
Oblivious Transfer Based on the McEliece Assumptions with
Unconditional Security for the Sender

Bernardo M. David1, Anderson C. A. Nascimento1, Rodrigo B. Nogueira1

1Department of Electrical Engineering, University of Brasilia.
Campus Universitario Darcy Ribeiro,Brasilia, CEP: 70910-900, Brazil

bernardo.david@redes.unb.br, andclay@ene.unb.br, rodrigo.b.nogueira@redes.unb.br

Abstract. In this paper we propose the first code-based oblivious transfer pro-
tocol with perfect (unconditional) security for one of the parties. To obtain this
result we show that the McEliece cryptosystem is rerandomizable, a property
that might be of independent interest.

1. Introduction

Oblivious Transfer [18][8] is an important cryptographic primitive which implies secure
two-party computation [12][10] as well as multi-party computation [4]. In the present
work, we focus on the one-out-of-two oblivious transfer (OT). This is a two-party prim-
itive where a sender (Alice) inputs two bits b0, b1 and a receiver (Bob) inputs a bit c,
referred to as the choice bit. Bob learns bc but must not learn any information on b1−c and
bc simultaneously while Alice learns nothing about Bob’s choice (the value of c).

OT has been constructed based on various computational assumptions, such as
enhanced trapdoor permutations [7], hardness of factoring [18], Diffie-Hellman [2],
Quadratic or Higher-Order Residuosity and the Extended Riemman Hypothesis [11]. In
all of these constructions the security for one of the players is unconditional, that is, the
security for one of the players holds even when she is computationally unbounded. Re-
cently, constructions of oblivious transfer based on coding theory hypotheses have been
independently proposed in [6] and in [13]. In these cases, differently from previous re-
sults, the security for both players is computational, even against passive adversaries.
Moreover, it was stated as an open problem, in [6] and in [13], to obtain code-based
oblivious transfer protocols with unconditional security for one of the parties. We address
this issue in this paper.

We implement 1-out-of-2 OT based on the two assumptions of the McEliece PKC
[14]: the hardness of decoding random binary linear codes (which was proven to be NP-
Complete [3] and equivalent to the Learning Parity with Noise (LPN) problem [19]) and
the indistinguishability of the scrambled generating matrix of a binary Goppa code from
a random one [15]. Particularly, we achieve unconditional security for Alice and com-
putational security for Bob, thus solving the open problem stated in [6] and in [13]. To
achieve our result we introduce a novel property of the McEliece public key cryptossys-
tem (PKC) which, to the best of our knowledge, has not been presented in the literature:
we show that the McEliece PKC is re-randomizable. An encryption scheme is said to be
re-randomizable when it is possible to change its randomness without knowing its private
key. We believe this property of the Mceliece PKC is of independent interest and might
find other applications elsewhere.

147

In this work we consider only static adversaries, i.e., either Alice or Bob is cor-
rupted before the protocol starts.

2. Preliminaries
In this section we define the notation used throughout this work and provide the for-
mal security definitions for oblivious transfer and bit commitment. We also describe the
McEliece public key cryptosystem and the security assumptions on which both this PKC
and our protocol are based.

Hereupon, we will denote by x ∈R D an uniformly random choice of element x
over its domainD; by⊕ a bit-wise exclusive OR of strings; and by a | b the concatenation
of string a with string b. All logarithms are to the base 2.

Two sequences Xn, n ∈ N and Yn, n ∈ N of random variables are said to be com-
putationally indistinguishable, denoted by X c

= Y , if for every non-uniform probabilistic
polynomial-time distinguisher D there exists a negligible function ε(·) such that for every
n ∈ N,

| Pr[D(Xn) = 1]− Pr[D(Yn) = 1] |< ε(n)

2.1. McEliece Public-Key Cryptosystem
The following definition has been taken from [17]. The McEliece cryptosystem [14]
consists of a triplet of probabilistic algorithms ME = (GenME, EncME, DecME) and
M = {0, 1}k.

• Key generation algorithm: The PPT key generation algorithm GenME works as
follows:

1. Generate a k×n generator matrix G of a binary Goppa code, where we as-
sume that there is an efficient error-correction algorithm Correct which
can always correct up to w errors.

2. Generate a k × k random non-singular matrix S.
3. Generate a n× n random permutation matrix P.
4. Set G = SG′P, and outputs pk = (G, w) and sk = (S,G′,P).

• The encryption algorithm: The PPT encryption algorithm EncME takes a plain-
text m ∈ {0, 1}k and the public-key pk as input and outputs ciphertext c =
mG⊕ e, where e ∈ {0, 1}n is a random vector of hamming weight w.
• The decryption algorithm: The polynomial-time algorithm DecME works as fol-

lows:
1. Compute cP−1 = ((mS)G′ ⊕ eP−1), where P−1 denotes the inverse ma-

trix of P.
2. Compute mS = Correct(cP−1).
3. Output m = (mS)S−1.

2.2. Semantically Secure McEliece Public-Key Cryptosystem
In our application we use a variant of the original McEliece PKC that was proved se-
mantically secure [17]. We are interested in encrypting single bit messages, instead of
strings.

In the semantically secure version of McEliece PKC, we pad the message m ∈
{0, 1} with a random string r ∈R {0, 1}k−1, obtaining (r | m)G ⊕ e as the desired
ciphertext.

148 Artigos Completos

Additionally, instead of creating an error vector by choosing it randomly from
the set of vectors with Hamming weight w, we generate e by choosing each of its bits
according to the Bernoulli distribution Bθ with parameter θ, θ(1 − θ) < w

2n
. Clearly,

due to the law of large numbers, the resulting error vector should be within the error
capabilities of the code.

2.3. Re-randomization of the McEliece Public-Key Cryptosystem

A public key cryptosystem is said to be re-randomizable if one is able to change the
randomness of a given ciphertext without knowing its correspondent secret key. In the
case of the McEliece PKC, one can obtain a form of weak re-randomization, which will
be enough for our purposes. By weak, we mean that one will be able to change the
randomness of a given cyphertext a constant number of times.

We call by re-randomize the process where, given a ciphertext K ∈ {0, 1}n, we
compute the bitwise-XOR of K with (r | 0)G ⊕ e, where r ∈R {0, 1}k−1, i.e, K̂ =
K⊕(r | 0)G+e, where e is an error vector formed by choosing each of its bits according
to the Bernoulli distribution Bθ with parameter θ, θ(1− θ) < w

2n
.

Since the code in question is linear and the total number of errors added to the mes-
sage is strictly less than w (with overwhelming probability due to the Chernoff Bound),
the re-randomization preserves the value of DecME(K̂), i.e. DecME(K̂) = DecME(K),
but turns K̂ indistinguishable from a random vector of the same size due to the semantic
security of the modified McEliece PKC.

2.4. Security Assumptions

In order to prove the security of our protocol, we use the McEliece PKC assumptions,
which will be introduced and briefly discussed in this subsection. The first assumption
is that there is no algorithm which can distinguish the scrambled generating matrix of a
binary Goppa code (matrix G generated by the algorithm GenME described before) from
a random matrix of the same size.
Assumption 1. There is no PPT algorithm which can distinguish the public-key matrix P
of the McEliece cryptosystem from a random matrix of the same size with non-negligible
probability.

The hardness of decoding random linear codes is the second assumption on which
the McEliece PKC and our protocol are based. This problem was proved to be NP-
complete [3] and currently the best algorithm to solve this problem still runs in expo-
nential time. This problem was proved to be equivalent to the Learning Parity with Noise
(LPN) problem [19], a fact that is central to our scheme’s security.
Assumption 2. The Syndrome Decoding Problem is hard for every PPT algorithm.

2.5. Security Definition of Oblivious Transfer

This definition was taken from [6] and slightly adapted to protocols with unconditional
security for Alice. Let us denote by V iewÃ(Ã(z), B(c)) and V iewB̃(A(b0, b1), B̃(z)) the
views of dishonest Alice and Bob, respectively, which represent their inputs z, results of
all local computations, and messages exchanged.

X Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais 149

Definition 1. A protocol [A,B](b0, b1; c) is said to securely implement oblivious transfer,
if at the end of its execution by the sender Alice and the receiver Bob which are modeled
as probabilistic polynomial time (PPT) Turing machines having as their input a security
parameter N, the following properties hold:

• Completeness: when the players honestly follow the protocol, Bob outputs bc while
Alice has no output.
• Security for Alice: For every PPT adversary B̃, every input z, and a (sufficiently

long) random tape RB chosen at random, there exists a choice bit c such that for
bc ∈ {0, 1} the distribution (taken over Alice’s randomness) of runs of B̃(z) using
randomness RB with Alice having input bc and bc̄ = 0 is indistinguishable from
the distribution of runs with Alice having input bc and bc̄ = 1. Put differently:

V iewB̃(A(bc, bc̄=0), B̃(z)) |z≈ V iewB̃(A(bc, bc̄=1), B̃(z)) |z

• Security for Bob: For any PPT adversary Ã, any security parameter N and any
input z of size polynomial inN , the view that Ã(z) obtains when Bob inputs c = 0
is computationally indistinguishable from that of when Bob inputs c = 1, denoted:

V iewÃ(Ã(z), B(0)) |z
c
= V iewÃ(Ã(z), B(1)) |z

A protocol is said to be secure in the semi-honest model if the previous definition
holds in the case Alice and Bob follow the protocol, being considered to be secure in
the malicious model if the previous definition holds in the case one of the parties doesn’t
follow the protocol. An oblivious transfer protocol is unconditionally secure against a
player if the given properties hold even when this player is computationally unbounded,
in other words, the protocol is unconditionally secure for a player if the given properties
hold even when the other player (an adversary) is computationally unbounded.

2.6. Security Definition of String Commitment

We will need string commitment schemes in our construction of a fully secure protocol.
In a string commitment protocol there are two stages: Commit and Open. In the first
stage, Commit, the sender (Alice) inputs a bit-string b and provides the receiver (Bob)
with evidence about it. Bob doesn’t learn b until the second stage, Open, when Alice
reveals her commitment to Bob, who can detect with high probability that she opened a
value different from b. Let V iewÃ(Ã(z), B(c)) and V iewB̃(A(b0, b1), B̃(z)) denote the
the views of dishonest Alice and Bob, respectively, which represent their inputs z, results
of all local computations, and messages exchanged. The following definition is based on
[16] and [6]:

Definition 2. A protocol [A,B](b0, b1; c) is said to securely implement string commitment,
if at the end of its execution by the sender Alice and the receiver Bob which are modeled
as probabilistic polynomial time (PPT) Turing machines having as their input a security
parameter N, the following properties hold:

• Completeness: when the players honestly follow the protocol, Bob accepts b.
• Hiding: For any PPT adversary B̃, any security parameter N and any input z of

size polynomial in N, any k ∈ N, after the Commit stage, but before the Open

150 Artigos Completos

stage, the view of B̃(z) when Alice inputs b ∈ {0, 1}k is computationally indistin-
guishable from the view where Alice inputs any other b′ ∈ {0, 1}k, b′ 6= b:

V iewB̃(A(b), B̃(z)) |z
c
= V iewB̃(A(b′), B̃(z)) |z

• Binding: For any PPT adversary Ã, any security parameter N and any input z of
size polynomial in N, any k ∈ N, there exists b ∈ {0, 1}k which can be computed
by Alice after the Commit stage, such that the probability that Ã(b′), b′ 6= b is
accepted by Bob in the Open stage is negligible in N.

A string commitment protocol is unconditionally secure against a player if the
properties in Definition 2 hold even when this player is not computationally bounded.

A bit commitment scheme can be constructed using a pseudorandom generator
[16]. A pseudorandom number generator based on syndrome decoding was proposed in
[9].

3. A Protocol Secure in the Semi-Honest Model
First we assume that Alice and Bob are honest-but-curious, that is they follow the protocol
but try to obtain as much information as possible from their views. Bob sends to Alice
a McEliece public key G and two pairs (K0

0 , K
0
1) and (K1

0 , K
1
1) of messages (0, 1 − c)

and (0, c) encrypted with a semantically secure McEliece cryptosystem [17] and G, e.g,
K0

0 = (r | 0)G⊕ e, where r ∈R {0, 1}k−1, e is an error vector formed by choosing each
of its bits according to the Bernoulli distribution Bθ with parameter θ, θ(1 − θ) < w

2n
.

Alice then encrypts b0 and b1 by re-randomizing K0
b0

and K1
b1

, respectively, and sends the
encryptions to Bob.

The protocol is complete because Bob can always decrypt bc. The protocol is
unconditionally secure for Alice because DecME(K1−c

0) = DecME(K1−c
1), thus Bob is

unable to distinguish between b1−c = 0 and b1−c = 1. It is also computationally secure
for Bob, because Alice cannot distinguish (K0

0 , K
0
1) from (K1

0 , K
1
1).

In this protocol Alice inputs two bits b0 and b1 while Bob inputs a bit c in order to
receive bc.

Protocol 1.
1. Bob generates S,G′,P, (K0

0 , K
0
1),(K1

0 , K
1
1) and sends (G = SG′P, w),

(K0
0 , K

0
1), (K1

0 , K
1
1) to Alice, where:

• (S,G′, P) is a McEliece secret key generated following the procedures of
the McEliece GenME algorithm and (G = SG′P, w) is its corresponding
public key.
• (K0

0 , K
0
1) is a pair of encrypted messages such that K0

0 = (r0 | 0)G ⊕ e0

and K0
1 = (r1 | 1− c)G⊕ e1, where ri ∈R {0, 1}k−1, ei is an error vector

formed by choosing each of its bits according to the Bernoulli distribution
Bθ with parameter θ, θ(1− θ) < w

2n
. for i = 0, 1.

• (K1
0 , K

1
1) is a pair of encrypted messages such that K1

0 = (r0 | 0)G ⊕ e0

and K1
1 = (r1 | c)G ⊕ e1, where ri ∈R {0, 1}k−1, ei is an error vector

formed by choosing each of its bits according to the Bernoulli distribution
Bθ with parameter θ, θ(1− θ) < w

2n
. for i = 0, 1. for i = 0, 1

X Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais 151

2. Alice computes for i ∈ {0, 1}: b̂i = Ki
bi
⊕ (ri | 0)G, where ri ∈R {0, 1}k−1 and

sends (b̂0, b̂1) to Bob.
3. Bob decrypts b̂c by executing the steps of the DECME algorithm and extracts the

last bit of the plain-text message (which is equal to bc).

Theorem 1. Protocol 1 is complete, unconditionally secure for Alice and computationally
secure for Bob against passive attacks according to Definition 1 under Assumptions 1 and
2.

Proof. Assuming that both players follow the protocol under passive attacks we prove the
properties listed in Definition 1.

Completeness: Observing that Bob can always decrypt b̂c and that it allows him
to compute bc it follows that the protocol is complete. Since binary Goppa codes are linear
it follows that b̂c = Kc

bc
⊕ (r1 | 0)G, where r1 ∈R {0, 1}k−1, is a valid encryption of the

message (r ⊕ r1 | bc).
Unconditional Security for Alice: Let B̃ be any computationally unbounded

cheating receiver. Let c be the bit such that K1−c
i = (ri | 0)G⊕ e0 for i = 0, 1. Note that

DecME(b̂1−c) = (r | 0) for either b1−c = 0 or b1−c = 1, thus proving that the distribution
(taken over Alice’s randomness) of runs of B̃(z) using randomness R with Alice having
input bc and bc̄ = 0 is indistinguishable from the distribution of runs with Alice having
input bc and bc̄ = 1.

Computational Security for Bob: Let Ã be any PPT cheating sender. Since the
randomized McEliece cryptosystem was proven to be IND-CPA secure under Assump-
tions 1 and 2 [17], it follows that Ã cannot distinguish between Ki

j for i, j ∈ {0, 1}.
Furthermore Ã cannot decrypt Ki

j and compute the message m, where (r | m) =
DecME(Ki

j) for i, j ∈ {0, 1}. Hence, the protocol views where Bob inputs c = 1 or
c = 0 are computationally indistinguishable for Alice.

While Protocol 1 is complete and secure in the Semi-Honest model it is still pos-
sible to implement attacks against it in the Malicious Model (when the parties deviate
arbitrarily from the protocol specifications). A malicious Bob could send K0

1 and K1
1 to

Alice such that Ki
1 = (ri | 1)G⊕ e0. It is clear that this attack would enable Bob to learn

both b0 and b1, breaking security for Alice.

4. A protocol for OT secure in the Malicious Model
To obtain a fully secure protocol, we need to somehow prevent Bob from sending Alice
malformed keys in the previous protocol. Fortunately, the same problem has been treated
previously in the literature [6]. We follow Dowsley et al. [6] with slight modifications in
order to construct a protocol secure in the malicious model based on the passively secure
Protocol 1.

1. Construct a protocol for randomized oblivious transfer in which Bob is forced to
choose K0

1 and K1
1 such that K1−c

1 = (r | 0)G ⊕ e0, where r ∈R {0, 1}k−1, e
is an error vector formed by choosing each of its bits according to the Bernoulli
distribution Bθ with parameter θ, θ(1 − θ) < w

2n
. Otherwise he will be detected

with probability at least 1
2
.

152 Artigos Completos

2. Convert the random oblivious transfer into oblivious transfer while retaining the
same level of security.

3. Reduce the probability that a malicious Bob learns both b0 and b1.

4.1. Random OT with high probability of Bob cheating

We implement a protocol that outputs two random bits a0,a1 and outputs two random bits
d,ad to Bob. In this protocol, Alice can detect with probability at least 1

2
− ε that a mali-

cious Bob has chosen K0
1 and K1

1 such that Ki
1 = (ri | 1)G⊕ e0, where ri ∈R {0, 1}k−1,

ei is an error vector formed by choosing each of its bits according to the Bernoulli distri-
bution Bθ with parameter θ, θ(1− θ) < w

2n
. Protocol 2

1. Bob chooses c0, c1 ∈R {0, 1} and generates two McEliece secret keys Sk0 =
(S0, G

′
0, P0) and Sk1 = (S1, G

′
1, P1). He then commits to Sk0, c0 and Sk1, c1 and

stores G0 = S0G
′
0P0 and G1 = S1G

′
1P1.

2. Bob computes (K0
0 , K

0
1),(K1

0 , K
1
1) and (K̂0

0 , K̂
0
1),(K̂1

0 , K̂
1
1) where:

• K0
0 = K1

0 = K1−c0
1 = (r | 0)G0 ⊕ e,Kc0

1 = (r | 1)G0 ⊕ e.
• K̂0

0 = K̂1
0 = K̂1−c1

1 = (r | 0)G1 ⊕ e,K̂c1
1 = (r | 1)G1 ⊕ e.

Bob sends (K0
0 , K

0
1),(K1

0 , K
1
1),(K̂0

0 , K̂
0
1), (K̂1

0 , K̂
1
1),G0,G1,w to Alice.

3. Alice chooses a challenge j ∈R {0, 1} and sends it to Bob.
4. Bob opens his commitment to Sk1−j, c1−j and sets d = cj .
5. Alice verifies that DecME(K

1−cj
0 ⊕ K

1−cj
1 , Sk0) = 0 (if j = 1) or that

DecME(K̂
1−cj
0 ⊕ K̂1−cj

1), Sk1 = 0 (if j = 0), otherwise she aborts the protocol.
6. Alice chooses a0, a1 ∈R {0, 1} and computes for i ∈ {0, 1}: âi = Ki

ai
⊕(ri | 0)G0

if j = 1, if not, she computes âi = K̂i
ai
⊕ (ri | 0)G1 where ri ∈R {0, 1}k−1 and

sends (â0, â1) to Bob.
7. Bob decrypts âd to find ad, where DecME(âd) = (r | ad). If DecME(âd) yields a

decoding error, then Bob outputs ad = 0.
Theorem 2. Under the assumption that the bit commitment protocol is secure, Protocol 2
implements a randomized oblivious transfer that is complete and secure for Bob against
active attacks according to Definition 1 under Assumptions 1 and 2. Furthermore, the
probability that an actively cheating Bob learns both a0 and a1 is at most 1

2
+ ε(n) where

ε(n) is negligible.

Proof. Completeness: an honest Bob passes the test of step 5 and receives a valid âd, so
he can compute ad.

Security for Alice: Bob must compute both K0
1 = K1

1 = (r | 1)G0 ⊕ e or
K̂0

1 = K̂1
1 = (r | 1)G1 ⊕ e in order to learn both a0 and a1.

If Bobs computes (K0
1 , K

1
1) and (K̂0

1 , K̂
1
1) honestly, i.e, according to the protocol,

the probability that he learns both a0 and a1 is the same as in the Semi-Honest model
protocol (negligible). If Bob computes both (K0

1 , K
1
1) and (K̂0

1 , K̂
1
1) maliciously, then

Alice will stop the protocol in step 5 with overwhelming probability and Bob won’t learn
a0 nor a1.

The best strategy for a rational malicious Bob is to compute one of the matrix
pairs honestly and compute the other one maliciously, so that he learns both a0 and a1 if
Alice asks him to open the commitment to the honestly computed matrix pair’s secret key
Ski, ci. Note that Alice asks him to open the commitment to the maliciously computed

X Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais 153

matrix pair’s secret key with probability 1
2
. In this case, Bob will open the commitment

to the expected honest matrix pair’s secret key only with negligible probability. Thus, a
malicious Bob learns both a0 and a1 with probability of at most 1

2
+ ε(n) where ε(n) is

negligible.

Security for Bob: Bob does not open his commitment to Skj, cj , so the protocol
is secure for Bob under Assumptions 1 and 2 analogously to Protocol 1. Alice would
have to decrypt the received pair ((K0

1 , K
1
1) or (K̂0

1 , K̂
1
1)) or distinguish one of the cipher-

texts in the pair from the other in order to learn d, but, since the randomized McEliece
cryptosystem is IND-CPA secure [17], a PPT malicious Alice wouldn’t be able to do so.

Differently from the Semi-Honest Model, a malicious Alice could also send an
invalid value for âi hoping that i = d and expecting that Bob will complain when he
encounters the decoding error. However, if Alice sends an invalid syndrome Bob will
output 0 by default, as specified in Step 8 of this protocol, which is equivalent to the case
where Alice sets her input ai = 0, thwarting the attack.

It follows that the protocol is secure against an actively cheating Alice.

4.2. Derandomizing Protocol 2

We now use the method presented by Beaver [1] to convert the randomized oblivious
transfer implemented by Protocol 2 into ”regular” oblivious transfer with the same level
of security:

Protocol 3

1. Bob and Alice execute Protocol 2. Alice receives a0, a1 and Bob receives d, ad.
2. Bob inputs c, sets e = c⊕ d and sends e to Alice.
3. Alice inputs b0, b1 ∈ {0, 1}, computes x0 = b0⊕ ae and x1 = b1⊕ a1⊕e and sends
x0, x1 to Bob.

4. Bob computes bc = xc ⊕ ad.

Theorem 3. Protocol 3 implements oblivious transfer with the same level of security of
Protocol 2.

Proof. Completeness: An honest Bob, who knows ad, can always recover bc because
xc = bc ⊕ ac⊕e = bc ⊕ ad.

Security for Alice: A malicious Bob can only recover both b0 and b1 if he knows
both a0 and a1, because x1⊕c = b1⊕c ⊕ a1⊕c⊕e = b1⊕c ⊕ a1⊕d.

Security for Bob: A malicious Alice would have to discover d in order to compute
c, thus the security for Bob follows from the security of Protocol 2.

4.3. A Fully Secure Protocol

In order to reduce the probability of Bob cheating in Protocol 9, we use the reduction of
[5] to minimize the probability that a malicious Bob learns both of Alice inputs. Following
this reduction, Protocol 3 is executed in parallel s times, where s is the security parameter.
In each execution the inputs are chosen in such a way that Bob must learn both bits in all

154 Artigos Completos

executions in order to compute both Alice inputs in Protocol 4. The proof is identical to
the one presented in [6].

Protocol 4

• Alice inputs b0, b1 ∈ {0, 1} and b0,1, b0,2, · · · , b0,s, b1,1, b1,2, · · · , b1,s.
• Bob inputs c ∈ {0, 1}.
• Protocol 3 is executed s times, with inputs b0,i, b1,i from Alice and ci = i from

Bob for i = 1 · · · s.
• Bob computes bc = bc,1 ⊕ bc,2 ⊕ · · · ⊕ bc,s.

Theorem 4. Assuming that the bit commitment scheme used in Protocol 2 is secure, Pro-
tocol 4 is complete and secure for both Alice and Bob against active attacks according to
Definition 1 under Assumptions 1 and 2.

5. Conclusions
We provided, to the best of our knowledge, the first oblivious transfer protocol based on
coding assumptions which has unconditional security for one of the parties. Our result
follows from an observation we believe might be of independent interest: we note that the
McEliece PKC is re-randomizable. Nice as it is, we payed a heavy price for our result.
While previous constructions implement, without any further need of modification, string
oblivious transfers, ours only works for bit oblivious transfer. To obtain efficient string
code-based oblivious-transfer protocols seems to be an interesting sequel to this work.

References
[1] Donald Beaver. Precomputing oblivious transfer. In CRYPTO ’95: Proceedings of the

15th Annual International Cryptology Conference on Advances in Cryptology, pages
97–109, London, UK, 1995. Springer-Verlag.

[2] Mihir Bellare and Silvio Micali. Non-interactive oblivious transfer and applications. In
CRYPTO ’89: Proceedings on Advances in cryptology, pages 547–557, New York,
NY, USA, 1989. Springer-Verlag New York, Inc.

[3] Elwyn R Berlekamp, Robert McEliece, and Henk C A van Tilborg. On the inherent in-
tractability of certain coding problems (corresp. IEEE Transactions on Information
Theory, (24), 1978.

[4] Claude Crépeau, Jeroen van de Graaf, and Alain Tapp. Committed oblivious transfer and
private multi-party computation. In Don Coppersmith, editor, CRYPTO, volume 963
of Lecture Notes in Computer Science, pages 110–123. Springer, 1995.

[5] Ivan Damgård, Joe Kilian, and Louis Salvail. On the (im)possibility of basing obliv-
ious transfer and bit commitment on weakened security assumptions. In EU-
ROCRYPT’99: Proceedings of the 17th international conference on Theory and
application of cryptographic techniques, pages 56–73, Berlin, Heidelberg, 1999.
Springer-Verlag.

[6] Rafael Dowsley, Jeroen van de Graaf, Jörn Müller-Quade, and Anderson C. A. Nasci-
mento. Oblivious transfer based on the mceliece assumptions. In Reihaneh Safavi-
Naini, editor, ICITS, volume 5155 of Lecture Notes in Computer Science, pages
107–117. Springer, 2008.

X Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais 155

[7] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing
contracts. In CRYPTO, pages 205–210, 1982.

[8] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing
contracts. Commun. ACM, 28(6):637–647, 1985.

[9] Jean-Bernard Fischer and Jacques Stern. An efficient pseudo-random generator prov-
ably as secure as syndrome decoding. In EUROCRYPT’96: Proceedings of the 15th
annual international conference on Theory and application of cryptographic tech-
niques, pages 245–255, Berlin, Heidelberg, 1996. Springer-Verlag.

[10] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In STOC ’87:
Proceedings of the nineteenth annual ACM symposium on Theory of computing,
pages 218–229, New York, NY, USA, 1987. ACM.

[11] Yael Tauman Kalai. Smooth projective hashing and two-message oblivious transfer. In In
EUROCRYPT 2005, Springer-Verlag (LNCS 3494, pages 78–95. Springer, 2005.

[12] Joe Kilian. Founding crytpography on oblivious transfer. In STOC ’88: Proceedings of
the twentieth annual ACM symposium on Theory of computing, pages 20–31, New
York, NY, USA, 1988. ACM.

[13] K. Kobara, K. Morozov, and R. Overbeck. Oblivious transfer via mceliece’s pkc and
permuted kernels. Cryptology ePrint Archive, Report 2007/382, 2007. http:
//eprint.iacr.org/.

[14] R J McEliece. A public-key cryptosystem based on algebraic coding theory. dsn progress
report. In Jet Propulsion Laboratories, CALTECH, pages 42–44, 1978.

[15] R.J. McEliece. The Theory of Information and Coding, volume 3 of The Encyclopedia of
Mathematics and Its Applications. Reading, Mass., Addison-Wesley, 1077.

[16] Moni Naor. Bit commitment using pseudo-randomness. In CRYPTO ’89: Proceedings
of the 9th Annual International Cryptology Conference on Advances in Cryptology,
pages 128–136, London, UK, 1990. Springer-Verlag.

[17] Ryo Nojima, Hideki Imai, Kazukuni Kobara, and Kirill Morozov. Semantic security
for the mceliece cryptosystem without random oracles. Des. Codes Cryptography,
49(1-3):289–305, 2008.

[18] Michael O. Rabin. How to exchange secrets by oblivious transfer. Technical Memo
TR-81, Aiken Computation Laboratory, Harvard University, 1981.

[19] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
STOC ’05: Proceedings of the thirty-seventh annual ACM symposium on Theory of
computing, pages 84–93, New York, NY, USA, 2005. ACM.

156 Artigos Completos

	Sem nome
	Sem nome

