with q = 257, it also
requires 17 rounds in order to satisfy the requirement regarding overall soundness error.
Our proposal reaches a communication cost better than CLRS’.

Scheme Rounds Total communication
[Kbyte]

Lyubashevsky [Lyubashevsky 2008] 11 110,00
Kawachi et al. [Kawachi et al. 2008] 27 58,67

CLRS [Cayrel et al. 2010] 17 37,50
Ours 17 23,40

Table 1. Comparison with lattice-based ID schemes.

This paper is organized as follows. The concepts necessary to the understanding
of our construction are are presented in Section 2. After that, we provide a detailed
description of the algorithms from which our scheme is composed in Section 3. Then, we
give the proofs for the zero-knowledge properties that our scheme possesses. For last, we
discuss the choice of parameters in Section 4 and future lines of investigation in Section
5.

2. Preliminaries
Notation. Along the text we use bold capital letters to denote matrices and bold small
letters to indicate vectors. Scalars, on their turn, are represented with regular characters.

Security Model. Our identification scheme employs a string commitment scheme that
possesses the properties of computationally binding and statistically hiding. We also as-
sume that a trusted party honestly sets up the system parameters for both the Prover and
the Verifier.

A commitment scheme is said to be statistically hiding, when no computationally
unbounded adversary can distinguish two commitment strings generated from two distinct
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strings. It is computationally binding, if no polynomial-time adversary can imperceptibly
change the committed string after sending the corresponding commitment.

We show that our construction is resilient to concurrent attacks. Thus, we allow
the adversaries act as cheating verifiers prior to attempting impersonation attacks, with
polynomially many different instances of the prover. Such instances share the same se-
cret keys in each round, but use different random coins. Besides, they have their own
independent state.

Zero-Knowledge. Given a language L and one of its words x, we call zero-knowledge
proof of knowledge that x belongs L a protocol with the following properties:

• Completeness: any true theorem to be proved.
• Soundness: no false theorem can be proved.
• Zero-Knowledge: nothing but the truthfulness of the statement being proved is

revealed. According to [Goldwasser et al. 1985], there exist the following kinds
of zero-knowledge :

– Perfect: if the simulator and the real proof produce communication tapes
with exactly the same distribution.

– Statistical: if the simulator and the real proof produce communication
tapes whose statistical distributions are negligibly close.

– Computational: if no efficient algorithm can distinguish the communica-
tion tape produced by the simulator from that corresponding to the real
protocol.

Lattices. Lattices correspond to discrete additive subgroups of Rm. One can represent
them by means of a basis B composed of n ≤ m linear independent vectors in Rm. Such
basis is not unique. Given two basis B1 and B2 for the same lattice, there is a unimodular
matrix U such that B1 = B2U.

Given a basis B, the corresponding lattice is generated by all combinations of
vectors in B with integer coefficients.

There are hard problems defined over lattices that can be used as security assump-
tions in the construction of cryptographic schemes. We list below the problems that are
related to the identification scheme proposed in this paper. We assume that the norm used
throughout this document is max-norm.
Definition 2.1 (Search Shortest Vector Problem, SVP). On input a lattice basis B ∈
Zm×n, the computational shortest vector problem (SVP) is defined as the task of obtaining
a non-zero lattice vector Bx satisfying ‖Bx‖ ≤ ‖By‖ for any other y ∈ Zn \ {0}.

As commonly happens in the study of computational complexity, one
can express the problem above as optimization, decision and approximation
[Micciancio and Goldwasser 2002].
Definition 2.2 (Short Integer Solution, SIS). On input a prime q, a positive real number
b, a matrix A ∈ Zn×m

q , associated with a lattice basis, the short integer solution (SIS)
problem is defined as the task of finding a non-zero vector x ∈ Zm such that Ax = 0
(mod q), with ‖x‖ ≤ b.
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The SIS has served as security assumption in several cryptographic schemes with
worst-case connections. In [Ajtai 1996] and [Ajtai and Dwork 1996], Ajtai first showed
how to use computationally intractable worst-case lattice problems as building blocks for
cryptosystems. The parameter sizes involved, however, are not small enough to enable
practical implementations.

Working towards making lattice-based schemes practical, Micciancio showed that
it is possible to represent a basis, and thus public keys, with space that grows quasi-
linearly in the lattice dimension [Micciancio 2007] through cyclic lattices. Further im-
provement was obtained in conjunction with Lyubashevsky, achieving compression func-
tions that are both efficient and provably secure assuming the hardness of worst-case
lattice problems for ideal lattices [Lyubashevsky and Micciancio 2006].

A variety of hard problems associated with lattices has been used as security ba-
sis in a number of cryptographic schemes. For example, Lyubashevsky’s identification
scheme is secure under active attacks, assuming the hardness of approximating SVP in all
lattices of dimension n to within a factor of Õ(n2). By weakening the security assump-
tion, on the other hand, one can achieve parameters small enough to make a practical
implementation feasible, as seen in the identification scheme proposed by Kawachi et
al. in [Kawachi et al. 2008]. In this later work, the authors suggest to use approximate
Gap-SVP or SVP within factors Õ(n). Cayrel et al. improved the results from Kawachi
in the CLRS scheme [Cayrel et al. 2010].

Ideal Lattices. There is a particular class of lattices that are closed under ring multipli-
cations. They correspond to the ideals of some polynomial quotient ring.
Definition 2.3 (Ideal lattices). Let f be a monic polynomial of degree n. We call L is an
ideal lattice if it corresponds to an ideal I in the ring Z[x] /〈f〉.

For lattices of rank n and entries from Zq, the storage needs for characterizing a
basis is n2 log(q) bits. By applying ideal lattices, instead, this value can be reduced to
n log(q) bits. Besides the gain in storage, there is also a gain in performance, given that
matrix/vector multiplications can be performed in time O(n log(n)) using discrete FFTs.

Both SIS and SVP restricted to ideal lattices still keep the worst-case to average-
case connection, provided that f is irreducible over the integers.
Definition 2.4 (Ideal-SIS). Given a monic polynomial f of degree n, the ring Rf =
Z[x]/〈f〉, and m elements a1, . . . , am ∈ Rf/qRf , we define Ideal-SIS the problem of
finding x1, . . . , xm ∈ Rf satisfying

∑m
i=1 aixi = 0 (mod q) and 0 < ‖(x1, . . . , xm)‖ ≤

b.

Canonical identification schemes Let the tuple (KEYGEN, P, V ) be an identification
scheme, where KEYGEN is the key-generation algorithm which on input parameters out-
puts (sk, pk), P is the prover algorithm taking input sk, V is the verifier algorithm taking
inputs parameters and pk. We say that such scheme is a canonical identification scheme
if it is a public-coin 3-move protocol {commitment, challenge, answer} that enables P to
convince V about the knowledge of sk.
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Stern’s Identification Scheme. The first code-based identification scheme was pro-
posed by Harari in 1989 [Harari 1988], but it was broken by Véron in 1995 [Véron 1995].
In 1990, Girault devised a three-pass scheme [Girault 1990]. Neither of those schemes
was practical, from performance perspective, though. The first practical code-based iden-
tification scheme, from performance standpoint, was proposed by Stern [Stern 1993]. Its
security relies on the collision-resistance property of a hash function h and the hardness
of the syndrome decoding problem. The entity to be authenticated possesses a pair of
keys (i, s) related by i = HT s, where H is a public parity check matrix of a given code, s
is a private binary vector of Hamming weight p, and i is its public syndrome. It engages
in a zero-knowledge protocol with a verifier, aiming to prove the knowledge of the secret
key, without revealing its value. In the same paper Stern proposed some variations of the
protocol. The most efficient in terms of communication costs had soundness error of 2/3.
This implies that, in order to reach a confidence level L on the authenticity of the prover,
the protocol has to be repeated a number r of rounds, in order to satisfy 1− (2/3)r ≥ L.

Gaborit and Girault’s Identification Scheme Another scheme suggested by Gaborit
and Girault requires smaller storage for public data [Gaborit and Girault 2007]. Given
that the schemes we have seen are dealing with codes, this usually implies that a generator
matrix or a parity check matrix is needed to fully characterize them. The idea applied by
Gaborit and Girault was to use double-circulant matrices for a compact representation.

In our work, we point out that a combination of these two approaches (and the
one from Aguilar et al. [Aguilar et al. 2011]) can be used in the lattice context, namely
ideal lattices (which allow a very compact representation, as efficient as double-circulant
matrices) for an identification scheme structure with soundness error of 1/2. With this, we
manage to have the lowest communication costs and lowest public data storage needs.

3. Identification Scheme
Our scheme is comprised of two algorithms: key generation, and identification protocol.
The first picks uniformly at random k binary vectors with length m, Hamming weight
p and disjoint supports. The corresponding public keys are obtained by multiplication
of the private key by a uniformly chosen matrix A ∈ Zn×m

q . Given the small norm
of the private keys, it is still computationally intractable to derive them from the public
data for a suitable choice of parameters with algorithms known to this date. Such task
corresponds to the inhomogeneous SIS problem. In addition to that, several valid private
keys correspond to a given public key. This fact will be used later on to establish the
concurrent security of our scheme.

KEYGEN:

A
$←− Zn×m

q
Compute x = {x1, . . . ,xk} and y = {y1, . . . ,yk} where

xi
$←− {0, 1}m , with Hamming weight p and 1 ≤ i ≤ k

yi ←− Axi mod q with 1 ≤ i ≤ k

COM
$←− F , suitable family of commitment functions

Output (sk, pk) = (x, (y,A, COM)), where the private key is sk, and the public key is pk.

Figure 1. Key generation algorithm, parameters n,m, q are public.

The second algorithm corresponds to the identification protocol. To a given user
we have associated k distinct pairs of keys. In a given round of execution, the Verifier
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ProverP(sk, pk) Verifier V(pk)
(sk, pk) = (x, (y,A, COM))←− KEYGEN

u∗ $←− Zm
q , σ

$←− Sm

u←− σ−1(u∗)

r3
$←− {0, 1}m

r1 ←− σ(r3)
r2 ←− u∗&r3
c1 ←− COM(σ ‖Au; r1)

c2 ←− COM(u∗; r2)
c1, c2−−−−−−−−−−−−→
s, t

←−−−−−−−−−−−− s, t
$←− {1, . . . , k}

c3 ←− COM(σ(xs + xt + u) mod q; r3)
c3−−−−−−−−−−−−→

Challenge b
←−−−−−−−−−−−− b

$←− {0, 1}

If b = 0:
σ,u + xs + xt mod q, r3−−−−−−−−−−−−→

Check
r1 ←− σ(r3)
c1

?
= COM(σ ‖A(u + xs + xt)− ys − yt; r1)

c3
?
= COM(σ(xs + xt + u) mod q; r3)

Else:
u∗, σ(xs + xt), r3−−−−−−−−−−−−→

Check
r2 ←− u∗&r3

c2
?
= COM(u∗; r2)

c3
?
= COM(σ(xs + xt) + u∗ mod q); r3)

σ(xs + xt) is binary with Hamming weight 2p

Figure 2. Identification protocol

picks two pairs of keys that the Prover is supposed to use for the interactive proof. When
performing operations over the private keys, the Prover uses blinding factors in the form
of permutations and vector sums with modular reduction. Both the permutation and the
vector to be added to the private keys are uniformly randomly chosen. Hence, observing
the outcome does not reveal any information about the private key value, given that its sta-
tistical distribution is uniform. This is applied in the demonstration of the zero-knowledge
property of our scheme.

In order to help in the reduction of communication costs, the nonces that are used
in conjunction with the COM functions can be generated in such a way that only one of
the three values ri is chosen uniformly at random. We can chose r3 because c3 is the
common commitment that is checked for both possible values for the challenge b. The
other two nonces may be obtained by performing operations involving the first one, either
by applying a random permutation (σ) or by performing the bitwise logical AND with the
appropriate number of bits of the permutation of a randomly chosen vector (u). When
replying to the challenges, the Prover would give to the Verifier all the seeds needed
to reconstruct the nonces ri. The Prover also sends the seeds for computing σ and u∗,
depending on the challenge received from the Verifier, instead of sending matrices and
vectors that define them. We are making the assumption that the utility function to derive
them from the seeds are publicly known.

Regarding the computation of the blinding vector u, we first randomly choose its
image u∗. Then, using the seed of the permutation σ, we obtain u ←− σ−1(u∗). This
choice enables to, instead of replying the challenge b = 1 with a vector in Zm

q , send
only a seed to reconstruct the value of u∗ by the Verifier. This is the point where the
improvement in terms of communication costs regarding CLRS becomes more evident.

For instantiating the commitment scheme COM, we recommend Kawachi’s
[Kawachi et al. 2008], whose security is based on SIS. As seen with CLRS and SWI-
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FFT, the application of ideal lattices can bring improvement in performance and storage
needs, without sacrificing security.

3.1. Security

We provide below proofs for the completeness, soundness and zero-knowledge properties
of the identification scheme described in Figure 2. We use as assumptions the fact that
the string commitment scheme COM is a statistically hiding and computationally binding
commitment scheme, and also that the inhomogeneous SIS problem is hard.

3.1.1. Completeness

Given that an honest prover has knowledge of the private keys xi, the blending mask u
and the permutation σ, he will always be able to derive the commitments c1, c2 and c3,
and reveal to the verifier the information necessary to check that they are correct. He can
also show that the private keys in his possession has the appropriate Hamming weights.
So, the verifier will always accept the honest prover’s identity in any given round. This
implies perfect completeness.

3.1.2. Zero-Knowledge

We give a demonstration of the zero-knowledge property for the identification protocol
shown in Figure 2. Here, we require the commitment function COM to be statistically
hiding, i.e., COM(x; r) is indistinguishable from uniform for a uniform r ∈ {0, 1}m.
Theorem 3.1. Let q be prime. The protocol described in Figure 2 is a statistically zero-
knowledge proof of knowledge that the prover knows a set of k secret binary vectors xi

of Hamming weight p that satisfy Axi = yi mod q, for i ∈ {1, . . . , k}, if the employed
commitment scheme COM is statistically-hiding.

Proof. To prove the zero-knowledge property of our protocol, we construct a simulator
S that, given oracle access to a verifier V (not necessarily honest), produces a communi-
cation tape that is statistically indistinguishable from a tape generated by the interaction
between an honest prover P and the given verifier V . The construction of such simu-
lated tape is described below. The simulator prepares to answer the second challenge b
by guessing its value b̃ picked uniformly at random from {0, 1}, and produces the cor-
responding commitments c1 and c2. It accesses the verifier, as an oracle, passing the
commitments c1 and c2, obtaining as response the first challenge {s, t}. Then, it com-
putes commitment c3 and passes it to the verifier, obtaining the final challenge b. If b and
b̃ match, the simulator records the interaction in the communication tape. Otherwise, it
repeats the process. The number of rounds recorded r corresponds to what would be ex-
pected from a real pair (P, V ) in order to reach a specified value for the overall soundness
error L.

The computations of each commitment are executed as follows.

If b̃ = 0, the simulator selects u, σ and the nonces {r1, r2, r3} as per protocol, com-
putes the commitments {c1, c2} and passes them to the verifier V , which responds with a
challenge {s, t}. The simulator solves the equations Axt = yt (mod q) and Axs = ys
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(mod q) for xt and xs, without any restriction regarding the norm of the solution. Such
step is not computationally hard, and can be done in polynomial time. With these pseudo
secret keys xt and xs, the simulator computes c3 according to the protocol and sends it
to the verifier. The deviation in c3 is not recognized because COM is statistically hid-
ing. Upon receipt of c3 the verifier responds with the final challenge b. If it matches the
value to which the simulator had prepared to answer, namely b̃, then it reveals the values
{σ,u + xs + xt mod q, r1, r3} to the verifier. The whole set of data exchanged between
the simulator and the verifier is recorded. If there is not a match between b and b̃, however,
the simulator does not record anything and prepares for a new round by picking another b̃
uniformly at random and restarts the process.

If b̃ = 1, the simulator needs to play against the second verification branch. It
selects u, σ and the nonces {r1, r2, r3} according to the protocol, uniformly at random.
It computes the commitments {c1, c2}, sends them to the verifier, obtaining the answer t
as result. Then, the simulator picks xt and xt uniformly at random as a binary vectors
of dimension m, Hamming weight p and disjoint supports, without having to satisfy the
restrictions Axs = ys mod q and Axt = yt mod q, given that this will not be used
to check the validity of the commitments, in case the guessed challenge is correct. It
suffices that c2 and c3 can be reproduced by the verifier, and that the surrogate private
keys xt and xt have Hamming weight p. The simulator computes commitment c3, sends
it to the verifier, and gets the final challenge as response. Again, such deviation is hidden
by COM. In case the final challenge matches the guessed value, the whole interaction of
this round is recorded. Otherwise, the simulator picks another b̃ and restarts the process.
As a result, after 2r rounds in average, the simulator produces a communication tape
statistically indistinguishable from a real one, provided that COM is statistically hiding.

3.1.3. Soundness

Theorem 3.2. If after r rounds of protocol execution a cheating prover is accepted with
probability at least (1/2+1/k2)r+ ε, for any ε > 0, either there is a knowledge extractor,
which is a polynomial time probabilistic Turing machine that computes with overwhelm-
ing probability the sum of two private keys xi and xj , with i, j ∈ {1, . . . , k}, which are
solutions to instances of the inhomogeneous SIS, or the binding property of the commit-
ment scheme COM is broken.

Proof. We follow the same strategy as Véron [Véron 1996] for reasoning about trees
that model the probability space corresponding to the execution of the protocol. Let us
suppose that a cheating prover can be accepted with such probability as (1/2+1/k2)r+ε,
or higher. Then, by rewinding this prover a number of times given by 1/ε, we can find
with overwhelming probability a node with two sons in the execution tree associated with
the protocol between the cheating prover and the verifier, corresponding to the reception
of the two possible values for the challenge b. This means that such cheating prover will
be able to answer all challenges for a fixed set of commitments c1, c2, c3.

There are two possibilities for him to accomplish this. The first one is to have the
arguments from which the commitments assuming different values for the two challenges,
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but with similar images through the application of the function COM. This implies a
violation of the binding property of the commitment scheme, given that a collision was
found.

The second possibility is that the arguments to the function COM match. Let us
call σ0 and u0 + xs 0 + xt 0 the values revealed by the cheating prover upon receipt of
the challenge b = 0. Let us call σ(u1) and σ1(xs 1 + xt 1) the answer to the challenge
b = 1. Then, we can obtain the sum of the private key xs + xt as σ−1

0 (σ1(xt 1 + xt 1)).
This also means that we solved an arbitrary inhomogeneous SIS instance in probabilistic
polynomial time, violating our assumption that such problem is hard.

The ability to find the sum of two arbitrary private keys also implies the ability
to obtain each of the individual keys corresponding to such sum. In order to do that, we
can use the fact that private keys are binary vectors with constant Hamming weight p.
Then, using the pigeon hole principle, after finding k pair sums, we will have necessarily
a non-empty intersection with the support set of the next pair sum. Such intersection
corresponds to the support set of a single key. Given that the key is binary, it can be
uniquely determined from its support set. Then, applying an XOR operation between
each partially colliding sum and the recently computed key, we can retrieve the other two
remaining private keys. This whole process can be executed over polynomially many key
sums, so that all the individual private keys can be recovered.

In the security proofs above, we make the assumption that the distributions of r1,
r2 and r3 are uniform, provided that r3 is randomly chosen from {0, 1}n, and that the
other two nonces are computed as r1 ←− σ(r3) and r2 ←− σ(u) & r3. Besides, given
that COM is statistically-hiding, these choices can not be distinguished from what would
have been obtained, had r1 and r2 been directly picked at random from {0, 1}n.

3.2. Security and Performance Considerations

The application of ideal lattices in this identification scheme can lead to improved and
reduced memory footprint for public data. The usual restrictions regarding the choice of
irreducible polynomials in the characterization of the ideal lattice, as well as its expansion
factor must be observed, as discussed in [Lyubashevsky and Micciancio 2006]. This helps
to ensure that finding short vectors in this kind of lattice remains hard to achieve.

Our scheme is also secure against concurrent attacks. This is a consequence of
the fact that a public key corresponds to multiple secret keys, when the parameters are
chosen in such a way that the pre-image set given by the private keys is much larger than
the image set to which the public keys belong. The keys are related via mapping through
the matrix A.

3.3. Communication Costs

This identification scheme can benefit from the use of ideal lattices, by performing faster
matrix vector multiplications with FFTs, similarly to what was done with SWIFFT hash
function [Lyubashevsky et al. 2008]. The associated polynomial must be irreducible and
with small expansion factor, as suggested in [Lyubashevsky and Micciancio 2006], in or-
der to avoid known attacks.
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Another efficient identification scheme, named CLRS, based on SIS was recently
proposed by Cayrel et al.[Cayrel et al. 2010]. It possesses a soundness error of (q+1)/2q
per round, which is slightly higher than ours, namely 1/2. Such small difference plays
an important role in terms of performance as depicted in Table 1. We provide below a
comparison in terms of communication costs per round.

Our identification scheme exhibits the following message exchanges between the
prover P and the verifier V . We are assuming that the seeds used to generate random ele-
ments in the protocol are 128 bits wide, and that the commitment function COMprovides
results that are 256 bits wide.

• Commitments: 768 bits, corresponding to three commitment vectors.
• First challenge: 2 log2 k bits
• Second challenge: 1 bit
• Answer to the second challenge: (m/2) log2 q +m/2 + 256, which is an average

between
– case challenge is 0:

∗ one permutation seed: 128 bits
∗ one vector in Zm

q : m log2 q bits
∗ one seed for the nonce r3: 128 bits

– case challenge is 1:
∗ one seed for reconstructing the vector u∗ ∈ Zm

q : 128 bits
∗ one vector in {0, 1}m: m bits
∗ one seed for the nonce r3: 128 bits

Thus, the total communication costs in bits per round of the protocol can be ex-
pressed as

m

2
log2 q + 2 log2 k +

m

2
+ 1025.

Making the substitution of the parameters used in a concrete implementation, we
have the 11275 bits per round. The overall cost for a scenario demanding soundness error
of 2−16 is listed in Table 1. From there, one can see that our scheme improves the state of
art (CLRS) in approximately 38%.

4. Attacks on the security assumptions
An attacker might try to break our scheme either by finding collisions in the COM function
at will or by computing solutions to the SIS instances corresponding to the scheme. Given
that the COM function adopted is also based on SIS [Kawachi et al. 2008], this implies the
ability of successfully finding solutions for SIS defined over Zq, with vectors of dimension
m and approximation factor

√
m. Breaking our instances of inhomogeneous SIS, implies

the capacity to find vectors with max-norm 1 in arbitrarily chosen lattices. Neither of these
attacks can be efficiently implemented with tools and techniques currently available. This
does not change with the application of ideal lattices either.

In similarity with CLRS, we choose the parameters such that with overwhelm-
ing probability that there are other solutions to Ax = y mod q besides the private key
possessed by the Prover. This fact is of great importance for obtaining security against
concurrent attacks. In order to reach this goal, q and m are chosen in such a way that
the cardinality of set of the private keys is much bigger than the cardinality of set of the
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public keys. This ensures that the system has the property of witness indistinguishability,
which is kept under parallel composition.

As an instantiation with 100 bits of security, we suggest the parameters listed in
Table 2, which are comparable to those used by the SWIFFT hash function and the CLRS
identification scheme. The best combinatorial attack for finding short lattice vectors to
this date, devised by Wagner [Wagner 2002], has a computational complexity above 2100

for such set of parameters. In addition to that, our private keys have norm below of what
the best lattice reduction algorithms can obtain.

We chose the parameter k as 24 so that the soundness error per round be approx-
imately the same as that of CLRS. Naturally, the Verifier has to load the set of public
keys before the execution of the protocol from the trusted party that generates the keys.
This represents an extra cost when compared to CLRS, but such operation can be exe-
cuted at setup time. We are primarily concerned with the payload exchanged between the
Prover and the Verifier. This can help in preserving bandwidth and battery time, which is
important for constrained devices.

k n m q COM Length (bits)
24 64 2048 257 256

Table 2. Parameters for Lattice Instantiation

5. Conclusion and Further Work

We have shown in this paper a construction of a lattice-based identification scheme with
worst-case connections, taking as starting point a code-based scheme. Its small soundness
error results in lower communication costs than those from other lattice-based construc-
tions over the I-SIS or SIS problems. Further improvements in computational costs can be
obtained with the application of ideal lattices, without weakening the security properties.

As future work, we suggest an extension of this approach of replacing security
assumptions used by cryptographic schemes to other hard problems in lattices, such as
LWE (learning with errors) which has a formulation very close to that of error-correcting
codes.
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