
Obtaining Efficient Fully Simulatable Oblivious Transfer from
General Assumptions

Bernardo M. David1, Anderson C. A. Nascimento1, Rafael Tonicelli1

1Department of Electrical Engineering, University of Brasilia.
Campus Universitario Darcy Ribeiro,Brasilia, CEP: 70910-900, Brazil

bernardo.david@redes.unb.br, andclay@ene.unb.br, tonicelli@redes.unb.br

Abstract. We introduce a general construction of fully simulatable oblivious
transfer based on lossy encryption. Furthermore, we extend the common def-
inition of lossy encryption by introducing the notion of computationally lossy
encryption. If the cryptosystem used is computationally lossy, our general con-
struction yields oblivious transfer protocols with computational security for both
parties. Otherwise, when regular statistically lossy cryptosystems are employed
in this construction, it yields oblivious transfer protocols with statistical security
for the sender. The construction introduced in this paper is realizable from re-
randomizable, homomorphic and lossy cryptosystems in general. Thus, it yields
specific constructions based on different assumptions, such as DDH, LWE and
McEliece. Moreover, it proves the equivalence of fully simulatable oblivious
transfer and lossy encryption.

1. Introduction

Oblivious transfer (OT), a cryptographic primitive introduced by Rabin [Rabin 1981], is
of great importance in the design of secure two-party and multiparty computation proto-
cols.There exist many variants of OT, each one suitable for a given kind of application. In
the present work, we concentrate ourselves on a variant called one-out-of-two oblivious
transfer, denoted by

(
2
1

)
-OT. In this variant, a sender (Alice) inputs two bits b0, b1 and

a receiver (Bob) inputs a choice bit σ. At the end of the protocol, Alice receives noth-
ing and Bob receives the bit bσ. Loosely speaking, an OT protocol is said to be private
if the sender learns no information on the receiver’s choice σ, while the receiver gets
information concerning at most one of the sender’s inputs.

It has been proven that oblivious transfer enjoys a property called completeness,
meaning that any function can be securely computed if the parties are given black-box
access to OT [Kilian 1988]. Since OT serves as a building block for a wide variety of
secure protocols, it is desirable to have OT protocols that achieve a strong notion of secu-
rity against an unrestricted adversarial model. Regarding the adopted notion of security,
it is of particular interest to design OT protocols that are fully-simulatable, that is, secure
in the real/ideal model simulation paradigm. It is a well-known fact that OT protocols
proven secure in the simulation-based paradigm are secure under sequential composition
and, consequently, can truly be used as building blocks in more complex protocols. Re-
garding the adopted adversarial model, it is desirable for an OT protocol to be resistant
against a malicious adversary. In contrast to a semi-honest adversary (who follows the
protocol, but may try to acquire more information than it is allowed to know), a malicious

108

adversary may arbitrarily deviate from the protocol specifications and, thus, represents a
more powerful adversarial model.

In spite of being a fundamental cornerstone in two- and multi-party computation,
there are only a few results of efficient OT constructions that are secure against mali-
cious adversaries under the real/ideal model simulation paradigm without random oracles
[Lindell 2008, Green and Hohenberger 2007, Camenisch et al. 2007]. In [Camenisch et al. 2007]
the authors introduce constructions based on q-power DDH and q-strong Diffie-Hellman,
which are strong and relatively non-standard assumptions. In [Green and Hohenberger 2007],
a construction based on the Decisional Bilinear Diffie-Hellman assumption is introduced.
The first construction based on standard assumptions is given in [Lindell 2008], which
introduces protocols based on the DDH assumptions, smooth projective hashing and gen-
eral homomorphic cryptosystems (which is an assumption much stronger than lossy en-
cryption, being realizable under much more limited number of underlying computational
assumptions).

1.1. Contributions

In this paper, we present the following significant contributions:

• An efficient fully-simulatable oblivious transfer protocol based on a general as-
sumption: Lossy Encryption [Hemenway et al. 2009, Bellare et al. 2009]. In this
construction we utilize techniques from the DDH based efficient fully simulat-
able protocol presented in [Lindell 2008]. It is realizable from a broad number of
general assumptions (such as smooth projective hashing and re-randomization),
computational assumptions (such as DDH, LWE) and also the McEliece assump-
tions under the extra assumption of the existence of perfectly binding and perfectly
hiding commitments.
• Our construction proves the equivalence between fully simulatable oblivious trans-

fer and several flavors of lossy encryption, since the converse is shown in [Hemenway et al. 2009].
• We introduce computationally lossy encryption, which is realizable under a broader

number of assumptions than statistically lossy encryption, and show that the pro-
posed general construction achieves computational security for both parties in the
case that such a cryptosystem is employed.
• We unify all current constructions of efficient fully simulatable oblivious transfer

in the plain model, since lossy encryption (computational or statistical) is real-
izable under all of the assumptions previously used to construct fully simulat-
able oblivious transfer in the plain model, such as: smooth projective hashing re-
randomizable cryptosystems, homomorphic cryptosystems, DDH, q-power DDH,
q-strong Diffie-Hellman and Bilinear Diffie-Hellman.

In summary, the main contribution of this paper is to provide a general construc-
tion for fully-simulatable oblivious transfer based on the sole assumption of lossy encryp-
tion and a property enjoyed by many constructions of such cryptosystems. This construc-
tion is realizable under several well known computation assumptions, including factoriza-
tion, discrete logarithm, lattice and coding theory problems. Hence, it unifies all current
constructions of efficient fully simulatable oblivious transfer in the plain model.

109

2. Preliminaries
Hereupon, we will denote by x ∈R D an uniformly random choice of element x over its
domain D; by ⊕ a bit-wise exclusive OR of strings; and by a | b the concatenation of
string a with string b. All logarithms are to the base 2. For a PPT machine A, we use
a

$← A to denote running the machine A and obtaining an output, where a is distributed
according to the internal randomness of A.

If X and Y are families of distributions indexed by a security parameter λ, we
use X

s
≈ Y to mean the distributions X and Y are statistically close, i.e., for all poly-

nomials p and sufficiently large λ, we have
∑

x |Pr[X = x]− Pr[Y = x]| < 1. Two
sequences Xn, n ∈ N and Yn, n ∈ N of random variables are said to be computationally
indistinguishable, denoted by X c

= Y , if for every non-uniform probabilistic polynomial-
time distinguisher D there exists a negligible function ε(·) such that for every n ∈ N,
| Pr[D(Xn) = 1]− Pr[D(Yn) = 1] |< ε(n).

2.1. Real/Ideal Model Simulation Paradigm

The real/ideal model paradigm has been extensively used to analyse the security of proto-
cols under sequential composition. In this model, security is analysed by comparing real
protocol execution with an ideal execution. In the ideal execution, the parties send their
private inputs to a trusted party that computes the desired functionality through confiden-
tial and authenticated channels. After receiving the inputs, the trusted party computes the
function and returns the output assigned to each party. In the real execution, the parties
interact directly through the protocol. Intuitively, if all attacks feasible in the real model
are also feasible in the ideal model, the protocol is considered secure.

Ideal Model Execution. An ideal
(
2
1

)
-OT functionality is formally defined as function

f with two inputs and one output. The sender Alice inputs two bits (b0, b1), while the
receiver Bob inputs a bit σ. After the protocol is run, Alice receives no output (denoted by
the empty string λ), and Bob receives bσ. This is denoted as: f : {0, 1}2×{0, 1} → {0, 1},
such that f((b0, b1), σ) = (λ, mσ).

Considering two two parties Pa (Alice) and Pb (Bob) that have access to a trusted
third party T , the ideal oblivious transfer functionality is described bellow.

Ideal OT Execution

Input generation. Party Pa is activating upon receiving a pair (b0, b1) ∈ {0, 1}2
and party Pb is activated upon receiving a bit σ.

Transmission of inputs to T . An honest participant sends its unaltered output to
the trusted party T . A malicious participant may abort (sending⊥ to T) or send any other
input to T .

Output computation by T . If the functionality T receives ⊥ from any of the
parties, then it sends ⊥ to both parties and halts. Else, upon receiving (b′0, b

′
1) from Pa

and σ′ from Pb, T sends b′σ′ to party Pb and halts.

Outputs. An honest party always outputs the message as received from T (⊥ or
nothing in the case of Pa, and ⊥ or b′σ′ in the case of Pb. A corrupted party can output an
arbitrary PPT function of its initial input and the message obtained from the trusted party.

110

Let f an ideal oblivious transfer functionality and let B = (B1, B2) denote
an admissible pair (i.e. at least one of the parties is honest) of non-uniform proba-
bilistic expected polynomial-time machines (representing parties in the ideal model).
The joint execution of f under B in the ideal model on inputs ((b0, b1), σ), denoted by
IDEALf,B((b0, b1), σ), is defined as the resulting output pair and protocol transcript ob-
tained by B1 and B2 after the ideal execution.

Real Model Execution. for this execution, no trusted party is available and the parties
interact directly. A corrupted party may adopt any arbitrary strategy implementable by
non-uniform PPT machines. Let π denote a two-party protocol and let A = (A1, A2)
denote a pair of non-uniform PPT machines (representing parties in the real model).
The joint execution of π under A in the real model on inputs ((b0, b1), σ), denoted by
REALπ,A((b0, b1), σ), is defined as the resulting output pair and protocol transcript ob-
tained by A1 and A2 after the protocol execution.

Adversarial Model. In this paper, we consider the malicious adversarial model, where
a dishonest party may arbitrarily disrupt the protocol execution (for instance, a malicious
party is allowed to deviate from the protocol). Additionally, we assume the static corrup-
tion model, where parties have fixed a behavior throughout protocol execution.

Enlightened by the previous definitions, we can now formalize the notion of se-
curely implementing an OT protocol in the simulation-based paradigm.

Definition 1. Consider an ideal OT functionality f and a two-party protocol π in the real
model. The protocol π is said to securely implement an OT protocol if for every pair of
admissible non-uniform PPT machines A = (A1, A2) for the real model, there exists
a pair of admissible non-uniform probabilistic expected polynomial-time machines B =
(B1, B2) for the ideal model, such that for every b0, b1 ∈ {0, 1} and every σ ∈ {0, 1},{

IDEALf,B(n, (b0, b1), σ)
c≡ REALπ,A(n, (b0, b1), σ)

}
In order to achieve constant-round protocols it is necessary to allow the ideal ad-

versary and simulators to run in expected polynomial time [Barak and Lindell 2004].

3. Lossy Encryption
Lossy encryption [Hemenway et al. 2009, Bellare et al. 2009] expands on the definition
of Dual Mode Encryption [Peikert et al. 2008], a type of cryptosystem with two types of
public keys, which specify two modes of operation: a messy mode and a decryption mode.
In the decryption mode, the cryptosystem behaves normally and it is possible to decrypt a
message encrypted with a given public key using the corresponding secret key. However,
in the messy mode, the encrypted information is statistically lost.

A lossy cryptosystem is defined as a type of cryptosystem with two types of public
keys, injective and lossy keys, which specify different results of encryption. If injective
keys are used, the cryptosystem behaves regularly (correctly decrypting ciphertexts with
the right secret key) while in the lossy mode, the ciphertexts generated by the encryption
algorithm are independent from the plaintext messages,causing information to be statisti-
cally lost. It is also required that lossy keys are indistinguishable from injective keys by
efficient adversaries.

111

It has been shown that it is possible to obtain lossy cryptosystems from oblivious
transfer, re-randomization and smooth projective hashing [Hemenway et al. 2009]. Thus,
our construction of fully simulatable oblivious transfer based on lossy encryption proves
that oblivious transfer and lossy encryption are equivalent.

We now present a formal definition of Lossy Encryption similar to the definition
given in [Hemenway et al. 2009]:
Definition 2. A lossy public-key encryption scheme is a tuple (G, E, D) of efficient algo-
rithms such that

• G(1λ, inj) outputs keys (pkinj, skinj), keys generated by G(1λ, inj) are called injec-
tive keys.
• G(1λ, lossy) outputs keys (pklossy, sklossy), keys generated by G(1λ, lossy) are called

lossy keys.

E(pk,m) is an encryption algorithm that takes as input a public key and a plain-text
message, outputting a ciphertext.

D(sk, c) is a decryption algorithm that takes as input a secret key and ciphertext, out-
putting a plain-text message.

Additionally, the algorithms must satisfy the following properties:

• Correctness on injective keys. For all plaintexts x ∈ X ,

Pr
[
(pkinj, skinj)

$← G(1λ, inj); r
$← coins(E) : D(skinj, E(pkinj, x, r)) = x

]
= 1

• Indistinguishability of keys. In lossy mode, public keys are computationally in-
distinguishable from those in the injective mode given no previous information.
Specifically, if proj : (pk, sk)→ pk is the projection map, then{

proj(G(1λ, inj))
} c
≈
{
proj(G(1λ, lossy))

}
• Lossiness of lossy keys. If (pklossy, sklossy)

$← G(1λ, lossy) , then for all x0, x1 ∈
X , the statistical distance between the distributions E(pklossy, x0, R) and E(pklossy, x1, R)
is negligible in λ.
• Openability. If(pklossy, sklossy) $← G(1λ, lossy), and r

$← coins(E) , then for
all x0, x1 ∈ X with overwhelming probability, there exists r′ ∈ coins(E) such
that E(pklossy, x0, r) = E(pklossy, x1, r

′). In other words, there is an (unbounded)
algorithm opener that can open a lossy ciphertext to any arbitrary plaintext with
all but negligible probability.

Additionally, we require that there exists an efficient algorithm that distinguishes
between lossy and injective public keys given the corresponding secret key. Such algo-
rithm is formally denoted as:

• KD(sk, pk) is a PPT algorithm that receives as input a key pair (sk, pk) and outputs
0 if the public key is lossy. Otherwise, it outputs 1.

This property is valid for many flavors of lossy encryption such as the general con-
structions based on re-randomization and smooth projective hashing [Hemenway et al. 2009].

112

However, for the sake of brevity, we will give formal proof only for the re-randomization
based construction, which is realized by many underlying computational assumptions.
The algorithm for the smooth projective hashing based construction follows trivially from
the fact that the key generation algorithm outputs an empty secret key if a lossy public
key is generated.

3.1. Computationally Lossy Encryption
In the present work, we also consider a variation of common statistically lossy encryp-
tion which we call computationally lossy encryption. In a computationally lossy cryp-
tosystem, the distribution of ciphertexts generated under a lossy key is computationally
indistiguishable from the uniform distribution of ciphertexts (i.e. information is lost only
computationally). Such cryptosystems preserve all properties of statistically lossy cryp-
tosystems but the lossiness of key, which in this case is computational:

• Lossiness of lossy keys. If (pklossy, sklossy)
$← G(1λ, lossy) , then for all x0, x1 ∈

X , the distributions E(pklossy, x0, R) and E(pklossy, x1, R) are computationally in-
distinguishable in λ.

Computationally lossy encryption is interesting since it yields an OT protocol with
computational security for both parties, a fact that has been previously observed only in
[Dowsley et al. 2008], which is not secure under sequential composition. Furthermore,
such a construction may be realized under a broader number of assumptions than statisti-
cally lossy encryption allows. For example, it can be trivially obtained under the McEliece
assumptions using the techniques in [Dowsley et al. 2008] and [Hemenway et al. 2009].
Perhaps the re-randomization techniques in [David et al. 2010] can also be applied to ob-
tain a similar primitive.

3.2. A construction based on Re-Randomization
We now recall a construction of a IND-CPA secure statistically (resp. computationally)
lossy cryptosystem from a statistically (resp. computationally) re-randomizable cryp-
tosystem which is given and proven in [Hemenway et al. 2009]. Furthermore, we show
that it is possible to construct a public key distinguishing algorithm for this construction.

A cryptosystem is called statistically (resp. computationally) re-randomizable if,
given a ciphertext c and a public key, it is possible to re-randomize c obtaining a new valid
chipertext c′ which encrypts the same plain-text message while being statistically (resp.
computationally) indistinguishable from the original c. Although different definitions of
re-randomizable cryptosystems exist, we consider a definition similar to the one given in
[Hemenway et al. 2009].

Notice that it is possible to obtain re-randomizable cryptosystems from homomor-
phic cryptosystems, DDH, q-power DDH, q-strong Diffie-Hellman and Bilinear Diffie-
Hellman. Hence, our construction unifies all previous constructions of fully simulatable
oblivious transfer, which are based on these assumptions and also on smooth projective
hashing (that also yields lossy encryption).

Definition 3. Let (Gen, Enc, Dec, ReRand) be a statistically (resp. computationally) re-
randomizable IND-CPA secure public-key cryptosystem, we create statistically (resp. com-
putational) (Ginj, Glossy, E,D) as follows:

113

• Key Generation: G(1λ, inj) generates a pair (pk, sk) ← Gen(1λ). Then G(1λ, inj)
generates K0 = Enc(pk, 0), K1 = Enc(pk, 1). G(1λ, inj) returns (pk, sk) =
((pk,K0, K1), sk).
G(1λ, lossy) runs Gen(1λ), generating a pair (pk, sk). Then, it generates K0 =
Enc(pk, 0), K1 = Enc(pk, 0). G(1λ, lossy) returns (pk, sk) = ((pk,K0, K1), sk).
• Encryption: E(pk, b) = ReRand(pk,Kb) for b ∈ {0, 1}
• Decryption: D(sk, c), simply outputs Dec(sk, c).

An algorithm that distinguishes lossy public keys from injective public keys given
the corresponding secret key can be constructed as follows:

• KD(sk, pk): First computes test ciphertext c = E(pk, 1). Then output whatever
D(sk, c) outputs.

It is clear that, if the public key pk is injective, this algorithm will output 1, which
is the information encrypted into the ciphertext. Otherwise, if the public key is lossy, this
algorithm will output 0, since the ciphertext generated by E is always an encryption of 0
if the public key pk is lossy. Thus, the proposed algorithm KD successfully distinguishes
lossy and injective public keys given the corresponding secret key.

4. The Protocol
The protocol introduced in this section was inspired by the fully simulatable protocol
for Oblivious Transfer under the DDH assumptions presented in [Lindell 2008]. In this
protocol, the sender (Alice) inputs a pair of bits b0, b1 and the receiver (Bob) inputs a
choice bit σ, Bob receives the bit bσ and Alice receives nothing (⊥). In the end of the
protocol Bob must not have learnt anything about the other bit b1−σ and Alice must not
have learnt anything about Bob’s choice bit σ.

Apart from the IND-CPA secure lossy cryptosystem (Gen, Enc, Dec), we also as-
sume the existence of a perfectly hiding commitment scheme Comh and a perfectly bind-
ing commitment scheme Comb. Notice that such commitments can be obtained from the
DDH assumptions (and its variations). Moreover, the smooth projective hashing and ho-
momorphic encryption based constructions also rely on such commitment schemes. Thus,
our construction unifies the previous fully simulatable oblivious transfer protocols based
on such assumptions.

The protocol is secure against static malicious adversaries, in other words, the par-
ties may deviate from the protocol but must have their behavior fixed before the execution
begins, behaving maliciously or honestly during the whole execution.

1. For i = 1, . . . , `, the receiver Bob chooses a random bit σi ∈R {0, 1} and runs
G(1n, inj), obtaining ` injective key pairs (pkinji , skinji). It also runs G(1n, lossy),
obtaining ` lossy key pairs (pklossyi , sklossyi).For each bit σi, Bob generates a pair
of public keys (γσii , γ

1−σi
i) such that γσii = pkinji and γ1−σii = pklossyi . Bob sends

all of the pairs 〈(γ01 , γ11), . . . , (γ0` , γ
1
`)〉 to Alice.

2. Coin tossing:
(a) Alice chooses a random s ∈R {0, 1}` and sends Comh(s) to Bob.
(b) Bob chooses a random s′ ∈R {0, 1}` and sends Comb(s

′) to Bob.
(c) Alice and Bob send decommitments to Comh(s) and Comb(s

′) respec-
tively, and set r = s⊕ s′. Denote r = r1, . . . , r`.

114

3. For every i for which ri = 1, Bob sends (skinji , sklossyi) to Alice. In addition, for
every j for which rj = 0, Bob sends a ”reordering” of γ0j and γ1j such that, in the
resulting tuples (γ0j , γ

1
j), γσj is an injective public key and γ1−σj is a lossy public

key. This reordering is a bit such that if it equals 0 then the tuples are left as is,
and if it equals 1 then γ0j and γ1j are interchanged.

4. Alice checks that, for every i for which ri = 1 it received a valid secret key pair
(skinji , sklossyi), such that exactly one of the corresponding public keys is injective
and exactly one is lossy. Furthermore, it checks that exactly one of the public keys
(γ0i , γ

1
i) received is injective and exactly one of the public keys is lossy by running

KD(skinji , γ0i) and KD(skinji , γ1i). If any of the checks fail, Alcie halts and outputs
⊥. Otherwise it proceeds to the next step.

5. For each j for which rj = 0 denote each (γ0j , γ
1
j) as (Υ0

n,Υ
1
n) for n = 1, . . . , `′,

where `′ is the total number of j for which rj = 0. Employing a reduction given in
[Damgård et al. 1999], Alice chooses n random bits b0,1, . . . , b0,n and n random
bits b1,1, . . . , b1,n such that b0 = b0,1 ⊕ . . .⊕ b0,n and b1 = b1,1 ⊕ . . .⊕ b1,n.

For each pair of bits b0,n, b1,n and each (Υ0
n,Υ

1
n) Alice computes a random bit

µn ∈R {0, 1} and the encryption of b•,n ⊕ µn for each bit in the pair, obtaining
b̂0,n = E(Υ0

n, b0,n ⊕ µn) and b̂1,n = E(Υ1
n, b1,n ⊕ µn). Alice sends the bits µn and

the pairs (b̂0n, b̂
1
n) to Bob.

6. For each pair of bit b̂σ,n and bit µn Bob computes bσ,n = D(skinjn , b̂σ,n) ⊕ µn.
Finally, bob computes bσ = bσ,1 ⊕ . . .⊕ bσ,n, obtaining bσ.

Correctness: Before proceeding to the proof of security, we show that the pro-
tocol above is correct, in the sense that, if both Alice and bob are honest, the correct
output is obtained. First, observe that in the reordered pairs obtained after the coin toss-
ing, Υσ

n is an injective key, enabling an honest Bob to extract a bit encrypted with it
(i.e., b = D(skinjn , E(Υσ

n, b))). However, the keys Υ1−σ
n are lossy, which makes it im-

possible for Bob to obtain the value of a bit encrypted with those keys. Also, since
b̂σ,n = E(Υσ

n, bσ,n ⊕ µn) for a random value of µn, Bob is not able to obtain the original
value of bσ,n without first obtaining the corresponding µn.

Given that Alice and Bob are honest, it is possible for Bob to obtain the bit bσ
since, based on the facts stated above, it is possible to obtain the value of each bit bσ,n
computing bσ,n = D(skinjn , b̂σ,n)⊕µn after receiving the correct values of µn and b̂σ,n from
Alice. In order to obtain the original bit bσ, Bob employs the reduction given and proven
in [Damgård et al. 1999] computing bσ = ⊕ni=1bσ,i, correctly yielding: bσ = (bσ,1⊕µ1)⊕
. . .⊕ (bσ,n ⊕ µn).

Notice that, if statistically lossy encryption is employed, the resulting protocol
offers statistical security for the sender, since the ciphertexts b̂1−σ,n statistically loose
information about the bits corresponding to b̂1−σ. On the other hand, if computationally
lossy encryption is employed, the resulting protocol offers computational security for
the sender, since the ciphertexts b̂1−σ,n computationally loose information about the bits
corresponding to b̂1−σ. The security for the receiver is computational in both cases, since
it relies on the computational indistinguishability of lossy and injective keys.

115

4.1. Simulator for the case Alice (sender) is corrupted

In order to prove the security of the proposed protocol we adapt the simulators given in
[Lindell 2008] for the case where the sender is corrupted and the case the receiver is cor-
rupted. Notice that the resulting simulators have the same running time of the simulators
in [Lindell 2008], since the steps involved are essentially the same. Let A1 be a non-
uniform probabilistic polynomial-time real adversary that controls Alice. We construct a
non-uniform probabilistic expected polynomial-time ideal-model adversary/simulator S1.
S1 uses rewinding in order to ensure that all of the ”checked” public key pairs are valid
(i.e.,exactly one of them is lossy), whereas both keys contained in the ”unchecked” pub-
lic key pairs are injective. This enables it to obtain both messages input by A1 into the
protocol. S1 then sends these inputs to the trusted party, and the honest party Bob in the
ideal model will receive the same message that it would have received in a real execution
with A1 (or more accurately, a message that is computationally indistinguishable from
that message).

We now describe S1 formally. Upon input 1n and (b0, b1), the machine S1 invokes
A1 upon the same input and works as follows:

1. S1 chooses a random r ∈R 0, 1` and generates public key pairs (γ01 , γ
1
1), . . . , (γ0` , γ

1
`)

with the following property:
(a) For every i for which ri = 1, S1 constructs (γ0i and γ1i) like an honest Bob.

It runs G(1n, inj), obtaining ` injective key pairs (pkinji , skinji). It also runs
G(1n, lossy), obtaining ` lossy key pairs (pklossyi , sklossyi). S1 generates a
pair of public key (γσii , γ

1−σi
i) such that γσii = pkinji and γ1−σii = pklossyi ,

for random bits σi ∈R {0, 1}.
(b) For every j for which rj = 0, S1 constructs (γ0j , γ

1
j) such that both γ0j and

γ1j are injective keys.
S1 hands the public key pairs to A1.

2. Simulation of the coin tossing: S1 simulates the coin tossing so that the result is
r, as follows:

(a) S1 receives a commitment ch from A1.
(b) S1 chooses a random s′ ∈R {0, 1}` and hands cb = Comh(s

′) to A1.
(c) If A1 does not send a valid decommitment to ch, then S1 simulates Bob

aborting and sends ⊥ to the trusted party. Then S1 outputs whatever A1

outputs and halts. Otherwise, let s be the decommitted value. S1 proceeds
as follows:

i. S1 sets s′ = r ⊕ s, rewinds A1, and hands it Comb(s
′).

ii. If A1 decommits to s, then S1 proceeds to the next step. If A1

decommits to a value s̃ 6= s, then S1 outputs fail. Otherwise, if it
does not decommit to any value, S1 returns to the previous step and
tries again until A1 does decommit to s. (We stress that in every
attempt, S1 hands A1 a commitment to the same value s′. How-
ever, the randomness used to generate the commitment Comb(s

′) is
independent each time.)1

1Similarly to the DDH based protocol of [Lindell 2008], this strategy by S1 does not actually guarantees
that it runs in expected polynomial-time. Fortunately this issue is solved in [Lindell 2008] and we refer the
reader to that work for detailed information.

116

3. Upon receiving a valid decommitment to s from A1, simulator S1 decommits to
A1, revealing s′. (Note that r = s⊕ s′.)

4. For every i for which ri = 1, simulator S1 handsA1 the secret key pairs (skinji , sklossyi)
correspondent to the public keys (γ0i , γ

1
i). In addition, S1 hands A1 a random re-

ordering of the pairs (γ0j , γ
1
j) for every j for which rj = 0.

5. If A1 does not reply with a valid message, then S1 sends ⊥ to the trusted party,
outputs whatever A1 outputs and halts. Otherwise, it receives the bits µn and a
series of pairs (b̂0n, b̂

1
n). S1 then follows the instructions of Bob for obtaining both

b0 and b1. Unlike an honest Bob, it decrypts both b̂0n and b̂1n with the injective secret
keys corresponding to (Υ0

n,Υ
1
n), obtaining a series of pairs (b0,n, b1,n). It then

computes b0 = (b0,1⊕µ1)⊕. . .⊕(b0,n⊕µn) and b1 = (b1,1⊕µ1)⊕. . .⊕(b1,n⊕µn).
S1 sends the pair (b0, b1) to the trusted party as the first party’s input, outputs
whatever A1 outputs and halts.

Theorem 4. The joint output distribution of S1 and an honest Bob in an ideal execution is
computationally indistinguishable from the output distribution of A1 and an honest Bob
in a real execution.

Proof. In order to prove this theorem we adapt the proof given in [Lindell 2008]. Notice
that the view of A1 in the simulation with S1 is indistinguishable from its view in a real
execution. The sole difference in this view is due to the fact that the public keys γ0j and
γ1j for which rj = 0 are both injective public keys.

The only other difference would be in the coin tossing phase (and the rewinding).
However, since the commitment sent by A1 is binding and since Bob generates its com-
mitment after receiving A1’s commitment, it is clear that the result of the coin tossing in
a real execution and in the simulation with S1 are statistically close to uniform (where the
only difference is due to the negligible probability that A1 will break the computational
binding property of the commitment scheme.) In the simulation by S1, the outcome is
always uniformly distributed, assuming that S1 does not output fail. Since S1 outputs fail
whenA1 breaks the computational binding of the commitment scheme, this occurs with at
most negligible probability (a rigorous analysis is given in [Goldreich and Kahan 1996]).
Thus, the joint distribution of the coin tossing results in a real execution and in the simu-
lation with S1 are statistically close.

Therefore, the only remaining difference lies in the generation of public keys γ0j
and γ1j . Indistinguishability follows intuitively from the definition of lossy encryption
(i.e. lossy public keys are computationally indistinguishable from injective public keys).
This is formally proven by constructing a machine D that distinguishes many injective
keys from many lossy keys, which implies in breaking the lossy key indistinguishability
property of the lossy cryptosystem. D receives a set of public keys and runs in exactly
the same way as S1 but constructs the γ0j and γ1j public keys (for which rj = 0) in such a
way that one is injective and the other is from its input, in random order. Furthermore, it
provides the reordering so that all of the injective keys it generates are associated with σ
and all of the ones it receives externally are associated with 1 − σ (we assume that D is
given the input σ of Bob). Note that, if D receives a set of injective keys, then the view
of A1 is exactly the same as in the simulation with S1 (because all the keys are injective).
Otherwise, if D receives a set of lossy keys, then the view of A1 is exactly the same as
in a real execution (because only the keys associated with σ are injective). This shows

117

that the output of A1 in a real execution and the output of S1 in an ideal execution are
indistinguishable (recall that S1 outputs whatever A1 outputs).

However,it is necessary to show this for the joint distribution of the output of A1

(or S1) and an honest Bob. First, recall that Bob receives mσ as output, where σ is the
honest Bob’s input. Next, assume that there exists a polynomial-time distinguisher D′

that distinguishes between the real and ideal distributions with non-negligible probability.
To complete this proof we construct another distinguisher D that distinguishes injective
keys from lossy keys. D receives Bob’s input σ and a set of keys that are either injective
or lossy. D then works exactly as above (i.e., constructing the public keys γ0j and γ1j so
that in the reordering step, all the γσj keys are those it generated itself and all the γ1−σj

tuples are those it received as input). D is able to decrypt each b̂σ,n and obtain mσ, since
it generated all of the γσj keys. Machine D then does this, and runs D′ on the output ofA1

and the message mσ (which is the output that an honest Bob would receive). Finally, D
outputs whatever D′ does. If D receives lossy keys, then the output distribution generated
is exactly the same of a real execution betweenA1 and Bob. On the contrary, if it receives
injective keys, the output distribution is exactly the same of an ideal execution with S1.
(Notice that the distribution over the γ public keys generated byD with knowledge of σ is
identical to the distribution generated by S1 without knowledge of σ. The reason for this
is that when all the keys are injective, their ordering makes no difference.) We conclude
that D distinguishes lossy and injective public keys with non-negligible probability, in
contradiction to the definition of lossy encryption. Thus, the REAL and IDEAL output
distributions are computationally indistinguishable.

The last step is to prove that S1 runs in expected polynomial-time. However, as in
the protocols given in [Lindell 2008] this is not true. Fortunately, this can be fixed by a di-
rect application of the techniques proposed in [Lindell 2008] and [Goldreich and Kahan 1996],
and we refer the reader to these works for a detailed analysis. It is shown that these
techniques yield a simulator that is guaranteed to run in expected polynomial time. Fur-
thermore, the output of the simulator is only negligibly far from the original (simplified)
strategy described in this work. Thus, after applying these techniques, our simulator runs
in expected polynomial time, with the result being that the output in a simulation is only
negligibly different from the output in a real execution.

4.2. Simulator for the case Bob (receiver) is corrupted

Once again we base our simulator and proof on the techniques proposed in [Lindell 2008].
Let A2 be any non-uniform probabilistic polynomial-time adversary controlling Bob, we
construct a non-uniform probabilistic expected polynomial-time simulator S2. The sim-
ulator S2 extracts the bit σ used by A2 by rewinding it and obtaining the reordering of
public keys that it had previously opened. Formally, upon input 1n and σ, the simulator
S2 invokes A2 upon the same input and works as follows:

1. S2 receives a series of public key pairs (γ01 , γ
1
1), . . . , (γ0` , γ

1
`) from A2.

2. S2 hands A2 a commitment ch = Comh(s) to a random s ∈R {0, 1}`, receives
back cb, decommits to ch and receives A2’s decommitment to cb. S2 then receives
all of the ski keys from A2, for i where ri = 1, and the reorderings for j where
rj = 0. If the pairs (γ0i , γ

1
i) sent by A2 are not valid (as checked by Alice in the

118

protocol) orA2 did not send valid decommitments, S2 sends⊥ to the trusted party,
outputs whatever A2 outputs, and halts. Otherwise, it continues to the next step.

3. S2 rewinds A2 back to the beginning of the coin-tossing, hands A2 a commitment
c̃h = Comh(s̃) to a fresh random s̃ ∈R {0, 1}`, receives back some c̃b, decom-
mits to c̃h and receives A2’s decommitment to c̃b. In addition, S2 receives the
(skinji , sklossyi) secret key pairs and reorderings. If any of the pairs (γ0i , γ

1
i) are

not valid, S2 repeats this step using fresh randomness each time, until all pairs are
valid.

4. Following this, S2 rewindsA2 to the beginning and resends the exact messages of
the first coin tossing (resulting in exactly the same transcript as before).

5. Denote by r the result of the first coin tossing (Step 2 above), and r̃ the result of
the second coin tossing (Step 3 above). If r = r̃ then S2 outputs fail and halts.
Otherwise, S2 searches for a value t such that rt = 0 and r̃t = 1. (Note that by the
definition of the simulation, exactly one of γ0t and γ1t is injective. Otherwise, the
values would not be considered valid.) If no such t exists (i.e., for every t such that
rt 6= r̃t it holds that rt = 1 and r̃t = 0),then S2 begins the simulation from scratch
with the exception that it must find r and r̃ for which all values are valid (i.e., if
for r the values sent by A2 are not valid it does not terminate the simulation but
rather rewinds until it finds an r for which the responses of A2 are all valid).
If S2 does not start again, we have that it has skt and can determine which of (γ0t
and γ1t is injective. Furthermore, since r̃t = 1, the reordering that S2 receives from
A2 after the coin tossing indicates whether the public key pair is associated with 0
(if γ0t is injective) or 1 (if γ1t is injective) . S2 sets σ = 0 if after the reordering γ0t
is injective, and sets σ = 1 if after the reordering γ1t is injective. (Note that exactly
one of the keys is injective because this is checked in the second coin tossing.)

6. S2 sends σ to the trusted party and receives back a bit b = b′σ. Simulator S2 then
computes the last message from Alice to Bob honestly, setting bσ = b, b1−σ ∈R
{0, 1} and running the instruction used by an honest Alice to compute the last
message. S2 handsA2 these messages and outputs whateverA2 outputs and halts.

Theorem 5. The output distribution of A2 in a real execution with an honest Alice (with
input (m0,m1)) is computationally indistinguishable from the output distribution of S2 in
an ideal execution with an honest Alice (with the same input (m0,m1))

Proof. First, notice that S2 outputs fail with probability at most 21−` even if r = r̃ in
later rewindings, which may occur if S2 has to start again from scratch. A detailed anal-
ysis of this probability is given in [Lindell 2008]. Given this fact, we proceed to show
indistinguishability of the ideal and real executions adapting the proof of [Lindell 2008].

Notice that, if S2 does not output fail, A2 views a final transcript consisting of the
first coin tossing (that is distributed exactly as in a real execution) and the last message
from S2 to A2. This message is not honestly generated, since cσ is indeed an encryption
of mσ, but c1−σ is actually an encryption of an arbitrary value (which is not necessarily of
m1−σ). However, it follows from the definition of lossy encryption (specifically from the
lossiness property) that, for any lossy public key γ1−σj , the value encrypted in b̂1−σ,n is at
least computationally indistinguishable from a random value in the lossy cryptosystem’s
plaintext space. This implies that the distribution of values b̂1−σ,n generated under a lossy
key from a random plaintext value is computationally indistinguishable from the distribu-
tion of values b̂1−σ,n generated from the values m1−σ. Thus, A2’s view in the execution

119

with S2 is at least computationally indistinguishable from its view in a real execution with
Alice (the only difference being if S2 outputs fail).

Note that, if statistically lossy encryption is used, the values b̂1−σ,n are uniformly
distributed. Thus, A2’s view in the execution with S2 is statistically close to its view in a
real execution with Alice (the only difference being if S2 outputs fail).

It remains to prove that S2 runs in expected polynomial-time, a fact that follows
directly from the analysis in [Lindell 2008].

5. Conclusion

In this paper we propose a general construction of efficient fully simulatable oblivious
transfer based on lossy encryption. Our construction can be realized from a multitude of
underlying primitives and computational assumptions such as smooth projective hashing,
re-randomization, factorization, discrete logarithm and coding theory problems. Addi-
tionally, the proposed protocol essentially unifies known efficient fully simulatable OT
protocols in the plain model. Furthermore, this protocol completes the proof that several
flavors of lossy encryption are equivalent to fully simulatable oblivious transfer, since the
converse is proved in [Lindell 2008] for smooth projective hashing and re-randomization
based constructions.

In order to obtain our results we introduce the primitive of computationally lossy
encryption, which may be of independent interest to other applications. In this case,
it can be used to obtain a construction of efficient fully simulatable OT based on the
McEliece assumptions, which can be shown to realize computationally lossy encryption
using the techniques of [Dowsley et al. 2008]. However, this construction would still
be based on the assumption that a perfectly hiding commitment scheme and a perfectly
binding commitment scheme exist.

Apart from unveiling new theoretical relations between cryptographic primitives,
our contributions also provide a general framework for constructing efficient fully simu-
latable oblivious transfer protocols, which are a central building block in two- and multi-
party computation. However, we have not yet achieved security in the universal com-
posability framework. As a future work we suggest the creation a of a general unifying
framework for universally composable oblivious transfer realizable under the same un-
derlying computational assumptions as our fully simulatable construction. Moreover, we
point out further investigation of applications for computationally lossy encryption.

References

Barak, B. and Lindell, Y. (2004). Strict polynomial-time in simulation and extraction.
SIAM J. Comput., 33(4):738–818.

Bellare, M., Hofheinz, D., and Yilek, S. (2009). Possibility and impossibility results for
encryption and commitment secure under selective opening. In Proceedings of the
28th Annual International Conference on Advances in Cryptology: the Theory and
Applications of Cryptographic Techniques, EUROCRYPT ’09, pages 1–35, Berlin,
Heidelberg. Springer-Verlag.

120

Camenisch, J., Neven, G., and Shelat, A. (2007). Simulatable adaptive oblivious transfer.
In Naor, M., editor, EUROCRYPT, volume 4515 of Lecture Notes in Computer Science,
pages 573–590. Springer.

Damgård, I., Kilian, J., and Salvail, L. (1999). On the (im)possibility of basing oblivious
transfer and bit commitment on weakened security assumptions. In EUROCRYPT’99:
Proceedings of the 17th international conference on Theory and application of crypto-
graphic techniques, pages 56–73, Berlin, Heidelberg. Springer-Verlag.

David, B. M., Nascimento, A. C. A., and Nogueira, R. B. (2010). Oblivious transfer based
on the mceliece assumptions with unconditional security for the sender. In X Simposio
Brasileiro de Segurança da Informação e de Sistemas Computacionais.

Dowsley, R., van de Graaf, J., Müller-Quade, J., and Nascimento, A. C. A. (2008). Obliv-
ious transfer based on the mceliece assumptions. In Safavi-Naini, R., editor, ICITS,
volume 5155 of Lecture Notes in Computer Science, pages 107–117. Springer.

Goldreich, O. and Kahan, A. (1996). How to construct constant-round zero-knowledge
proof systems for np. Journal of Cryptology, 9:167–189. 10.1007/BF00208001.

Green, M. and Hohenberger, S. (2007). Blind identity-based encryption and simulatable
oblivious transfer. In Kurosawa, K., editor, ASIACRYPT, volume 4833 of Lecture Notes
in Computer Science, pages 265–282. Springer.

Hemenway, B., Libert, B., Ostrovsky, R., and Vergnaud, D. (2009). Lossy encryption:
Constructions from general assumptions and efficient selective opening chosen ci-
phertext security. Cryptology ePrint Archive, Report 2009/088. http://eprint.
iacr.org/.

Kilian, J. (1988). Founding crytpography on oblivious transfer. In STOC ’88: Proceedings
of the twentieth annual ACM symposium on Theory of computing, pages 20–31, New
York, NY, USA. ACM.

Lindell, A. Y. (2008). Efficient fully-simulatable oblivious transfer. In Proceedings of
the 2008 The Cryptopgraphers’ Track at the RSA conference on Topics in cryptology,
CT-RSA’08, pages 52–70, Berlin, Heidelberg. Springer-Verlag.

Peikert, C., Vaikuntanathan, V., and Waters, B. (2008). A framework for efficient and
composable oblivious transfer. In Wagner, D., editor, Advances in Cryptology –
CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science, pages 554–571.
Springer Berlin / Heidelberg.

Rabin, M. O. (1981). How to exchange secrets by oblivious transfer. Technical Memo
TR-81, Aiken Computation Laboratory, Harvard University.

121

	02_ANAIS
	08

