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Abstract. We show a method for compressing the ciphertext and reducing the computational
cost of the Dolev-Dwork-Naor cryptosystem and related schemes without changing their other
parameters nor reducing the original security levels.

1. Introduction

Indistinguishability of messages under adaptive chosen ciphertext attacks [11] is the strongest known
notion of security for public key encryption schemes (PKE). In this notion of security, the adversary is
given access to a decryption oracle. Many computational assumptions have been used in the literature
for obtaining cryptosystems meeting such a strong security requirements and the study of generic con-
structions of public key encryption schemes meeting this security notion based on weak primitives is
an interesting topic. Given enhanced one-way trapdoor permutations, we know how to obtain CCA2
security from any semantically secure public key cryptosystem [8, 1, 13, 7]. It is also possible to obtain
CCA2 secure PKE based on correlated products [12] (which can be constructed based on certain lossy
trapdoor functions [10]).

In this short note, we show a method for compressing a ciphertext of the Dolev-Dwork-Naor
(DDN) [1] cryptosystem to half of its size. Our scheme also reduces the computational cost of the
cryptosystem.

1.1. Extensions

Even tough we present proofs of security just for the original DDN scheme, our ideas can be straight-
forwardly applied to other CCA2 secure constructions which use many pairs of public/private keys.
For instance, we can also shorten the ciphertext and computational costs of the following schemes: the
Rosen-Segev construction [12]; the Pass-Shelat-Vaikuntanathan construction [9]; the Dowsley-Miiller-
Quade-Nascimento construction [2] and the Hanaoka-Imai-Ogawa-Watanabe construction [4].

1.2. Post-Quantum Schemes

Reducing the ciphertext size of the original DDN construction is a rather theoretical contribution, as
practical schemes are usually not based on this general reduction. However, in the case of post-quantum
schemes, all the known protocols achieving CCA2 security in the standard model are based on general
reduction techniques [12, 9, 2]. Thus, reducing their communication and computational complexities is
indeed an important issue towards obtaining close to practical post-quantum public key schemes with
CCA2 security in the standard model.
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2. Preliminaries

2.1. Notation

If x is a string, then |x| denotes its length, while | S| represents the cardinality of a set S. If & € N,
then 1* denotes the string of k ones. s « S denotes the operation of choosing an element s of a set S
uniformly at random. w < A(z, v, .. .) represents the act of running the algorithm .4 with inputs z, y, . . .
and producing output w. We write w + A®(x,y,...) for representing an algorithm A having access to
an oracle 0. We denote by Pr[ £] the probability that the event £ occurs.

2.2. Public-Key Encryption Schemes

A Public Key Encryption Scheme (PKE) is defined as follows:
Definition 1. (Public-Key Encryption). A public-key encryption scheme is a triplet of algorithms (Gen,
Enc, Dec) such that:

e Gen is a probabilistic polynomial-time key generation algorithm which takes as input a security
parameter 1% and outputs a public key PK and a secret key DK. The public key specifies the
message space M and the ciphertext space C.

e Enc is a (possibly) probabilistic polynomial-time encryption algorithm which receives as input a
public key PK and a message m € M, and outputs a ciphertext C' € C.

e Dec is a deterministic polynomial-time decryption algorithm which takes as input a secret key
DK and a ciphertext C, and outputs either a message m € M or an error symbol 1.

e (Soundness) For any pair of public and private keys generated by Gen and any message m € M
it holds that Dec(D K, Enc(PK,m)) = m with overwhelming probability over the randomness
used by Gen and Enc.

Below we define indistinguishability against chosen-plaintext attacks (IND-CPA) [3] and against
adaptive chosen-ciphertext attacks (IND-CCAZ2) [11]. Our game definition follows the approach of [5].
Definition 2. (IND-CPA security). To a two-stage adversary A = (Ay, As) against a PKE 11 we
associate the following experiment Expy"y (k):

(PK,DK) « Gen(1%)

(mo, my, state) < A1 (PK) s.t. |mg| = |my]|
b+ {0,1}

C* « Enc(PK,my)

b« Ay(C*, state)

Ifb ="V return 1 else return 0

We define the advantage of A in the experiment as
AdviTy (k) = | Pr(Expiiy(k) = 1] — 5

We say that 11 is indistinguishable against chosen-plaintext attacks (IND-CPA) if for all prob-
abilistic polynomial time (PPT) adversaries A = (A1, As) the advantage of A in the experiment is a
negligible function of k.
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Definition 3. (IND-CCA2 security). To a two-stage adversary A = (A, As) against a PKE 11 we
associate the following experiment Expcncflj(k:):

(PK,DK) « Gen(1%)

(mg, my, state) « A?EC(DK”)(PK) s.t. |mo| = |my|
b+ {0,1}

C* « Enc(PK, my)

b« AQDeC(DK")(C*, state)

Ifb ="V return 1 else return 0

The decryption oracle knows the secret key DK and for each valid ciphertext submitted by the
adversary as a query it sends the corresponding plaintext to the adversary. The adversary As is not
allowed to query Dec(DK, - ) with C*. We define the advantage of A in the experiment as

Advgjlj(/f) = ]Pr[Expfff‘j(k:) =1-1

We say that 11 is indistinguishable against adaptive chosen-ciphertext attacks (IND-CCA2) if for
all probabilistic polynomial time (PPT) adversaries A = (A1, As) that makes a polynomial number of
oracle queries the advantage of A in the experiment is a negligible function of k.

2.3. Signature Schemes

Below we explain signature schemes and define one-time strong unforgeability.
Definition 4. (Signature Scheme). A signature scheme is a triplet of algorithms (Gen, Sig, Ver) such
that:

e Gen is a probabilistic polynomial-time key generation algorithm which takes as input a security
parameter 1¥ and outputs a verification key vk and a signing key sk. The verification key specifies
the message space M and the signature space S.

e Sig is a (possibly) probabilistic polynomial-time signing algorithm which receives as input a
signing key sk and a message m € M, and outputs a signature o € S.

e Ver is a deterministic polynomial-time verification algorithm which takes as input a verification
key vk, a message m € M and a signature 0 € S, and outputs a bit indicating whether o is a
valid signature for m or not (i.e., the algorithm outputs 1 if it is a valid signature and outputs 0
otherwise).

e For any pair of signing and verification keys generated by Gen and any message m € M it holds
that Ver(vk,m,Sig(sk,m)) = 1 with overwhelming probability over the randomness used by
Gen and Sig.

Definition 5. (One-Time Strong Unforgeability). To a two-stage adversary A = (Ai, As) against a
signature scheme Y. we associate the following experiment Expoztﬁ”(k:):

(vk, sk) « Gen(1F)
(m, state) « A, (vk)
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o « Sig(sk, m)
(m*,0%) « As(m, o, state)

If Ver(vk,m*,c*) = 1 and (m*,0*) # (m, o) return 1, else return 0

We say that a signature scheme Y is one-time strongly unforgeable if for all probabilist poly-
nomial time (PPT) adversaries A = (A1, Ay) the probability that Exp$:°i (k) outputs 1 is a negligible
function of k.

2.4. Non-Interactive Zero-Knowledge

Now we define the notion of Adaptively-Secure Non-Interactive Zero-Knowledge. This definition is
from [6].

Definition 6. (Adaptively-Secure Non-Interactive Zero-Knowledge). A pair of probabilistic polynomial-
time algorithms (P, V) is an adaptive, non-interactive zero-knowledge proof system for a language L €
NP if there exists a polynomial poly such that:

Completeness: For all v € L N {0,1}* and all witnesses w for x,
Pr[r « {0,1}PY® r — P(r 2z, w) : V(r,z,m) = 1] =1
Soundness: For all (possibly unbounded) algorithms P*, the following is negligible in k:
Pr[r < {0,1}PY®: (2. 1) — P*(r) : V(r,z,7) = 1 Az € {0,1}F\ L].

Zero-Knowledge: Let (S;,S) and (A1, As) be a pair of two-staged algorithms. Consider the following
experiments where x € L N {0, 1}*:

Game ZK, a1 Game ZKg,

r— {0,1}Pv (k) (r, state) «— S (1)
(z,w, state) «— A;(r) (x,w, state) «— A;(r)
T — P(r,x,w) 7 — Sy(z, state’)
b— Ay(r,x,m, state) b — Ay(r,x,m, state)

We require that there exist a probabilistic polynomial-time simulator (S1,Ss) such that for any
probabilistic polynomial-time algorithm (A1, As) the following is negligible in k:

|Przk... [A2 outputs 0] — Pryzx . [As outputs 0]].

sim [

2.5. The DDN Cryptosystem

In this section, we briefly review the DDN cryptosystem. The DDN cryptosystem is constructed as
follows. Let IT = (CPA.Gen, CPA.Enc, CPA.Dec) be an IND-CPA secure PKE scheme and ¥ =
(OT.Gen, OT.Sig, OT.Ver) be an one-time strongly unforgeable signature scheme. For simplicity, we
assume that the size of signature of Y is £ where £ is the security parameter. Then, we construct another
PKE scheme as follows.
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Key Generation. For security parameter k, run CPA.Gen(1*) for 2k times to obtain
DK == (dk’o’l, ceey dko}k, dkl,l; ceey dkl,k)

and
PK' = (pko,h ooy Dok, PR, "'7pk17k;>-

Pick a random string R (this will be used by the sender for generating a non-interactive zero-
knowledge (NIZK) proof). The decryption key is DK and the public key is PK = (PK’, R).

Encryption. For encrypting m, run OT.Gen(1%) to obtain a verification key vk and a signing key sk.
Let vk; be i-th bit of vk (assuming that vk is expressed as a k-bit binary string). Then, run
C; « CPA.Enc(pkyg, i, m) for 1 < i < k. Generate a NIZK proof 7 which guarantees that the
plaintexts of all C; are identical.! Finally, run o < OT.Sig((CY, ..., Cy, ), sk). The ciphertext
isC = (C, ...,Cy, m, vk, 0).

Decryption. For decrypting a given ciphertext C' = (C4, ..., Cy, w, vk, o), run Ver((CY, ..., Cy, ), 0, vk)
to check the validity of the signature. Also, test the validity of 7. If invalid (for any of these tests),
output L. Otherwise, run m «— CPA.Dec(CY, dky, 1).

3. Our Improved Construction

3.1. The Scheme
Here, we present our improved version of the DDN cryptosystem.

Key Generation. For security parameter k, run CPA.Gen(1*) for 2k times to obtain
DK = (dkoo,1; -, dkoo k2, dkor 1, s dkor g2, k10,1, s dkro g2, ki1, - dkngy2)

and

PK" = (pkoo,1, ---s Pkoo,k/2, PRo1,15 -5 PRo1k/2, PE10,15 s PR10,k /2, PRAL L s PR 2)-

Pick a random string R. The decryption key is DK and the public key is PK = (PK', R).

Encryption. For encrypting m, run OT.Gen(1%) to obtain a verification key vk and a signing key sk.
Let vk; be i-th bit of vk (assuming that vk is expressed as a k-bit binary string). Then, run
C; « CPA.Enc(pkuky;_,vky;.5.m) for 1 < j < k/2. Generate a NIZK proof 7 which guarantees
that the plaintexts of all C; are identical.” Finally, run o < OT.Sig((CY, ..., Ck/2, ), sk). The
ciphertextis C' = (C1, ..., Cyj2, m, vk, 0).

Decryption. For decrypting a given ciphertext C' = (Ch,...,Crja,m,vk,0),  run
Ver((Ch, ..., Cyja,m),0,vk) to check the validity of the signature. Also, test the validity
of 7. If invalid (for any of these tests), output L. Otherwise, run m «— CPA.Dec(C', dkyk,vky.1)-

3.2. Security Proof

Our scheme in the previous section is as secure as the original DDN scheme. Namely, it is IND-CCA2
secure assuming that II is IND-CPA secure, X is one-time strongly unforgeable and that the NIZK proof
system used is Adaptively-Secure.

''Since this is an NP language, NIZK proofs can be generated.
2Since this is an NP language, NIZK proofs can be generated.



400 Artigos Completos

Theorem 1. The scheme presented in the previous section is an IND-CCA2 secure assuming that 11 is an
IND-CPA secure PKE, Y. is an one-time strongly unforgeable signature scheme and the Non-Interactive
Zero-Knowledge proof system is Adaptively-Secure.

Here, we give the proof of security of the proposed scheme. For proving the security, by using an
algorithm A which breaks IND-CCAZ2 security of the proposed scheme, we construct another algorithm
B which breaks IND-CPA security of a PKE scheme 1" which is as follows.

Key Generation. For security parameter &, run CPA.Gen(1%) for k/2 times to obtain

DK = (dky, ..., dky)»)

and )
PK = (pl{?l,,pl{?k/g)

The decryption key is DK and the public key is PK.

Encryption. For encrypting m, run C; «— CPA.Enc(pk;, m) for 1 < j < k/2.

Decryption. For decrypting a given ciphertext C' = (C4, ..., Cy/2), run m; < CPA.Dec(C}, dk;) for
1 <j <k/2.If my = ... = my, s, output m,. Otherwise, output L.

Due to the hybrid argument, it is clear that the above scheme II" is IND-CPA secure if IT is IND-CPA
secure.

For a given public key PK = (pky, ..., pky, /2), B works as follows.
Key Generation. 5 generates public key PK = (PK’, R) which will be input to .A where

PK' = (pkoo,h -"7p/f00,k/2;pk01,1, '-~7pk01,k/21pk10,17 °"7pk10,k/27pk11,17 -~7P]€11,k/2)

is generated as
1. Run (vk*, sk*) «+ OT.Gen(1*). Let vk} be i-th bit of vk*.
2. For1 < j <k/2,forbp € {00,01,10, 11},
(a) If bf = vk3;_,vk3;, then set pkys ; = pk.
(b) If b3 # vk3; ,vk3;, then run (dk, pk) — CPA.Gen(1*) and set pkys ; = pk. Also,
set dk?b@j = dk.
R is also appropriately generated by B. B inputs PK to A as a public key of the proposed
scheme.

Responding to Queries. When A submits a decryption query C' = (C4,..., Cyjo,m,vk,0), B
verifies the validity of C, and if invalid, outputs L. Otherwise, it selects j such that
vkaj_1vky; # vk, qvky; (f vk # vk*, there always exists such j), computes m; <«
CPA.Dec(Cj, dkyky;_,vksy;,5)> and returns mj to A. If vk = vk*, B halts.

Constructing the Challenge Ciphertext. When 4 submits the two messages m, and m; which will
be challenged, B also submits mo and m; to its own challenge oracle. Let (CT,...,Cy ) be
the challenge ciphertext for II'. Then, B generates an NIZK proof 7* which guarantees that
decryption results of CT, ..., Cf /o are identical (notice that since R is generated by 3, by using a
certain trapdoor information B can generate such 7* without knowing the plaintext nor internal
coin for encryption). Finally, B computes 0* < OT.Sig((CT, ..., C} ,, 7), sk*), and sends C* =
(Crt,....Cr o T vk*, 0*) to A as the challenge ciphertext for the proposed scheme.

Output. When A outputs its guess b, B also outputs the same bit as its own guess.
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Simulation fails only when A submits a valid query with vk = vk* or when A produces a NIZK
proof of validity of a ciphertext in which C; and C; (for some i,j € {1,...,k/2}) are ciphertexts of
different plaintexts. However, the probability that the first event happens is negligible since X is strongly
unforgeable and the probability that the second event happens is also negligible since the used NIZK
proof system is Adaptively-Secure (and so meets the soundness requirement). Obviously, B’s advantage
is the same as .A’s (minus the probability that A produces one of the two events above).

Let Forge be the event that for some decryption query made by .4 we have that
Ver((Ch, ..., Cyja, ), 0,vk) = 1 and vk = vk*.
Lemma 1. Pr[Forge| is negligible.

Proof. Assume that for a PPT adversary A against our scheme the forge probability (Pr[Forge]) is non-
negligible, then we construct an adversary B’ that forges a signature with the same probability. B’
simulates the IND-CCAZ2 interaction for A as follows:

Key Generation: 5’ invokes the key generation algorithm of the signature scheme and obtains vk*. It
calls IT key generation algorithm 2k times obtaining the public keys

Pkoo.1, .- Pkoo k2, Pkot,1s -5 PRo1 k25 PR10,15 o> PR10,K /25 PR1LL, - PR1LE 2,
which constitute PK”, and the secret keys
dkOO,l? ceny dkOO,k/Qa dkOl,l? ceey dkOl,k/Qa dklo,la cery dklO,k/27 dkll,la ceey dkll,k/??

which constitute DK. R is also appropriately generated by 5. B’ inputs PK = (PK', R) to A
as a public key of the proposed scheme.
Decryption Queries: Whenever A makes a decryption query, B’ proceeds as follows:

1. If for this ciphertext vk = vk* and Ver((Ch,...,Cy2,m),0,0k) = 1, B’ outputs
((Ch, ..., Cyy2,m), o) as the forgery and halts.
2. Otherwise, B’ decrypts the ciphertext using the procedures of our scheme.

Challenging Query: Whenever A makes the challenging query with two messages mg, m; € M such
that |mg| = |m|, B’ proceeds as follows:

1. Chooses randomly b € {0, 1}.

2. Encrypts the message m; using the procedures of our scheme. This is possible because
B’ can ask the signature oracle to sign one message, so it asks the oracle to sign the value
(Ch, ..., Ckya, m) obtained during the encryption process.

As long as the event Forge did not occur, the simulation is perfect, so the probability that 5’
breaks the one-time strongly unforgeable signature scheme is exactly Pr[Forge]. Since the signature
scheme is strongly unforgeable by assumption, Pr[Forge] is negligible for all PPT adversaries against
our scheme. ad

Let V.. be the event that A produces a NIZK proof of validity of a ciphertext in which C; and
C} are ciphertexts of different plaintexts for some 7, j € {1,...,k/2}.
Lemma 2. Pr[V| ] is negligible.
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Proof. Assume that for a PPT adversary A against our scheme Pr[V) | ] is non-negligible, then we con-
struct an adversary 3" that violates the soundness of the NIZK proof system with the same probability.
B’ simulates the IND-CCA?2 interaction for A as follows:

Key Generation: 5" receives R as input. It calls IT key generation algorithm 2k times obtaining the
public keys

Pkoo,1, ---7Pk00,k/2,p/f01,1, ---apkOI,k/%pklO,l; -'-apklo,k/%pkll,la ~~>pk?11,k/2,
which constitute PK”, and the secret keys
dkOO,la (ERE) dkOO,k/Q, dk()l,h [ERE) dkO].,k’/Qa dklo,la (ERE) dklo,k/Qv dkjll,h ceey dkll,k/Z)

which constitute DK. B” inputs PK = (PK', R) to A as a public key of the proposed scheme.
Decryption Queries: Whenever A makes a decryption query, B” proceeds as follows:

1. If for this ciphertext 7 is valid and C; and C; are ciphertexts of different plaintexts for
somei,j € {1,...,k/2}, B outputs ((C1, ..., Cy/2), m) and halts.
2. Otherwise, B” decrypts the ciphertext using the procedures of our scheme.

Challenging Query: Whenever .A makes the challenging query with two messages mg, m; € M such
that |mg| = |m;|, B” proceeds as follows:

1. Chooses randomly b € {0, 1}.
2. Encrypts the message m; using the procedures of our scheme.

As long as the event V| did not occur, the simulation is perfect, so the probability that B” breaks
the soundness of the NIZK proof system is exactly Pr[V|_ ]. Since the NIZK proof system is Adaptively-
Secure by assumption, Pr[V| | ] is negligible for all PPT adversaries against our scheme. O

3.3. Performance: Comparison with the Original DDN

The most remarkable advantage of our construction to the original DDN is that its ciphertext length
and computational cost are significantly reduced without sacrificing anything. More specifically, in our
scheme the number of component ciphertexts (i.e. (Ci, ..., Cy/2)) is reduced to a half of that of the
original scheme (i.e. (C4, ..., C})) without increasing the key size. Furthermore, since the NIZK proof
for guaranteeing that decryption results of 'y, ..., C},» are identical can also be significantly simpler than
that of (1, ..., C}, the component for the NIZK proof can also be reduced. In summary, performance of
our construction is equivalent or superior to that of the original DDN in all aspects. We summarize
below the properties of our construction in comparison to the original DDN.

Ciphertext Size nearly half
Public Key Size same
Secret Key Size same
Encryption Computational Cost nearly half
Decryption Computational Cost nearly same
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4. An Intuitive Explanation of Our Trick

Here, we give a high level overview of our trick for the improvement. For explaining it, we start with the
following observation. By carefully looking into the security proof of the original DDN, we notice that
it may be still valid and actually works for the following generalized construction:

Key Generation. For security parameter k, run CPA.Gen(1%) for nNV times to obtain
DK = (dkyq,...,dky n,dko 1, ...y dkon, ooy dkp ..., dkp N)

and
PK/ = (pkl,lu ...7pk1,N,pk2’1, ...7pk’27N, ---apkn,lnwpk:n,N)-
Pick a random string R. The decryption key is DK and the public key is PK = (PK', R).
Encryption. For encrypting m, run OT.Gen(1*) to obtain a verification key vk and a signing key
sk. Assume that vk can be expressed as (vky,vks,...,vky) € {1,...,n}" such that for all
i € {1,..., N}, vk; € {1,...,n}. Then, run C; « CPA.Enc(pky, j, m) for 1 < j < N. Gen-
erate a NIZK proof m which guarantees that the plaintexts of all C; are identical. Finally, run
o «— OT.Sig((C4, ...,Cy,m), sk). The ciphertext is C' = (C4, ..., Cy, 7, vk, o).
Decryption. For decrypting a given ciphertext C = (Cy,...,Cn,m,vk,0), run
Ver((Cy,...,Cn,m),0,vk) to check the validity of the signature. Also, test the validity of
w. If invalid (for any of these tests), output _L. Otherwise, run m < CPA.Dec(C', dkyg, 1)

The above scheme is provably IND-CCAZ2 secure if n” > 2*. The proof can be trivially obtained from
that presented in the previous sections of this paper.

From this observation, we see that there asymptotically exists a trade-off between N and n X
N, and this implies that if we reduce the ciphertext size (in other words, decrease N), then we have
to increase the key size (in other words, increase n x N). Let |[KEY| and |[CTXT| be nN and N,
respectively. Then, we have the following inequality:

|KEY| > |CTXT| - 2KCTXTI™,

This inequality implies that if |CT X T| decreases, then |K EY'| exponentially increases. Hence, the
above generalized DDN is not very useful in a general sense. However, this is an asymptotic observation
and does not always hold. Especially, the righthand side of the above inequality is not monotonic in
|CTXT| (it has a local minimum at |CT X T| = k/(log, e)), and therefore, there exist some interesting
parameter settings for k/2 < |CTXT| < k

Based on this observation, we can construct some interesting variants of the DDN as well. For
example, if we set |CTXT| = k/2, then |KEY| becomes the same value as that for |CTXT| = k.
This means that we can compress the ciphertext length without increasing the key size. (This example is
what we presented in the previous sections). Another interesting example is that by setting |CT X T| ~
k/(log, €), we can simultaneously reduce both |C'T'XT'| and | K EY'|. Many other interesting variations
seem also be possible.

5. Conclusions

We have modified the DDN cryptosystem and obtained a cryptosystem that reduces almost by half the
ciphertext size without changing either the cryptosystem security or its keys sizes. Our improvement is
based on a trick that asymptotically allows a trade-off between the ciphertext size and the keys sizes,
but for our specific parameters allows a reduction of the ciphertext size without changing the other
parameters of the cryptosystem.
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