Improving the performance of Luffa Hash Algorithm
Thomaz Oliveira' , Julio Lépez!

nstituto de Computagio, Universidade Estadual de Campinas

thomaz.oliveira@students.ic.unicamp.br, jlopez@ic.unicamp.br

Abstract. Luffa is a new hash algorithm that has been accepted for round two of
the NIST hash function competition SHA-3. Computational efficiency is the sec-
ond most important evaluation criteria used to compare candidate algorithms.
In this paper, we describe a fast software implementation of the Luffa hash algo-
rithm for the Intel Core 2 Duo platform. We explore the use of the perfect shuffle
operation to improve the performance of 64-bit implementation and 128-bit im-
plementation with the Intel Supplemental SSSE3 instructions. In addition, we
introduce a new way of implementing Luffa based on a Parallel Table Lookup
instruction. The timings of our 64-bit implementation (C code) resulted in a 16
to 32% speed improvement over the previous fastest implementation.

1. Introduction

Hash functions are an important component of many security applications, such as digital
signature schemes, data identification and key derivation. Its main use is to provide data
integrity and message authentication. One of the most used hash algorithm is the SHA-1
[NIST 2002], published by NIST (National Institute of Standards and Technology) and
adopted by important security protocols, like IPsec, TLS/SSL and SSH.

Recent attacks on the widely used SHA-1 [Wang et al. 2005, Biham et al. 2005]
compromised its security. This scenario motivated NIST to launch a public competition
for the selection of a new secure hash function, the SHA-3. The competition counted
initially with 64 submissions.

For the second round, NIST selected 14 candidates using the following three cat-
egories of evaluation criteria: 1) security, 2) cost and performance and 3) algorithm and
implementation characteristics. The Intel Core 2 Duo processor was chosen as a reference
to evaluate the software performance of the candidates.

Luffa is a family of four hash functions: Luffa-224, Luffa-256, Luffa-384 and
Luffa-512 [Canniere et al. 2009a], designed by Carriere, Sato and Watanabe. In Decem-
ber 2009 the Luffa hash algorithm was selected for the second round. Its design is based
on a variant of the sponge construction [Bertoni et al. 2007], processing multiple permu-
tations in parallel.

Since its submission, there have been some implementations of Luffa, both in
hardware and software. The authors provided software implementations for 8, 32 and
64-bit platforms [Canniere et al. 2009b], exploring the algorithm inherent parallelism
through SSE (Streaming SIMD Extensions). They also submitted implementations for
the eBACS project [Bernstein and Lange]. In [Pornin 2010] Pornin reported a software
implementation of Luffa in C and Java, and included in his sphlib library [Pornin].

405

406 Artigos Completos

The authors in [Oikawa et al. 2010] provided implementations for GPUs (Graphics Pro-
cessing Unit), processing lots of different messages. For hardware implementation, re-
cent works [Kobayashi et al. 2010, Tillich et al. 2009, KneZevi¢ and Verbauwhede 2009,
Namin and Hasan 2009] show that Luffa ranked among the fastest algorithms in compar-
ison to other SHA-3 second round candidates.

Some attacks were made on the algorithm and its permutation. Preimage and
second preimage attacks under free-start setting were discussed by [Jia 2009]. Col-
lision attacks under semi-free-start setting were presented by [Canniere et al. 2009b,
Khovratovich et al. 2010]. In addittion, distinguishers and collision attacks were made
on the reduced round variants of the algorithm [Canniere et al. 2009b]. However, none of
these attacks actually affects the security of Luffa.

In this paper, we focus on software implementation of Luffa hash algorithm for
the Intel Core 2 Duo processor. Our work takes advantage of the parallelism provided
by the algorithm and combines it to a technique called perfect shuffle [Warren 2002]
and the SSE vector instructions. The performance results of our optimized C code
for 64-bit implementation outperforms the Reference Implementation version 2.01
[Canniere et al. 2009a]. In addition, we describe a new approach to implement Luffa
for 128-bit registers.

Organization of the paper A brief description of Luffa algorithm is presented in Sec-
tion 2. In Section 3 we explain the perfect shuffle technique. Section 4 describes the SSE
shuffle instructions and their usage. The application of the techniques in our implemen-
tation is presented in Section 5. Finally, Section 6 gives the experimental results for Intel
Core 2 Duo processor with different compilers.

2. The Luffa algorithm

Luffa operates by iterating a mixing function called round function; its final transforma-
tion consists of iterations of an output function and a round function with a fixed message
0?56, The round function has fixed length input and output and differ according to the
message digest size. It takes as input a message block and a chaining variable.

Table 1. Luffa attributes

Hash length (bits) | Message block size (bits) Chaining size (bits) Number of permutations
224 256 3 blocks of 256 (768) 3
256 256 3 blocks of 256 (768) 3
384 256 4 blocks of 256 (1024) 4
512 256 5 blocks of 256 (1280) 5

The round function is divided in two parts: the Message Injection and the non-
linear permutations. In this Section we will focus on the permutations due to its signif-
icance to our work. Technical details of Luffa can be found in [Canniere et al. 2009a,
Canniere et al. 2009b].

X Simposio Brasileiro em Seguranga da Informagao e de Sistemas Computacionais 407

message
block
\'

chaining block 0 —»|

chaining block 1 —p MI
chaining block k —»|

MI - Message Injection
P - Permutation

Figure 1. Luffa round function

2.1. Message Injection

In this phase, the message block is mixed with the chaining variable; this mixing is made
through functions represented by matrices over a ring GF((2%%)®). For example, the
message injection function for Luffa-224 and Luffa-256 is presented below:

X 322150
X;l=12 3 2 2 H1

2
X, 223 4)\

In [Canniere et al. 2009b], the authors suggest the implementation of the message
injection functions using only multiplications by x (0x02) and XOR instructions. There-
fore, the function presented above can be implemented through scheme depicted in Figure
2.

H » Xy

° ¥ Q2 Xo=2.(Hg®H, B Hy)) GHgd M
B

B

2

Figure 2. Message Injection function for Luffa-224 and Luffa-256

2.2. Permutation

The permutations have input and output size of 256 bits, and their number will vary with
the message digest size, as shown in Table 1. Each permutation consists of a Tweak
and eight iterations of the following functions, also called the step functions: SubCrumb,
MixWord and AddConstant.

408 Artigos Completos

32 bits
[AJ[BJ[CI[DJ[IJ[K][L][M]

SubCrumb | | SubCrumb

MixWord MixWord MixWord MixWord

AddCqnstant!

[A*][B*|[C [[D*J[I J[KJ[L"[[M"]
32 bits

Figure 3. Luffa step functions

2.2.1. Tweak

This step is processed only once for each permutation, and it is defined as an n-bit left
rotation at the last four 32-bit words on a 256-bit input. The value n is defined according
to the chaining block number.

2.2.2. SubCrumb

SubCrumb is a bit slice substitution function; it takes four bits in the same position from
four 32-bit words and uses as input to a S-box defined below.

S[16] = {13,14,0,1,5,10,7,6,11,3,9,12, 15,8, 2,4}

Then, the resulting bits from S are returned to the four words in the same position. This
operation is done for each of the 32 bits of the input words.

Figure 4. SubCrumb function applied to the ‘" bits of the input words

In the Luffa specification, the authors suggest to implement the SubCrumb func-
tion using logical operations [Canniere et al. 2009a], whose sequences of instructions are
shown in Table 2.

Table 2. SubCrumb instructions for Intel Core 2 Duo

MOV r4 r0 OR0rl XOR 2 r3
NOT r1 XOR 1013 AND r3 4
XOR 1 r3 XOR 1312 AND 2 0
NOT r0 XOR2rl OR 1l 13
XOR 4 rl XOR 312 AND 2 r1
XOR 1l 10

X Simposio Brasileiro em Seguranga da Informagao e de Sistemas Computacionais 409

2.2.3. MixWord

This function does a linear permutation of two 32-bit words through left rotations and
XORs. The scheme is presented in Figure 5.

A B
*D
Ne

ROTATION_LEFT 14

» N
V
ROTATION_LEFT 10
Mie
ROTATION_LEFT 1
A' B'

Figure 5. MixWord function

2.2.4. AddConstant

The Luffa constants are XORed to the chaining variable 32-bit words O and 4. Those
constants are different for each chaining block number and for each iteration of the step
functions; they consist of sixteen 32-bit words for each chaining block.

The algorithm must execute three to five permutations for each iteration, depend-
ing on the message digest size. However, the permutations are independent and can be
executed simultaneously. This attribute will be explored through the 64-bit and 128-bit
SSE registers and the instruction sets designed to work with them.

3. Perfect Shuffle

The perfect shuffle is a bit permutation that perfectly interleaves the bits of two or more
words [Warren 2002]. This operation for two words is illustrated in Figure 6.

64-bit register C
[@p @; @; @3 @4...830 @31]by by b, bs by... b3 b3y
32-bit word A 32-bit word B

<~

[@gbeaibya,b,asbsa, by ... @30 bsg @1 by |

Figure 6. A perfect shuffle of two 32-bit words inside a 64-bit register

Some operations, such as the rotations, become simpler when the perfect shuffle
operation is used. For example, to do a left rotation of the two 32-bit words A and B from
Figure 6 by n bits without perfect shuffling we would need the following instructions on
x86-64 architecture:

410 Artigos Completos

//rax holds the C register and rbx is an auxiliary register

mov rbx, rax

shl rax, $n

shr rbx, $(32-n)

and rax, MASKQO //it is necessary to apply masks to clean the
and rbx, MASK1 //bits that have crossed the words boundaries.
XOr rax, rbx

Requiring six instructions. However, with the interleaved bits of two 32-bit words,
a left rotation of n bits can be done with just one instruction:

//rax holds C register
rotl rax, $(2*n)

A similar operation, called bit permutation, is proposed in the Keccak algorithm
[Bertoni et al. 2010] for speeding up the 32-bit software implementation.

4. Streaming SIMD Extensions

The SSE instruction set was designed by Intel and first released in Pentium III processors.
To this first set more instructions were added, originating different versions: SSE2, SSE3,
SSSE3, SSE4 [Intel 2002] and the AVX [Intel 2010]. SSE provides 128-bit registers,
along with the 70 new instructions. One of the most powerful operations is the shuffle.

4.1. Shuffle instruction

The shuffle instruction requires two operands where one of them is a mask. The resulting
register gets the elements from the operands according to the mask. As an example, a
shuffle SSE C intrinsic [Intel 2002] applied to a SSE 128-bit register with four packed
32-bit words is shown in Figure 7. In this case, the result is a left rotation by 32 bits.

128-bit register J

11 10 01 00
L A [B | ¢ [D |
mask (0x93)
[10]01]00[11]
. B [¢ | b [A |

_mm_shuffle_epi32(J, 0x93)

Figure 7. Left rotation through shuffle instruction

Byte shuffle has the same characteristic as the 32-bit shuffle instructions presented
above, but the mask is now represented by another 128-bit register. The byte shuffle can
also be used as a Parallel Table Lookup (PTLU) instruction. If the programmer uses the
table as the operand and the operand as the mask, an 8-bit PTLU would be implemented.
An example is depicted in Figure 8.

X Simposio Brasileiro em Seguranga da Informagao e de Sistemas Computacionais 411

table
log|eo[eB|o1|e5|eA|ec|eeleD|e2|oE|01|00|0F|0307]

F EDCB A 9 8 7 6 5 4 3 2 0
yu i R N T e B e W M A B T
|oE|oF|oc|oD|oB|0B|09|08|07|05|06/04|03|02]/01|00|
128-bit register J

le9]o8[e1]oB]05]05]0Clo0]oD]oE|02]01]00]0F|03]07]
_mm_shuffle_epi8(table, J)

Figure 8. Byte shuffle implemented as a PTLU

5. Proposed Technique

In this section we explain how the operations presented in the previous sections were used
to implement Luffa for 64-bit and SSE platforms.

5.1. 64-bit platform

In this scenario, data parallelism is possible through the allocation of two 32-bit words
from different chaining blocks in one 64-bit register, as depicted in Figure 9. In this way,
we can process two permutations simultaneously.

chaining block 0
[A0] BO | chaining blocks 0 and 1
[coe [Dpo | [Ao [A1 |
N[Jo [Ko | [Bo [B1 |
4 o T Mo | [coe [¢]
-bit registers | DO | D1 |
MI chaining block 1 |j\> | Jo [J1 | — P@ - 1
AL | B1 | ke [K1]
o] e [11]
[91 | K| Cme [ma]
[L1 | M1 | 64-bit registers
64-bit registers

Figure 9. 64-bit parallelism

However, this way of disposing the two 32-bit word causes a huge overhead to the
rotations processing, an operation often executed in Luffa, mainly in the MixWord. This
function cost was increased by 139% in comparison to the authors’ method (representing
each 32-bit word in a distinct register). The reason was the number of instructions needed
to rotate the two words, as shown in Section 3.

Through the application of perfect shuffle we could reduce the rotations cost to a
single instruction. To keep the perfect shuffle overhead as low as possible, we apply the
perfect shuffle only once per round function in the message block, maintaining this nota-
tion throughout the algorithm. The reverse transformation is done once, before computing
the hash value. This scheme is shown in Figure 10.

412 Artigos Completos

final transformation
message message
block block

\ 4
chaining block 0
chaining block 1 MI
chaining block k

— perfect shuffle transformation

message
digest

Figure 10. Perfect Shuffle in Luffa

The overhead of this implementation consists of two operations: disposing the
registers as depicted in Figure 9, which costs about 2 cycles/byte; and the perfect shuffle
applied on the message block, which costs about 3 cycles/byte using the implementa-
tion suggested in [Warren 2002]. Therefore, the total overhead cost resulted in about 5
cycles/byte.

Luffa-384 is the most benefited version, because it has to process four chaining
block permutations, occupying completely two 64-bit registers. For this version of Luffa,
the performance was improved by 32%.

5.2. SSE platform

In this scenario, we have 128-bit registers that can allocate four 32-bit words. As a con-
sequence, four permutations can be processed in the same time. The authors’ method to
dispose the words inside the registers is depicted in Figure 11.

chaining block 0
A0 | Bo | co | Do |

chaining blocks 0 to 3

I
f|J0|KOILOIMO| W —
i e [B0 [B1 [B2 [B3]
[Coe [€1] c2 [€3]
> 4
/|J1|K1|L1|M1| 5o T BT [52 [93] b
MI chaining block 2 —p 0-3
N (A2 [B2 [€2 [D2] [Je 911 32 [337]
(32 [K2 | 12 [M2] (Ko KT | K2 [K3]
ini [Le [] 2 [13]
chaining block 3
\|A3|33|c3|03| [Mo [M1 [M2 [M3]

128-bit ist
[33 T K3 [L3 [M3 | it registers

128-bit registers

Figure 11. SSE parallelism

In MixWord function, we have four kinds of left rotations: 1, 2, 10 and 14 bits.
Due to the SSE instructions one can rotate the four 32-bit words by n bits independently,
without masks:

/10 holds the register to be rotated
r0 = mm_xor_si128(_mm slli_epi32(r0, n), -mm_srli_epi32(r0, 32—n));

X Simposio Brasileiro em Seguranga da Informagao e de Sistemas Computacionais 413

However, if we apply the perfect shuffle in the 128-bit register, interleaving the
four 32-bit words, as shown in Figure 12, the MixWord left rotations will become 4, 8, 40
and 56. Three kinds of left rotations can be implemented through byte shuffle and a proper
mask, at the cost of just one instruction. For example, an 8-bit (1 byte) left rotation:

//r0 holds the register to be rotated
mask = _mm _set_epi8(0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08, 0x07,
0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0xOF);

r0 = mm_shuffle epi8(r0, mask);

128-bit register
@0 @1...a31/be b1...b31[{Co C1...C31/do d1...d31 |

<~

[@gbo Codpa b c;d; ... a3 bs;c3ds)

Figure 12. A perfect shuffle of four 32-bit words inside a 128-bit register

In this scenario we have made two kinds of implementations: applying perfect
shuffle with the authors’ parallel method and just applying perfect shuffle. In the former,
the implementation is straightforward, we proceed such as the 64-bit scenario. However,
in the latter, we must change the way of implementing the SubCrumb function. Due
to the new bit arrangement inside the registers, we need to use PTLU through shuffle
instructions instead of the logical operations suggested by the authors.

In addition, we have used a different approach to implement the multiplication by
x computed in the message injection.

5.2.1. SubCrumb

SubCrumb receives eight 32-bit words as input, but the last four words are input in differ-
ent order from the first four words.

first 32-bit words last 32-bit words

A B C D J K L M

L] 75

SubCrumb SubCrumb

Figure 13. SubCrumb input order

Changing the order inside the register [J K LM | was performance-infeasible, so
we use two S-Box tables to deal with the different input orders. The SSE implementation
in C code is shown in Appendix A.

414 Artigos Completos

5.2.2. Message Injection

Multiplication by = (0x02) in the ring GF((23?)®) with the definition polynomial ¢(x) =
28 + 2% + 23 + 2 + 1 is frequently used in the message injection function (See Section 2).

Anelement a = A+ Bx + Ca? + Dz + Ja* + Ka® + La® + Mz™ € GF((2%)®)
can be represented using two 128-bit SSE registers. The operation a.z mod ¢(z) can be
computed as follows

a.x = Ax + Ba® + Ca3 + Da* + Ja® + Kab + La™ + M a8
since 2% = 2t + 2® + x + 1 mod ¢(x) we have
a.x = Az + Ba® + Ca® + Da* + Jo® + Ka® + La”
+M@*+ 2 +2+1) mod ¢(x)
=M+ (A+ M)z + Bx* + (C+ M)z* + (D + M)z*
+ Jz° + K2® + Lz" mod ¢(z).

In Figure 14 we depicted the multiplication by x. In terms of SSE registers, the imple-
mentation involves some shifting and XOR of the 32-bit words.

x0 x1 X2 x3 x4 x5 x6 x7
a=_ A [B [c] D[3] KIJTL]| M|
x0 x1 X2 x3 x4 X> x6 x7
a.x mod ¢(x) =M JAGM] B JcOM]|[DOM] T [T K [L]

128-bit registers

Figure 14. Multiplication .2 mod ¢(z) represented by 128-bit registers

When an element a is represented using the perfect shuffle operation, the im-
plementation of a.x is a little more complex, requiring some extra bit-level operations.
However, the total cost increase is not substantial. The C code of our implementation
using SSE intrinsics, is found in Appendix B.

We achieved good performance with Luffa-256, obtaining 15% of speed improve-
ment with the Intel Compiler (ICC). The Luffa-512 could be implemented by mixing the
two implementations; the first four blocks were implemented with perfect shuffle and
parallelism, while the last block was better suited to be executed with perfect shuffle only.

6. Experimental Results

This section presents the results of our Luffa implementations for 64-bit and SSE plat-
forms. The code was written in C, using intrinsics for SSE instructions. The programs
were compiled with ICC v.11.1, GCC v.4.3 (Ubuntu 10.04 64-bit, kernel 2.6.32-24) and
Visual Studio 2010 C++ Compiler (Windows Vista Business Edition 64-bit); they were
executed in a Intel Core 2 Duo T6400 2.00GHz machine. Compiler flags included opti-
mization level —02 for ICC, —03 for GCC and tuning with -march=core?2 switch. For
64-bit platform the flag ~-no-vec (-mno-sse for GCC) was used to prevent the com-
pilers from using SSE vector instructions. The Visual Studio C++ compiler were executed
with the flags \02, \GL and tuned with \ favor : INTEL64.

X Simposio Brasileiro em Seguranga da Informagao e de Sistemas Computacionais 415

We noted little differences between the compilers GCC, ICC and Microsoft Vi-
sual Studio. GCC required more code tunning and produced less efficient programs on
the SSE platform. On 64-bit platforms, the three compilers presented similar behaviors.
We have chosen GCC due to its popularity and also because it is frequently used for
benchmarks. ICC was selected because of its good performance using SSE instructions.
The Microsoft Visual Studio was defined by NIST for software evaluation. The Perfect
Shuffle implementation was the fastest for every version of the Luffa family.

We got running times for the following four versions of Luffa for 64 bits: Ref-
erence, the code provided by the authors in their submission package for NIST (“ANSI
C” in 64-bit mode) [Canniere et al. 2009b]; Basic, our implementation based on the op-
timization used in the authors’ code; Parallel, our implementation that uses two 32-bit
words in a 64-bit register to execute two permutations in parallel; and Parallel+PS, our
implementation based on the perfect shuffle operation combined with the execution of
two permutations in parallel.

As a matter of consistency, our new implementation performances are compared
with our Basic implementation. In addition, we give the performance of the authors’ code
executed in our machine, due to the fact that it is the reference code used by NIST for
its computational efficiency evaluations. In Tables 3 and 4, are given the preformance
results for three families of Luffa: Luffa-256, Luffa-384 and Luffa-512. Luffa-224 has
the same algorithm as Luffa-256, with a chopping before the message digest output. Bold
text represents the fastest implementation.

Table 3. 64-bit platform (cycles/byte), very long message on Intel Core 2 Duo

Implementation ICC GCC Visual Studio 2010
256 384 512 256 384 512 256 384 512
Reference
[Canniere et al. 2009b] 26.81 4146 5731 | 27.65 41.80 5849 | 2746 42.03 57.90
This work:
Basic 2431 33.09 4150 | 2443 3435 46.35 | 25.34 3637 46.03
Parallel 33.25 35.28 5225 | 3558 36.83 56.60 | 51.53 53.81 79.75
Parallel+PS 20.00 2247 35.09 | 20.39 2389 3585 | 22.62 2537 37.34

It can be noticed the overhead occurred when we work in parallel. This overhead
is considerably reduced when we apply perfect shuffle, obtaining performance improve-
ments up to 32% (Luffa-384 ICC) over the Basic implementation.

The SSE implementations are presented in the following way: Reference, the code
provided by the authors in their submission package for NIST (“C using SSE intrinsics” in
64-bit mode); Basic!, our implementation based on the optimization used in the authors’
code; PS, our implementation based on the perfect shuffle operation; and Parallel+PS, our
implementation with the perfect shuffle combined with the execution of four permutations
in parallel.

We could achieve up to 15% of performance improvement (Luffa-256 ICC), and
a new way to represent the SubCrumb functions, exploring the SSE instructions. We

The implementation of the MixWord function was modified to improve the optimizations realized by
the Visual Studio Compiler. As a consequence, the codes generated by ICC and GCC became a little slower.

416 Artigos Completos

Table 4. SSE platform (cycles/byte), very long message on Intel Core 2 Duo

Implementation ICC GCC Visual Studio 2010
256 384 512 256 384 512 256 384 512
Reference
[Canniere et al. 2009b] 1796 2093 3134 | 16.59 1796 32.03 | 17.15 19.09 28.62
This work:
Basic 13.84 14.78 19.87 | 15.28 16.18 24.81 | 20.06 21.28 27.18
PS 11.75 16.22 2256 | 1531 2090 28.15 | 15.03 18.40 23.84
Parallel+PS 12.34 1496 19.81*| 15.81 18.15 25.31*| 20.81 24.18 30.09*

(*) This implementation uses a mix of PS and Parallel+PS. See Section 5.

consider that PS implementation allowed ICC and Visual Studio to do a better code opti-
mization. GCC could not profit from this new method and generated codes with similar
performance. It can be observed that for only the Visual Studio compiler, the Reference
code outperformed our Basic implementation.

It 1s presented in Table 5 a comparison of the code size of Reference and PS
implementations. It can be observed a length reduction on 64-bit platform, due to the
rotation instructions, and a little increase on SSE platform.

Table 5. Binary sizes of 64-bit and SSE implementations compiled in ICC (Kb)

64-bit SSE
Parallel Parallel+PS Basic PS
Luffa-256 39.175 36.167 35.136 37.057
Luffa-384 35.428 36.071 35.133 37.043
Luffa-512 39.239 39.282 35.598 40.599

7. Conclusion

This paper presented a fast software implementation of Luffa for the Intel Core Duo
processor. We have shown a novel application of the perfect shuffle operation to re-
duce the computational cost of the bit left rotations used in the MixWord function. We
have also described a new way to implement Luffa using the vector SSSE3 instruction
set; in particular, our implementation of the SubCrumb function takes advantage of the
perfect shuffle operation and the shuffle instruction. The performance numbers of our
64-bit implementations show an improvement of 16 to 32% compared to the Reference
[Canniere et al. 2009b] implementation.

As further research, we expect to investigate the application of our optimization
techniques for speeding up Luffa and other hash algorithms on different platforms includ-
ing low-cost 8-bit and 16-bit CPUs.

Agradecimentos

Ao CNPq pela bolsa de produtividade em pesquisa ao segundo autor.

References

Bernstein, D. J. and Lange, T. e BACS: ECRYPT benchmarking of cryptographic systems.
http://bench.cr.yp.to. Accessed 15 July 2010.

X Simposio Brasileiro em Seguranga da Informagao e de Sistemas Computacionais 417

Bertoni, G., Daemen, J., Peeters, M., and Assche, G. V. (2010). Keccak sponge
function family main document version 2.1. http://keccak.noekeon.org/
Keccak-main-2.1.pdf.

Bertoni, G., Daemen, J., Peeters, M., Assche, G. V., Bertoni, G., Daemen, J., Peeters, M.,
and Assche, G. V. (2007). Sponge functions. Ecrypt Hash Workshop 2007. Also
available as public comment to NIST from http://www.csrc.nist.gov/pki/
HashWorkshop/Public_Comments/2007_May.html.

Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., and Jalby, W. (2005). Collisions
of SHA-0 and reduced SHA-1. In EUROCRYPT 05, volume 3494 of LNCS, pages 36—
57. Springer-Verlag.

Canniere, C. D., Sato, H., and Watanabe, D. (2009a). Hash function Luffa: Specifica-

tion 2.0.1. Submission to NIST (Round 2). http://www.sdl.hitachi.co.jp/
crypto/luffa/Luffa_v2_Specification_20091002.pdf.

Canniere, C. D., Sato, H., and Watanabe, D. (2009b). Hash function Luffa: Supporting
document. Submission to NIST (Round 2). http://www.sdl.hitachi.co.jp/
crypto/luffa/Luffa_v2_SupportingDocument_20090915.pdf.

Intel (2002). Intel architecture software developer’s manual volume 2: Instruction set
reference. http://www.intel.com.

Intel (2010). Intel Advanced Vector Extensions programming reference. http://www.
intel.com.

Jia, K. (2009). Practical pseudo-cryptanalysis of Luffa. Cryptology ePrint Archive, Report
2009/224. http://eprint.iacr.org/.

Khovratovich, D., Naya-Plasencia, M., Rechberger, C., Rock, A., and Schliffer, M.
(2010). Cryptanalysis of Luffa v2 components. In Selected Areas in Cryptography
- SAC 2010, Lecture Notes in Computer Science. Springer.

KneZevié, M. and Verbauwhede, 1. (2009). Hardware evaluation of the Luffa hash family.
In WESS ’09: Proceedings of the 4th Workshop on Embedded Systems Security, pages
1-6, New York, NY, USA. ACM.

Kobayashi, K., Ikegami, J., Matsuo, S., Sakiyama, K., and Ohta, K. (2010). Evaluation
of hardware performance for the SHA-3 candidates using SASEBO-GII. Cryptology
ePrint Archive, Report 2010/010. http://eprint.iacr.org/.

Namin, A. H. and Hasan, M. A. (2009). Hardware implementation of the
compression function for selected SHA-3 candidates. Technical Report from
CACR 2009-28. http://www.cacr.math.uwaterloo.ca/techreports/
2009/cacr2009-28.pdf.

NIST (2002). Secure Hash Standard, Federal Information Processing Standards pub-
lication, FIPS pub 180-2. Technical report, Department of Commerce. http:
//csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf.

Oikawa, K., Wang, J., Kodama, E., and Takata, T. (2010). Implementation and evaluation
of cryptographic algorithm on OpenCL. SCIS 2010, 3C4-2 (in Japanese).

Pornin, T. Software library Sphlib 2.1. http://www.saphir2.com/sphlib/. Ac-
cessed 26 July 2010.

418 Artigos Completos

Pornin, T. (2010). Comparative performance review of most of the SHA-3 second-round
candidates. http://tahoe-lafs.org/~zooko/report-speed-sha3.pdf.

Tillich, S., Feldhofer, M., Kirschbaum, M., Plos, T., Schmidt, J.-M., and Szekely, A.
(2009). High-speed hardware implementations of BLAKE, Blue Midnight Wish,
CubeHash, ECHO, Fugue, Grgstl, Hamsi, JH, Keccak, Luffa, Shabal, SHAvite-3,
SIMD, and Skein. Cryptology ePrint Archive, Report 2009/510. http://eprint.
iacr.org/.

Wang, X., Yin, Y. L., and Yu, H. (2005). Finding collisions in the full SHA-1. In CRYPTO
'05, volume 3621 of LNCS, pages 17-36. Springer-Verlag.

Warren, H. S. (2002). Hacker’s Delight. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

Appendix A SubCrumb implementation for SSE platform with perfect
shuffle

tbl00 = _mm_set_epi8(0x04,0x02,0x08,0x0F,0x0C,0x09,0x03,0x0B,0x06,0x07,0x0A,0x05,0x01,0x00,0xO0E,0x0D);
tbl01 = _mm_set_epi8(0x40,0x20,0x80,0xF0,0xC0,0x90,0x30,0xB0,0x60,0x70,0x A0,0x50,0x10,0x00,0xE0,0xDO0);

tbl10 = _mm_set_epi8(0x08,0x0C,0x04,0x0E,0x01,0x05,0x0F,0x0A,0x09,0x02,0x03,0x00,0x06,0x0D,0x07,0x0B);
tbll11 = _mm_set_epi8(0x80,0xC0,0x40,0xE0,0x10,0x50,0xF0,0xA0,0x90,0x20,0x30,0x00,0x60,0xD0,0x70,0xB0);

mask = _mm_set_epi32(0xOFOFOFOF, 0xOFOFOFOF, 0xOFOFOFOF, 0xOFOFOFOF);

void SubCrumb_128(__m128i *r0, -_m128i tbl0, __m128i tbll) {
_-m128i tmp;

tmp = _-mm_and_si128(xr0, mask);
tmp = _mm_shuffle_epi8(tbl0, tmp);
*r0 = _mm_srli_epi32(xr0, 4);

*r0 = _mm_and _si128(xr0, mask);
*r0) = _mm_shuffle_epi8(tbll, =r0);
*r) = _mm_xor_si128(xr0, tmp);

}

Appendix B Multiplication by x in GF((232)%) for SSE platform with
perfect shuffle

mask = _mm_set_epi32(0x88888888, 0x88888888, 0x88888888, 0x88888888);

static void MultOx02(__m128i *r0, __m128i xrl) {
__m128i tmp0, tmpl;

tmp0 = _-mm_and_si128(xr0, mask); /D bits
tmpl = _mm_and_si128(xr1, mask); /M bits
*r) = _mm_xor_si128(xr0, tmp0);

*rl = _mm_xor_si128(xrl, tmpl);

*r0 = _mm_slli_epi32(x10, 1);

*rl = mm_slli_epi32(xrl, 1);

tmpO = _mm_srli_epi32(tmp0, 3);
*rl = _mm_xor_si128(xrl, tmp0);
*r) = _mm_xor_si128(xr0, tmpl);

tmpl = _mm_srli_epi32(tmp1, 2);
*r) = _mm_xor_si128(xr0, tmpl);

tmpl = _mm_srli_epi32(tmpl, 1);
*rl = _mm_xor_si128(xrl, tmpl);
*r) = _mm_xor_si128(xr0, tmpl);

