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Abstract. Call-string technique, a classic technique for interprocedural analy-
sis, cannot be applied to binaries that do not follow stack conventions used by
high-level language compilers. Examples are programs that make obfuscated
procedure calls using push and return instructions, which is a technique largely
used to hide malicious code. In this paper it is shown that a technique equiva-
lent to call-string, the abstract stack graph (ASG), may be used to identify such
obfuscations. An ASG contains nodes representing statements that push some
element on the stack. An edge in the graph represents the next instruction that
pushes a value on the abstract stack along some control flow path. For a pro-
gram that manipulates stack using only call and return instructions, its ASG is
equivalent to its call-graph. Since the ASG represents stack operations by any
instruction it becomes a suitable substitute for the call-graph for interprocedu-
ral analysis of obfuscated binaries.

Resumo. A técnica ‘call-string’, técnica clássica para análise interprocedural,
não pode ser aplicada a binários que não seguem padrões de uso da pilha uti-
lizados por compiladores de linguagens de alto nível. Exemplos são programas
que ofuscam chamadas de procedimento usando uma combinação de instruções
‘push’ e ‘ret’, que é uma técnica extremamente utilizada para esconder código
malicioso. Neste artigo, uma técnica equivalente à ‘call-string’ é demonstrada,
em que um grafo abstrato da pilha pode ser utilizado para identificar estas ofus-
cações. Um grafo abstrato da pilha contem nós representando instruções que
realizam inserção na pilha. Uma aresta neste grafo representa a próxima in-
strução que realiza a inserção na pilha abstrata ao longo de um caminho do
fluxo de controle. Para um programa que manipula a pilha utilizando somente
instruções ‘call’ e ‘ret’, seu grafo abstrato da pilha é equivalente ao seu grafo
de chamadas. Desde que o grafo abstrato da pilha representa operações na
pilha por qualquer instrução, o mesmo torna-se um substituto apropriado para
o grafo de chamadas para análise interprocedural de binários ofuscados.

1. Introduction

Recently, research activity has increased in the area of binary analy-
sis [Larus and Schnarr 1995, Cifuentes and Fraboulet 1997, Cifuentes et al. 1998,
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Amme et al. 2000, Goodwin 1997, Schwarz et al. 2001, Debray et al. 1998,
Srivastava and Wall 1993, Venkitaraman and Gupta 2004, Bergeron et al. 2001,
Balakrishnan 2007, Guo et al. 2005, Reps et al. 2006, Reps and Balakrishnan 2008,
Christodorescu and Jha 2003, Lakhotia et al. 2005, Venable et al. 2005,
Kinder et al. 2009]. For Commercial Off-The Shelf (COTS) programs or other third-party
programs in which the source code is not available to the analyst, analysis for malicious
(hidden) behavior can be performed reliably only on binaries. Even when the source
code is available, analyzing the binary is the only true way to detect hidden capabilities,
as demonstrated by Thompson in his Turing Award Lecture [Thompson 1984].

Current methods for analyzing binaries are modeled on methods for analysis of
source code, where a program is decomposed into a collection of procedures, and the
analyses are classified into two types: intraprocedural and interprocedural. In intrapro-
cedural analysis, the entire program is treated as one function, leading to very significant
over-approximation. In interprocedural analysis, procedures are taken into account and
complications can arise when ensuring that calls and returns match one another, where
information may flow along a call node to a procedure and then be propagated by a return
node to another call node calling the same procedure.

Classical interprocedural analysis may be performed by procedure-inlining fol-
lowed by an intraprocedural analysis, or using the functional approach through pro-
cedure summaries, or by providing the calling-context using the call string ap-
proach [Sharir and Pnueli 1981].

Since a binary, albeit disassembled, is not syntactically rich, the identification of
procedure boundaries, parameters, procedure calls, and returns is done by making as-
sumptions. Such assumptions consist of the sequence of instructions used at a procedure
entry (prologue), at a procedure exit (epilogue), the parameter passing convention, and
the conventions to make a procedure call. When a binary violates the convention, the
analysis fails.

This paper presents a method for performing interprocedural analysis when a bi-
nary does not follow the standard compilation model of manipulating the stack. For
example, a binary may not use thecall instruction, instead it may simulate acall
by a combination of twopush and oneret instruction. Such non-standard meth-
ods of making a call are explicitly used by malicious programs to defeat automated
analysis [Boccardo et al. 2007, Christodorescu and Jha 2003, Lakhotia and Singh 2003,
Szor and Ferrie 2001]. Such obfuscations may also be used for the purpose of hiding in-
tellectual property [Linn and Debray 2003, Collberg et al. 1997, Wroblewski 2002]. The
method presented here is applicable even when a binary is not deliberately obfuscated.
This is because the standard compilation models are really not industry standard. The
standards are compiler specific, and may even vary with optimization levels of the com-
piler.

More specifically this paper demonstrates that the Abstract Stack Graph
(ASG), introduced earlier by [Lakhotia et al. 2005], can be used to adapt Sharir and
Pnueli’s [Sharir and Pnueli 1981] call-string approach to perform context-sensitive inter-
procedural analysis of programs with non-standard manipulation of stack, including ob-
fuscation of calls. It is obvious from the construction of the ASG ([Lakhotia et al. 2005])
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that the call-graph (CG) and the ASG are isomorphic for the same program when the pro-
gram uses standard compilation model. We use this to show that even when procedure
calls are obfuscated, the necessary structure of the CG is preserved in the ASG. Thus, a
call-string of Sharir and Pnueli, which is a finite length path in a call-graph, maps to what
we term as a stack-string, a finite length path in an ASG.

The benefit of using ASG over CG is immediate. Interprocedural analysis meth-
ods developed using call-string approach, which are restricted to a standard compilation
model, may be made more general simply by switching to using stack-strings. For in-
stance, Balakrishnan and Reps’s WYSINWYX system develops higher level abstractions
of binaries, such as determining the memory layout of variables [Balakrishnan 2007,
Balakrishnan and Reps 2004]. This system utilizes Sharir and Pnueli’s call-string ap-
proach for context-sensitive interprocedural analysis. The applicability of this system
can be expanded to a larger class of programs by using stack-string, instead of call-string.

The costs and issues of constructing ASG are similar to those of constructing
CG. [Lakhotia et al. 2005] have presented an algorithm that constructs a precise ASG
for programs that manipulate the stack pointer by adding/subtracting a constant and in
which the address of control transfer can be computed to be a constant. This class of pro-
grams is similar to the class of programs containing only direct calls (no indirect calls).
[Venable et al. 2005] has extended Lakhotiaet al.’s algorithm to remove this restriction on
the class of language. Their algorithm does not decompose a program into procedures, as
this decomposition is not assumed to be known. This yields a program that is resource in-
tensive and context-insensitive. Our goal is the improvement of Venableet al.’s algorithm
by using an ASG constructed by the algorithm to guide the construction of the ASG. This
issue is analogous to constructing CGs for programs with indirect calls [Lakhotia 1993],
in which a CG is used to guide the construction of CG. Research results from solving
the issue for constructing CGs [Zhang and Ryder 2007, Milanova et al. 2004] may thus
be borrowed for constructing ASGs for analogous constraints.

The remaining sections of this paper are arranged as follows. Section 2 presents
related work in the area of interprocedural analysis and binary analysis. Section 3 presents
an overview of the call-string approach and also highlights its drawbacks. Section 4 de-
scribes how to adapt call-string using ASG to overcome the drawbacks come from call-
string approach, when interprocedural analysis is made on non conventional binaries.
Section 5 contains our concluding remarks.

2. Related Works

Precise and efficient context-sensitive interprocedural data-flow analysis of high-level
languages has been an active area of research. Most of these efforts, represented by
[Sagiv et al. 1996, Cousot and Cousot 2002, Muller-Olm and Seidl 2004], are focused on
special classes of problems for high-level languages. The general strategy falls within
the two approaches proposed by Sharir and Pneuli [Sharir and Pnueli 1981], namely the
call-string approach or the procedure summaries approach.

Interprocedural analysis of binaries has also received attention for post-compile
time optimization [Srivastava and Wall 1993] and for analyzing binaries with the intent to
detect vulnerabilities not visible in the source code, such as those due to memory map-
ping of variables [Balakrishnan 2007]. Goodwin uses procedure summary approach to
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interprocedural analysis to aid link-time optimization [Goodwin 1997]. In contrast, Bal-
akrishnan [Balakrishnan 2007] uses the call-string approach. As mentioned earlier, these
methods assume a certain compiler model to identify code segments related to performing
procedure calls.

On a tangential direction there has been significant work in obfusca-
tion of programs with the intent to thwart static analysis [Linn and Debray 2003,
Collberg and Thomborson 2002]. Such obfuscations may be used by benign as well as
malicious programs for the same purpose, to make it difficult for an analyst to detect its
function or its underlying algorithm. The obfuscation techniques attack various phases in
the analysis of binary [Lakhotia and Singh 2003].

A metamorphic virus, a virus that transforms its own code as it propagates, may
use procedure call obfuscations to enable its transformation operation. The Win32.Evol
virus, for example, uses call-obfuscation just for this purpose. A side-effect of this is
that the virus defeats any interprocedural analysis that depends on a traditional compiler
model [Lakhotia and Singh 2003]. Increase in obfuscation efforts have also triggered
attempts to analyze obfuscated code. There have been efforts to use semantics based
methods for detecting malware [Dalla Preda et al. 2007, Christodorescu and Jha 2003,
Bergeron et al. 2001]. Term-rewriting has been proposed to normalize variants of a meta-
morphic malware [Walenstein et al. 2006]. None of these works address analysis of ob-
fuscated programs that do not conform to the standard compilation model.

3. Interprocedural Analysis

Analyzing a procedure is classically represented as a control flow graph containing nodes
and edges. Nodes represent computational elements while edges represent transfer of
control. Program analysis algorithms propagate information along edges of this graph.
For interprocedural analysis, each procedure call is treated as a node with edges to all the
procedures that can be called from the call site. Similarly, a return statement is represented
as a node with edges to all the nodes where control may be transferred after a procedure
terminates. We use the phrase ‘call edges’ and ‘return edges’ for edges that represent
transfer of control due to call and return statements, respectively.

Propagating information to all the successors of a node in the graph leads to
context-insensitive analysis. Information may flow along a call edge to a procedure and
then be propagated by a return edge to another call site calling that same procedure. Thus,
incorrect combinations of call and return edges creates spurious pathways in the informa-
tion flow.

3.1. Call-string approach

Sharir and Pnueli’s call-string approach for context-sensitive interprocedural analysis in-
volves tagging information with an encoded history of calls along which it is propagated.
When information flows along a call-edge, the corresponding call site is added to the
history. The history is propagated as the tagged information is used to compute other
information. Finally, at the return edge, information is propagated back to only the call
sites in the history, and in turn the last call site is removed from the history.

The context-sensitive flow of information by maintaining call strings comes at a
price. There may be an exponential, if not infinite, number of interprocedurally valid
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paths, paths in which the call and return edges are correctly paired. Thus, the amount of
information to be maintained explodes.

The information space is made manageable by capping the history being main-
tained to up to somek most recent call sites. This ensures context-sensitive flow of in-
formation between the most recentk sites, but context-insensitive flow between call and
return sites that are more thank call sites apart.

A call-graph is a labeled graph in which each node represents a procedure, each
edge represents a call, and the label on the edge represents a call site. A call string is a
sequence of call-sites(L1L2...Ln) such that call siteL1 belongs to the entry procedure,
and there exists a path in the call-graph consisting of edgesL1, L2, ..., Ln. A call string can
be saturated when the encoded history of the procedure calls exceeds the limitk imposed
during analysis. Its representation is given as(∗L1L2...Lk), where the parameterk is the
bound of the call string size and represents the set {csk | csk ∈ CSk, cs = πL1L2...Lk

and|π| ≥ 1}.

The call-string approach can be used to perform context-sensitive interprocedural
analysis for binaries, so long as the Interprocedural Control Flow Graph (ICFG) can re-
liably be constructed. When this graph cannot be constructed, such as for obfuscated or
optimized code, the approach breaks down.

Figure 1(a) contains a sample code that presents the motivation. It is a simplified
program showing only the call and return structure. Figure 1(b) shows the ICFG of this
program. The edges of the graph represent call and return edges. Context-sensitive in-
terprocedural analysis algorithms require pairing the edges such that information flowing
from one call node is not propagated to another call node [Sharir and Pnueli 1981]. Fig-
ure 1(c) shows an obfuscated version of the sample program. It is generated by replacing
everycall instruction by a sequence of twopushinstructions and aret instruction, where
the firstpushpushes the address of the instruction after thecall instruction (the return
address of the procedure call), the secondpushpushes the target address of the call, and
the ret instruction causes the execution to jump to the target address of the call. Since
the program has nocall instruction, partitioning it using classical algorithms will yield
only one procedure (consisting of the entire code). Furthermore, theret instructions will
be treated as if they were returning to the caller, thus generating an incorrect ICFG. As a
consequence, any resulting analysis based on this ICFG will also be incorrect.

The obfuscation shown in Figure 1(c) is naïve and presented to demonstrate the
concept. More obfuscations, although still trivial, may be performed by shuffling the two
push instructions among other code. More complex obfuscations may be achieved by
not usingpushand ret instructions; but instead using move, increment, and decrement
operations directly on the stack pointer to perform equivalent functions.

[Lakhotia et al. 2005] identify the following four types of obfuscation related to
call and return statements.

1. A call simulated by other means.The semantics of a ‘call addr’ instruction is
as follows: the address of the instruction after thecall instruction is pushed on
the stack and the control is transferred to the addressaddr, the target of the call.
Win32.Evol achieves the same semantics by a combination of twopushinstruc-
tions and aret instruction. There are other ways to achieve the equivalent behavior.
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(a) Sample code. (b) ICFG. (c) Obfuscated version.

Figure 1. Example motivating context-sensitive analysis of obfuscated code.

2. A call instruction may not make a call.The call instruction performs two actions -
pushing a return address on the stack and transfer of control. A program may use
the instruction primarily for control transfer, and discard the return address later,
as done by Win32.Evol. The program may also use the instruction as a means to
retrieve the address from memory of a certain point in code, as it is done by some
worms.

3. A return may be simulated by other means.A ret instruction is complementary to
a call. It pops the return address (typically pushed by acall instruction) from the
stack and transfers control to that address. The same semantics may be achieved
by using other statements. For instance, the return address may be popped into a
register and ajmp instruction may be used to transfer control to the address in that
register.

4. A return instruction may not return back to a call site.A program may utilize the
ret instructions to transfer control to another instruction, completely unrelated to
anycall instruction. For instance, theret instruction can be used to simulate acall
instruction, as outlined earlier.

4. Using ASG in place of CG
We now show the relationship between ASG and call-graph (CG), and how an ASG may
be used in place of CG for interprocedural context-sensitive analysis.

The concept of ASG from [Lakhotia et al. 2005] is developed by first introducing
the notion of abstract stack. An abstract stack is an abstraction of the real (concrete)
program’s stack. While the concrete stack keeps actual data values that are pushed and
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popped in a LIFO (Last In First Out) sequence, the abstract stack stores the addresses of
the instructions thatpushandpopvalues in a LIFO sequence.

An ASG is a concise representation of all, potentially infinite, abstract stacks at all
points in the program. A path (sequence of nodes beginning from the abstract stack’s top
toward its bottom) in the graph represents a specific abstract stack. An ASG is represented
by a labeled graph in which each node represents an instruction that manipulates the stack
pointer to effectively push some data on the stack, and the edges represent potential traces
that push values onto the stack.

Lemma 4.1 Paths in ASG preserve call-strings of CG for programs that do not manipu-
late instructions in the stack, except when using the ‘call’ and ‘ret’ instructions.

Proof The nodes of the ASG for such a program will consist of only the call sites. An
edge in the ASG from a call-siteLj to a call-siteLi exists iff there is an execution path
from Li to Lj , with no othercall instruction along the path. Assume thatLi is a statement
in procedurePi, andLj is in procedurePj . Assume also thatLj calls procedurePk. Thus,
in the CG exists an edge fromPi to Pj, with the annotationLi, and an edge fromPj to Pk

with the annotationLj . This implies that an edgeLi to Lj in ASG corresponds to an edge
Pi to Pj with annotationLi, and vice-versa. A call-string will thus correspond to a path
in the ASG.

Therefore, a call-string of Sharir and Pnueli, which is a finite length path in a
call-graph, can be mapped to what we term as a stack-string, a finite length path in an
ASG. Formally, a stack-string can be defined as a path in the ASG of program locations
(L1L2...Ln) such that program locationL1 is the first element pushed on the stack, and
there exists a path in the ASG consisting of program locationsL1L2...Ln such thatLn is
the top of the stack. Analogous to Sharir and Pnueli’s saturated call-string we define a
saturated stack-string as a string whose encoded history of the program locations exceeds
some limitk. It is represented as(∗L1L2...Lk), where the parameterk is the bound of the
stack-string size and represents the set {ssk | ssk ∈ SSk, ss = πL1L2...Lk and|π| ≥ 1}.

Figure 2 shows the ASG and CG for the code of Figure 1(a). The correspondence
between ASG and CG is obvious. The nodes in the ASG represent the edges (call-sites)
in the call graph. An edge in the ASG represents the next instruction that pushes a value
on the abstract stack along some control flow path. The corresponding called functions
are represented side by side of the call-site.

Now consider programs that use other instructions to manipulate stack, but do not
attempt to obfuscatecall andret.

Corollary 4.2 For any program that does not obfuscate ‘call’ and ‘ret’ instructions, an
ASG path containing at least one ‘call’ instruction maps to a unique path in the CG. Also,
a call-string in CG of this program corresponds to one or more ASG paths (that can be
mapped to the CG).

Proof Follows from the previous lemma. If on an ASG path, instructions other than the
call instructions are removed it will correspond to a call string. The second part follows
by contradiction.

The above discussion implies the ASG can be used as a substitute for programs
that do not obfuscatecall andret instructions. When performing interprocedural analysis,
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(a) Abstract stack graph. (b) Call-graph.

Figure 2. Abstract stack graph and call-graph for code of Figure 1(a).

values may be tagged withk-length paths in the ASG, instead of the CG. Of course, the
tags would have to take into account the non-call instructions to preserve equivalence in
using call-strings over CG.

The real value, though, comes in the application of ASG for analysis of obfuscated
programs. Since CGs cannot be constructed for obfuscated programs (without deeper
analysis), it is rather difficult to theoretically offer an argument that ASGs are a suitable
replacement for CGs of obfuscated programs. Hence, we will make the case of use of
ASG by example.

Figure 3 shows the ASG for the obfuscated code of Figure 1(c). It is evident that
all paths in the ASG of the non-obfuscated version (Figure 2(a)) can be mapped to paths
in ASG of the obfuscated version. The obfuscated version has extra nodes (represented
by the suffix a), representingpushinstructions used topushthe address of the procedure
being called onto stack.

The similarity of the graphs of Figures 3 and 2(a) suggests that paths in the
ASG may be treated as a replacement for call-string, even for obfuscated programs.
Instead of computing, propagating, and updating call-string over CG, an interproce-
dural analysis algorithm may construct, propagate, and update call-strings over ASG.
When an ASG can be computed before the analysis, all possible calling contexts for
a statement can be determined from the top of stacks reaching that point and the
ASG [Lakhotia et al. 2005, Venable et al. 2005]. When the computation of ASG may
require performing other analysis, as is likely in obfuscated programs, the two analysis
may be performed in lock-step.

There is just one more optimization step that may be valuable when using an
ASG as a replacement for CG. Even for non-obfuscated code an ASG may have more
nodes than just call sites. Thus, ak length path in the ASG may have fewer call sites
than its correspondingk length call-string. Since the computational resources needed
may increase non-linearly withk, simply increasingk may not be an option. Instead one
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Figure 3. Abstract stack graph for the obfuscated code of Figure 1(c)

may reduce the number of nodes in the ASG by creating ‘blocks’ of nodes, as is done in
control flow graphs (CFG). A block is a sequence of nodes in an ASG with a single entry
and a single exit. Using ASG made up of blocks of instructions, instead of individual
instructions, will enable propagation of the calling contexts for largerk.

A prototype has been constructed that uses the previous ideas to per-
form context-sensitive analysis on obfuscated programs. This prototype has been
implemented over Venable’s context-insensitive algorithm for detecting obfuscated
calls [Venable et al. 2005]. The prototype is written in Java utilizing the Eclipse frame-
work. Eclipse is an extensible development environment with a rich set of tools to aid in
development. Programs developed on Eclipse are written as plugins to the Eclipse plat-
form and can take advantage of the robust Eclipse framework to decrease development
time.

In the following examples, we explain the context-sensitive analysis process of
obfuscated code using stack-strings. We will only consider instructions that involve stack
operations. Figure 4 contains a sample assembly obfuscated program with two contexts.
The program consists of two functions:Main andMax. The functionMax takes as input
two numbers and returns as output the larger of the two numbers. The functionMain
pushes the two arguments onto the stack, but instead of callingMaxdirectly, it pushes the
return address onto the stack and jumps toMax. The functionMax is called twice by the
functionMain. This obfuscation technique can effectively hide the boundary between the
two procedures and results in a less accurate ICFG. Analysis methods relying on the flow
graph may, in effect, produce less accurate results as well.

After careful inspection, one may observe that in order to perform context-
sensitive analysis we have to match the return node atL16 to the nodesL5 or L9 (return
sites). Using stack-string we can correctly perform these matches. The context-sensitive
analysis process of obfuscated code using stack-strings follows.
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Figure 4. Obfuscated call using push/jmp instructions.

Upon entry, the stack-string is⊥, i.e., signaling that the context is currently empty.
InstructionL1 pushes a value onto the stack, consequently changing the stack-string to
⊥ − L1. InstructionsL2 andL3 perform in a manner similar toL1. At the pointL3

the stack-string context is⊥ − L1 − L2 − L3. InstructionL4 transfers the control to the
destination of the jump and the stack-string context is left unchanged.

The next instruction evaluated is the target of the jump, orL11 in this case. In-
structionsL11 to L15 have no effect on the stack-string context. Theret 8 instruction at
L16 implicitly pops the return address off the top of the stack (L5) based on the current
stack-string context⊥ − L1 − L2 − L3, and continues execution at that address. It also
changes the stack-string context⊥ − L1 − L2 − L3 to ⊥. Evaluation continues atL5,
which pushes a value onto the stack, consequently changing the stack-string to⊥ − L5.
InstructionsL6 andL7 perform in a manner similar toL5. At this point the current stack-
string context is⊥ − L5 − L6 − L7. Similarly to the instruction ofL4, L8 transfers the
control to the functionMax and the context is left unchanged. At this point, the analysis
contains two stack-contexts:⊥ − L5 − L6 − L7 and⊥ − L1 − L2 − L3. This provides
context-sensitivity in the analysis, in which pieces of code are analyzed separately for
different data flow values at different stack-string contexts, consequently, leading to more
precise results. At instructionL16, theret 8 implicitly pops the return address off the top
of the stack (L9) on the stack-string context⊥−L5 −L6 −L7 and continues execution at
that address. It also changes the stack-string context⊥− L5 − L6 − L7 to ⊥. Evaluation
continues atL9, which proceeds to the end of the program.

Figure 5 shows the same code, but using thepush/retobfuscation. InstructionsL3

(L8) andL4 (L9) push the return address and the target address onto the stack.L5 (L10)
consists of aret instruction that causes execution to jump to the functionMax. Analysis
methods that rely on the correctness of a ICFG will surely fail when analyzing such code.

During the interpretation, at instructionL5, the stack-string context is⊥ − L1 −
L2 − L3 − L4. The ret instruction implicitly pops the return address off the top of the
stack (L13) on the current stack-string context⊥ − L1 − L2 − L3 − L4, alters the stack-
string context to⊥ − L1 − L2 − L3 and continues execution at that address. As in the
previous example, we have two contexts for this program. At instructionL13, the analysis
contains two stack-contexts:⊥− L1 − L2 − L3 coming from the return instruction atL5
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Figure 5. Obfuscated call using push/ret instructions.

and⊥ − L6 − L7 − L8 from the return instruction atL10. Once again, this allows pieces
of code be analyzed separately from different contexts, providing context-sensitivity and
thus more accurate results. Theret 8 instruction atL18 returns to instructionL6 (address
of the top of the stack in the stack-context is⊥ − L1 − L2 − L3), and toL11 (address of
the top of the stack in the stack-context is⊥− L6 − L7 − L8).

In Figure 6, the functionMax is invoked in the standard way, however it does not
return in the typical manner. Instead of callingret, the function pops the return address
from the stack and jumps to that address (linesL14 − L16).

At instructionL14, the stack-string contexts are⊥− L1 − L2 − L3 and⊥− L4 −
L5 − L6. Thepop instruction atL14 pops the value from the top of the stack accordingly
with the correct context,i.e., L4 for the context⊥− L1 − L2 − L3 andL7 for the context
⊥ − L4 − L5 − L6. At instructionL15, the stack-string contexts are⊥ − L1 − L2 and
⊥ − L4 − L5 due to thepop instruction. Theadd instruction atL15 adds eight toesp,
changing the stack-string contexts to⊥. L16 is an indirect jump to the address inebx, and
thus analysis continues atL4 or L7 depending of the current context.

Figure 6. Obfuscated return using pop/jmp instructions.
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5. Concluding remarks

Context-sensitive interprocedural analysis when guided by a call graph is limited only to
those binaries in which the call-graph can be constructed and in which stack manipulation
is performed using standard compilation model(s). This precludes applying these analysis
on obfuscated, optimized, or hand-written code. As a result, malware forensic tools based
on such analysis can easily be thwarted.

We demonstrate how an abstract stack graph may be used as a replacement for
the call-graph to perform interprocedural analysis. Since an ASG can be constructed
for programs that obfuscate calls or use stack manipulation operations in non-standard
ways, this adaptation makes it feasible to extend interprocedural analysis to a larger class
of binaries. The adaptation is simple enough to directly impact interprocedural analysis
algorithms based on call graph [Balakrishnan 2007, Guo et al. 2005].

In order to make ASG fully functional some work still have to be done, such as
to extend them to identify situations where the stack pointer may be manipulated indi-
rectly by passing data through memory. Besides that, it is easy to conclude that ASG is a
powerfull technique to perform interprocedural analysis.
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