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Abstract. Taint analysis is a form of program analysis that determines if values
produced by unsafe sources might flow into sensitive functions. In this paper
we use taint analysis to establish if an adversary might discover the address
of any program variable at runtime. The knowledge of an internal program
address seems, in principle, a harmless information; however, it gives a mali-
cious user the means to circumvent a protection mechanism known as address
space layout randomization, typically used in modern operating systems to hin-
der buffer overflow attacks, for instance. We depart from previous taint analyses
because we also track indirect information leaks, in which confidential data is
first stored in memory, from where it flows into some sensitive operation. We
have implemented our analysis into the LLVM compiler and have used it to re-
port 204 warnings in a test suite that contains over 1.3 million lines of C code,
and includes traditional benchmarks such as SPEC CPU 2006. Our current im-
plementation reduces by more than 14 times the number of sensitive operations
that a developer would have to inspect in order to find address leaks manually.
Furthermore, our analysis is remarkably efficient: it has been able to process
more than 8.2 million assembly instructions in 19.7 seconds!

1. Introduction
There seems to exist an “arms race” between program developers and malicious users, or
crackers, as they are popularly called. Every day we hear about new strategies that are
invented to attack sensitive software, and every day we hear about new security mecha-
nisms that are engineered to protect these systems. Buffer overflows are a very well known
technique that untrusted code uses to compromise other programs. Its basic principle con-
sists in writing on an array a quantity of data large enough to go past the array’s upper
bound; hence, overwriting other program data. The Internet Worm of 1988, probably the
most famous case of viral spreading of malicious software in the Internet, exploited a
buffer overflow in the fingerd daemon [Rochlis and Eichin 1989]. To prevent buffer
overflows exploits, operating system engineers have invented a technique called address
space layout randomization [Bhatkar et al. 2003, Shacham et al. 2004], that consists in
loading some key areas of a process at random locations in its address space. In this
way, the attacker cannot calculate precisely the target addresses that must be used to take
control of the vulnerable program.

However, crackers are able to circumvent the address randomization mechanism,
as long as they can have access to an internal program address. Armed with this knowl-
edge, malicious users can estimate the exact base address of the functions available to the
executing program, an information that gives them a vast suite of possibilities to compro-
mise this program [Levy 1996]. A cracker can discover an internal program address in
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many different ways. For instance, many applications contain debugging code that dumps
runtime information, including variable addresses. By using the correct flags, the attacker
may easily activate this dumping. Fancier strategies, of course, are possible. In some
object oriented systems the hash code of an object is a function of the object’s address. If
the hash-function admits an inverse function, and this inverse is known, then the attacker
may obtain this address by simply printing the object’s hash code.

The objective of this paper is to describe a static code analysis that detects the
possibility of an address information leaking from a program. Our technique is a type of
taint analysis [Rimsa et al. 2011], that is, given a set of source operations, and a set of
sink operations, it finds a flow of information from any source to any sink. We differ from
previous works in two ways: first, we are proposing a novel use of taint analysis; second,
we deal with indirect leaks. Concerning the first difference, the leaking of address infor-
mation is a problem well known among software engineers, as a quick glance at blogs
related to computer security would reveal 1. Nevertheless, in spite of the importance of
this problem, the research community has not yet pointed its batteries at it, as we can
infer from a lack of publications in the field. In addition to exploring a new use of taint
analysis, we extend the information flow technology with a method to track indirect leaks.
An indirect leak consists in storing sensitive information in memory, and then reading this
information back into local program variables whose contents eventually reach a sink op-
eration. As recently discussed in the USENET 2, developers and theoreticians alike avoid
having to track information through the memory heap because it tends to be very costly
in terms of processing time. However, by relying on a context insensitive interprocedural
analysis we claim to provide an acceptable tradeoff between efficiency and precision.

We have implemented our analysis on top of the LLVM compiler
[Lattner and Adve 2004], and have used it on a collection of C programs comprising over
1.3 million lines of code. This test suite includes well-known benchmarks such as SPEC
CPU 2006, Shootout and MediaBench. Our implementation has reported 204 potential
address leaks. We have manually inspected 16 reports taken from the 16 largest pro-
grams in our benchmark suite, and have been able to recover 2 actual program addresses.
Although this number seems low, we remark that our analysis reduced by 14 times the
number of sensitive statements that a developer would have to verify in order to find ad-
dress leaks. Our implementation is very efficient: it takes about 19.7 seconds to process
our entire test suite – a collection of programs having over 8.26 million assembly instruc-
tions. As an example, in order to analyze gcc, a well known member of SPEC CPU
2006, with 1,155,083 assembly instructions, our implementation takes 2.62 seconds.

The rest of this paper is organized in five other sections. In Section 2 we explain
in more details why address leaks enable malicious users to successfully attack programs.
In Section 3 we introduce our solution and discuss its limitations. We show experimental
results in Section 4. Section 5 discusses several works that are related to ours. Finally,
Section 6 concludes the paper.

1http://mariano-graziano.llab.it/docs/stsi2010.pdf
http://www.semantiscope.com/research/BHDC2010/BHDC-2010-Paper.pdf
http://vreugdenhilresearch.nl/Pwn2Own-2010-Windows7-InternetExplorer8.pdf

2http://groups.google.com/group/comp.compilers/browse thread/thread/
1eb71c1177e2c741
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2. Background

A buffer, also called an array or vector, is a contiguous sequence of elements stored in
memory. Some programming languages, such as Java, Python and JavaScript are strongly
typed, which means that they only allow combinations of operations and operands that
preserve the type declaration of these operands. As an example, all these languages pro-
vide arrays as built-in data structures, and they verify if indexes are within the declared
bounds of these arrays. There are other languages, such as C or C++, which are weakly
typed. They allow the use of variables in ways not predicted by the original type declara-
tion of these variables. C or C++ do not check array bounds, for instance. Thus, one can
declare an array with n cells in any of these languages, and then read the cell at position
n+1. This decision, motivated by efficiency [Stroustrup 2007], is the reason behind an un-
countable number of worms and viruses that spread on the Internet [Bhatkar et al. 2003].

Programming languages normally use three types of memory allocation regions:
static, heap and stack. Global variables, runtime constants, and any other data known at
compile time usually stays in the static allocation area. Data structures created at run-
time, that outlive the lifespan of the functions where they were created are placed on the
heap. The activation records of functions, which contain, for instance, parameters, local
variables and return address, are allocated on the stack. In particular, once a function is
called, its return address is written in a specific position of its activation record. After the
function returns, the program resumes its execution from this return address.

void function(char* str) {
   char buffer[16];
   strcpy(buffer,str);
}

void main() {
  ...
  function(evil_str);
  ...
}
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Figure 1. An schematic example of a stack overflow. The return address of
function is diverted by a maliciously crafted input to another procedure.

A buffer overflow consists in writing in a buffer a quantity of data large enough to
go past the buffer’s upper bound; hence, overwriting other program or user data. It can
happen in the stack or in the heap. In the stack overflow scenario, by carefully crafting this
input string, one can overwrite the return address in a function’s activation record; thus,
diverting execution to another code area. The first buffer overflow attacks included the
code that should be executed in the input array [Levy 1996]. However, modern operating
systems mark writable memory addresses as non-executable – a protection mechanism
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known as Read⊕Write [Shacham et al. 2004, p.299]. Therefore, attackers tend to divert
execution to operating system functions such as chmod or sh, if possible. Usually the
malicious string contains also the arguments that the cracker wants to pass to the sensitive
function. Figure 1 illustrates an example of buffer overflow.

A buffer overflow vulnerability gives crackers control over the compromised pro-
gram even when the operating system does not allow function calls outside the memory
segments allocated to that program. Attackers can call functions from libc, for instance.
This library, which is share-loaded in every UNIX system, allows users to fork processes
and to send packets over a network, among other things. This type of attack is called
return to libc [Shacham et al. 2004]. Return to libc attacks have been further gen-
eralized to a type of attack called return-oriented-programming (ROP) [Shacham 2007].
If a binary program is large enough, then it is likely to contain many bit sequences that
encode valid instructions. Hovav Shacham [Shacham 2007] has shown how to derive a
Turing complete language from these sequences in a CISC machine, and Buchanan et
al. [Buchanan et al. 2008] have generalized this method to RISC machines.

There exist ways to prevent these types of “return-to-known-code” attacks. The
best known defense mechanism is address obfuscation [Bhatkar et al. 2003]. A com-
piler can randomize the location of functions inside the binary program, or the op-
erating system can randomize the virtual address of shared libraries. Shacham et
al. [Shacham et al. 2004] have shown that these methods are susceptible to brute force
attacks; nevertheless, address obfuscation slows down the propagation rate of worms that
rely on buffer overflow vulnerabilities substantially. Address obfuscation is not, how-
ever, the ultimate defense mechanism. In the words of the original designers of the tech-
nique [Bhatkar et al. 2003, p.115], if “the program has a bug which allows an attacker to
read the memory contents”, then “the attacker can craft an attack that succeeds determin-
istically”. It is this very type of bug that we try to detect in this paper.

3. The Proposed Solution

We detect address leaks via a three steps process. Firstly, we convert the program to a
suitable normal form, in which every language construct that is interesting to us is con-
verted to a few constraints. Secondly, we build a dependence graph out of the constraints
previously defined. Finally, we perform a depth-first search on this dependence graph to
report leaks. We explain in more details each of these steps in this section.

3.1. Converting the Source Program to a Normal Form

We use a constraint system to detect address leaks. In order to represent the five different
types of constraints that we take into consideration, we define a simple constraint lan-
guage, whose syntax is given in Figure 2. We produce these constraints out of actual C or
C++ programs, as the table in Figure 3 illustrates. We use getad to model language con-
structs that read the address of a variable, namely the ampersand (&) operator and memory
allocation functions such as malloc, calloc or realloc. Program expressions that
do not include any memory address are modeled via the constraint simop, a short name
for simple operation. Loads to and stores from memory are modeled by ldmem and
stmem. Finally, we use print to denote any instruction that gives information away
to an external user. This constraint models not only ordinary printing operations, but
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(Variables) ::= {v1, v2, . . .}

(Constraints) ::=

– (Assign variable address) ∣ getad(v1, v2)

– (Simple variable assignment) ∣ simop(v,{v1, . . . , vn})

– (Store into memory) ∣ stmem(v0, v1)

– (Load from memory) ∣ ldmem(v1, v0)

– (Print the variable’s value) ∣ print(v)

Figure 2. The syntax of our constraint system.

v1 = &v2 getad(v1, v2)

v1 = (int*)malloc(sizeof(int)) getad(v1, v2) where

v2 is a fresh memory location

v1 = *v0 ldmem(v1, v0)

*v0 = v1 stmem(v0, v1)

*v1 = *v0 ldmem(v2, v0), where v2 is fresh

stmem(v1, v2)

v = v1 + v2 + v3 simop(v,{v1, v2, v3})

*v = v1 + &v2 getad(v3, v2), where v3 is fresh

simop(v4,{v1, v3}), where v4 is fresh

stmem(v, v4)

f(v1, &v3), where f is declared simop(v2,{v1})

as f(int v2, int* v4); getad(v4, v3)

Figure 3. Examples of mappings between actual program syntax and constraints.

also native function interfaces, which would allow a malicious JavaScript file to obtain an
internal address from the interpreter, for instance.

We have designed our analysis to work on programs in Static Single Assignment
form. This is a classic compiler intermediate representation [Cytron et al. 1991] in which
each variable name is defined only once. Virtually every modern compiler today uses
the SSA form to represent programs internally, including Java HotSpot [Team 2006],
gcc [Gough 2005] and LLVM [Lattner and Adve 2004], the compiler on top of which
we have implemented our algorithms. The single static assignment property, i.e., the
fact that each variable name is unique across the entire program, is essential to allow us
to bind to each variable the state of being trusted or untrusted. Because we provide an
interprocedural analysis, i.e., we analyze whole programs, we assume global SSA form.
In other words, each variable name is unique in the entire program, not only inside the
scope where that variable exists. In practice we obtain global SSA form by prefixing each
variable name with the name of the function where that variable is defined.
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[EMPTY] build edges(∅, Pt) = ∅

[EDGES]
build edges(C,Pt) = E proc con(c,Pt) = E′

build edges(C ∪ {c}, Pt) = E ∪Eι

[GETAD] proc con(getad(v1, v2), Pt) = {val(v1)→ addr(v2))}

[PRINT] proc con(print(v), Pt) = {sink→ val(v)}

[SIMOP] proc con(simop(v,{v1, . . . , vn}), Pt) = {val(v)→ val(vi) ∣ 1 ≤ i ≤ n}

[STMEM] proc con(stmem(v0, v1), Pt) = {val(v)→ val(v1) ∣ v0 ↦ v ∈ Pt}

[LDMEM] proc con(ldmem(v1, v0), Pt) = {val(v1)→ val(v) ∣ v0 ↦ v ∈ Pt}

Figure 4. Recursive definition of the edges in the memory dependence graph.

3.2. Building the Memory Dependence Graph

Once we extract constraints from the target C program, we proceed to build a memory
dependence graph. This – directed – graph is a data structure that represents the patterns
of dependences between variables. If P is a target program, and G = (V,E) is P ’s
dependence graph, then for each variable v ∈ P we define two vertices: a value vertex,
which we denote by val(v) ∈ V and an address vertex, which we represent by addr(v) ∈
V . We say that location v1 depends on location v0 if v0 is necessary to build the value of
v1. In actual programs such dependences happen any time v0 denotes a value used in an
instruction that defines v1, or, recursively, v0 denotes a value used in an instruction that
defines a variable v2 such that v1 depends upon v2.

More formally, given a set C of constraints that follow the syntax in Figure 2,
we define the memory dependence graph via the function build edges, shown in Fig-
ure 4. The only constraint that produces edges pointing to address nodes is getad, as
we show in Rule GETAD in Figure 4. If v1 is defined by an instruction that reads the
address of variable v2, then we insert an edge val(v1) → addr(v2) into E. The mem-
ory dependence graph has a special node, which we call sink. Edges leaving sink
towards value nodes are created by Rule PRINT. From a quick glance at Figure 4 it is
easy to see that sink will have in-degree zero. Rule SIMOP determines that we generate
an edge from the value node that represents the variable defined by a simple operation
towards the value node representing every variable that is used in this operation. In other
words, if v1 is defined by an instruction that reads the value of v2, then we insert an edge
val(v1)→ val(v2) into our memory dependence graph.
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[LEAK]
build edges(C,Pt) = E dfs(sink,E) = B

find leak(C,Pt) = B

[SINK]
sink→ val(v) ∈ E dfs(v,E) = B

dfs(sink,E) = B

[VAL]
val(v)→ val(v′) ∈ E dfs(v′,E) = B

dfs(v,E) = B ∪ {val(v1)→ addr(v2)}

[ADDR]
val(v1)→ addr(v2) ∈ E

dfs(v,E) = {val(v1)→ addr(v2)}

Figure 5. Recursive definition of an address leak.

The processing of load and store constraints is more complicated, because it
demands points-to information. We say that a variable v1 points to a variable v2

if the value of v1 holds the address of v2. The problem of conservatively estimat-
ing the points-to relations in a C-like program has been exhaustively studied in the
compiler literature [Andersen 1994, Hardekopf and Lin 2007, Pereira and Berlin 2009,
Steensgaard 1996]. Therefore, we assume that we start the process of building the mem-
ory dependence graph with a map Pt ∶ V ↦ PowerSet(V ) that tells, for each variable
v ∈ V , what is the subset of variables V ′ ⊆ V such that v points to every element v′ ∈ V ′.
According to Rule STMEM, whenever we store a variable v1 into the address pointed by
variable v0, i.e., in the C jargon: *v0 = v1, then, for each variable v pointed by v0 we
create an edge from the value node of v towards the value node of v0. The ldmem con-
straint works in the opposite direction. Whenever we load the value stored in the address
pointed by v0 into a variable v1, i.e., v1 = *v0, then, for each variable v that might be
pointed-to by v0 we add an edge from the value node of v1 to the value node of v.

3.3. Traversing the Memory Dependence Graph to Find Address Leaks
Figure 5 defines a system of inference rules to characterize programs with address leaks.
This definition also gives a declarative algorithm to find a path B in the memory depen-
dence graph describing the address leak. Rule LEAK tells us that a constraint system C,
plus a set of points-to facts Pt describes at least one address leak if the memory depen-
dence graph built from C and Pt has a set of edges E, and E contains a path B, from
sink to an address node. To denote this last statement, we use the dfs predicate, which
describes a depth-first search along E, as one can readily infer from the Rules SINK, VAL
and ADDR. These rules are self explanatory, and we will not describe them further.

3.4. An Example of our Analysis in Action
We illustrate the concepts introduced in this section via the C program shown in Figure 6.
This program, although very artificial, contains the main elements that will allows us to
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1 int g(int p) {
2 int** v0 = (int**)malloc(8); // getad(v0, m1)
3 int* t0 = (int*)malloc(4); // getad(t0, m2)
4 *t0 = 1;
5 *v0 = t0; // stmem(v0, t0)
6 while (p > 1) {
7 int* v1 = *v0; // ldmem(v1, v0)
8 int t1 = *v1; // ldmem(t1, v1)
9 printf("%d\n", t1); // print(t1)
10 int* v2 = (int*)malloc(4); // getad(v2, m3)
11 int* t2 = *v0; // ldmem(t2, v0)
12 *t2 = (int)v2; // stmem(t2, v2)
13 p--;
14 }
15 }

Figure 6. A C program that contains an address leak: variable t1 might contain
the address of the memory region allocated at line 10.

illustrate our analysis. The constraints that we derive from the program, as explained in
Section 3.1, are given as comments on the right side of Figure 6. Let’s assume, for the
sake of this example, that variable v0 points to a memory region m1, created in line 2
of Figure 6. We also assume that variables v1 and t2 point to a memory region m2,
created in line 10 of our example. These points-to facts are computed beforehand, by any
standard alias analysis implementation, as we have explained in Section 3.2. Figure 7(a)
shows, again, the constraint set C that we must process for the example in Figure 6, and
Figure 7(b) re-states the points-to facts that are known before we start our analysis.

Once we have converted the target program to a normal form, we must build its
memory dependence graph, according to the rules in Figure 4 from Section 3.2. Fig-
ure 7(c) shows the graph that we build for this example. We chose to use a particular
notation to represent the nodes. Each variable v gives origin to two vertices, e.g. val(v)
and addr(v); hence, each vertex in our graph is represented as the juxtaposition of two
boxes. The first, denoting the value node, contains the name of the variable it represents,
whereas the second box – containing an @ – represents this variable’s address. Our exam-
ple graph contains nine such nodes, one for each variable defined in the target program,
plus a special node, depicted as a black diamond (◆), which represents the sink.

Once we have built the memory dependence graph, the next step is to traverse it,
reporting unsafe paths. We perform this last step using the rules in Figure 5, as explained
in Section 3.3. The program in Figure 6 contains an address leak, which is easy to find
in the graph from Figure 7. The problematic path is sink → val(t1) → val(m2) →

val(v2) → addr(m3). Going back to Figure 6, this path corresponds to printing the
value of t1. In order to see why this output is an address leak, notice that t1, *v1, **v0
and *t2 might represent the same value, which, as we see in line 12 of our example, is
the address of the memory location pointed by v2.
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t1 @
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t0 @t2 @

getad(v0, m1)

getad(t0, m2)

stmem(v0, t0)

ldmem(v1, v0)

ldmem(t1, v1)

print(t1)

getad(v2, m3)

ldmem(t2, v0)

stmem(t2, v2)

v0  → {m1}

v1  → {m2}

t2  → {m2}

(a) (b) (c)

m2 @

Figure 7. (a) The constraint system derived from the Program in Figure 6. (b)
Points-to facts, computed beforehand via Andersen’s analysis [Andersen 1994].
(c) The memory dependence graph built from the constraints and points-to facts.

3.5. Limitations

The current implementation of our analysis has two main limitations. First it is context
insensitive, which means that we cannot distinguish two different calls from the same
function. Second, it is field and array insensitive; hence, objects, records and arrays are
treated as a single memory unit. These limitations lead us to report warnings that are false
positives, or that, in other words, represent innocuous program patterns.

Our analysis is interprocedural, which means that we can track the flow of in-
formation across function calls. However, our analysis is context insensitive, that is, we
cannot distinguish different invocations of the same procedure. As an example, the pro-
gram in Figure 8 does not contain an address leak. Nevertheless, the function calls at lines
9 and 13 leads us to link the contents of v0 to v3, even though these variables are never
related in the actual program semantics. Because v0 contains a program address, and v3
is printed, we issue a warning. As a future work, we plan to improve our framework with
light-weighted context sensitive methods, such as those based on probabilistic calling
contexts [Bond and McKinley 2007] or shallow heap cloning [Lattner et al. 2007].

Our second limitation is a lack of field sensitiveness. We treat programming lan-
guage constructs, such as objects, records and arrays as single locations. Figure 9 contains
an example of a bug free program that causes us to issue a warning. The assignment in
line 7 marks the whole variable s1 as tainted. Therefore, even the innocuous printing
statement at line 9 is flagged as a possible leak. As a future work, we intend to extend our
analysis with Pearce et al.’s [Pearce et al. 2004] field sensitive constraint system.

4. Experimental Results
We have implemented our algorithm on top of the LLVM compiler
[Lattner and Adve 2004], and have tested it in an Intel Core 2 Duo Processor with
a 2.20GHz clock, and 2 GB of main memory on a 667 MHz DDR2 bus. The operating
system is Ubuntu 11.04. We have tested our algorithm on a collection of 426 programs
written in C that we got from the LLVM test suite. In total, we have analyzed 8,427,034
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1 int addSizeInt(int n0) {
2 int n1 = n0 + sizeof(int); // simop(n1, n0)
3 return n1;
4 }
5 int main() {
6 int* v0 = (int*)

malloc(2 * sizeof(int)); // getad(v0, m1)
7 int* v1;
8 int v2 = 0, v3 = 1, v4 = 1;
9 v1 = addSizeInt(v0); // simop(n0, v0), simop(v1, n1)
10 *v1 = v4; // stmem(v1, v4)
11 int v5 = *v1; // ldmem(v5, v1)
12 printf("%d\n", v5); // print(v5)
13 v3 = addSizeInt(v2); // simop(n0, v2), simop(v3, n1)
14 printf("%d\n", v3); // print(v3)
15 }

Figure 8. The lack of context sensitiveness in our analysis will cause us to report
a false positive for this program.

1 struct S {
2 int harmless;
3 int dang;
4 };
5 int main() {
6 struct S s1;
7 s1.harmless = (int)&s1; // getad(s1, s1)
8 s1.dangerous = 0;
9 printf("%d\n", s1.dang); // print(s1)
10 }

Figure 9. The lack of field sensitiveness in our analysis cause us to report a false
positive for this program.

assembly instructions. We will present results for SPEC CPU 2006 only, which is our
largest benchmark suite. Table 1 gives details about each of the 17 programs in the SPEC
collection. Without loss of generality, for these experiments we qualify as sensitive sinks
the standard printf operation from the stdio.h header. In other words, we are
seeking for dependence chains that cause an internal program address to be printed by
a printf function. There exist other functions that may lead to address leaking. Our
tool can be configured to check these functions by marking (i) return statements and (ii)
assignments to parameters passed as references, as sink operations.

We will compare three different configurations of our address leak detector, which
we call Direct, MDG and Blob. The first approach does not track information through
memory. That is, it only reports the propagation of information through local program
variables. The second approach – MDG – uses the Memory Dependence Graph that we
have described in Section 3.2 to track the flow of information through memory. Finally,
the third method – Blob – assumes that the whole program memory is a single, indivis-
ible unit. In this case, any operation that stores the value of an address into memory
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will contaminate the whole heap and stack. If any information from the tainted memory
posteriorly flows into a sink, we will issue a warning.

Precision: Table 1 shows the number of warnings that our tool has reported per program
in SPEC CPU 2006. The table reveals a wide contrast between the Direct and Blob
approaches. In the former case, every warning turns out to be a true positive that allows
us to recover an internal program address. However, the direct method misses many leaks
that the other two approaches are able to point out. The blob technique, on the other hand,
contains too many false positives, that is, a substantial number of warnings that it reports
are actually innocuous. MDG is a compromise: it finds every true positive pointed by
blob, and omits many false positives. A manual inspection of the first warning reported
by MDG for each benchmark gave us a 1/8 false positive rate. The false positives are
caused by the limitations described in Section 3.5, which we are working to overcome.
Nevertheless, MDG reduces by 14x, on average, the number of printf statements that
a developer would have to verify in order to find potential address leaks. The chart in
Figure 10 puts this number in perspective, showing, for each benchmark and tracking
method, the percentage of printing statements that are flagged as potential address leaks.

Benchmark Number of Number of Warnings Time (msec)
Program Instructions printf’s Blob MDG Direct Blob MDG Direct

mcf 4005 12 8 0 0 36 12 8
lbm 5522 8 2 0 0 16 12 1
libquantum 11422 30 28 5 0 168 56 16
astar 14228 14 8 8 0 64 64 20
bzip2 24881 21 21 5 0 220 88 28
sjeng 34474 88 40 0 0 704 52 44
milc 35357 191 86 16 0 1200 252 48
hmmer 98150 52 17 0 0 508 184 120
soplex 119616 0 0 0 0 172 260 176
namd 121065 18 10 0 0 344 196 128
h264ref 176652 53 19 1 0 932 320 220
omnetpp 199934 20 7 5 1 624 604 308
gobmk 222071 64 19 2 0 2792 696 316
perlbench 388436 0 0 0 0 576 760 500
dealII 934844 3 0 0 0 1680 2128 1476
gcc 1155083 16 3 0 0 2628 2252 1632
xalancbm 1428459 8 7 1 1 5516 3568 106

Table 1. Summary of main experimental results for SPEC CPU 2006.

Running time: The three versions of the address leak analysis are very fast. The direct
approach took 5,147 msecs to process SPEC CPU 2006. Blog took 18,180 msecs, and
MDG 11,504 msecs. Furthermore, MDG took 19.7 seconds to analyze the entire LLVM
test suite plus SPEC CPU 2006, a benchmark collection that gives us over 8.26 million
assembly instructions! The three analyses show a linear complexity behavior in practice.
The charts in Figure 11 shows MDG’s processing time for programs in our benchmark
collection having more than 20,000 assembly instructions. These 38 programs, from the
LLVM test suite plus SPEC CPU 2006, contain over 7.64 million assembly instructions.
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A visual inspection of the chart indicates that the processing time grows linearly with the
program size. We have also observed this tendency in the smaller programs.

5. Related Works

The problem that we deal with in this paper – the leaking of an internal program
address – fits in the information flow framework proposed by Denning and Den-
ning [Denning and Denning 1977]. A program address is the information that we want
to track, and the program is deemed safe if this information cannot flow into an output
operation. The algorithm that we propose to detect address leaks is a type of tainted
flow analysis. Similar analysis have been proposed in the literature before, to detect,
for instance, if malicious data that a user feeds to some input function can flow into some
sensitive program operation [Jovanovic et al. 2006, Pistoia et al. 2005, Rimsa et al. 2011,
Wassermann and Su 2007, Xie and Aiken 2006]. None of these previous works handle in-
direct information flows through memory, like we do. Furthermore, none of them track
address leaking. Instead, these analyses uncover vulnerabilities to exploits such as SQL
injection or cross site scripting attacks.

Our memory dependence graph is similar to the shape graphs used in shape anal-
ysis [Sagiv et al. 1998, Sagiv et al. 2002]. However, whereas in shape analysis one such
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graph is built for each program point, i.e, the region between two consecutive assembly in-
structions, we use only one graph for the whole program. Therefore, shape analysis gives
the compiler much more precise knowledge about the memory layout of the program;
however, its high cost, both in time and space, causes it to be prohibitively expensive to
be used in practice. Still concerning the representation of memory locations, Ghiya and
Hendren [Ghiya and Hendren 1998] have proposed an algorithm that relies on points-to
information to infer disjoint data-structures. We could, in principle, use their technique
to track information leaks through memory location, but it would be more conservative
than our current approach, for we can track different memory cells used inside the same
data-structure. Our problem is also related to escape analysis [Blanchet 1998], which
conservatively estimates the set of memory locations that outlive the function in which
these locations have been created. The address leaking problem is more general, because
we track the flow of addresses inside or across functions.

6. Conclusion
This paper has presented a static analysis tool that checks if an adversary can obtain the
knowledge of an internal program address. This is a necessary step in order to circumvent
a program protection mechanism known as address space layout randomization. We have
implemented our algorithms on top of LLVM, an industrial strength compiler, and have
used it to process a collection of programs with more than 1.3 million lines of C code. We
have been able to discover actual address leaks in some of these programs. Currently we
are working to reduce the number of false positives reported by our implementation. We
plan to do it by adding context and field sensitiveness to our tool as a future work.
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