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Abstract. This paper1 describes a linear analysis of reduced-round versions of
the CAST-128 and CAST-256 block ciphers. CAST-256 was a former candidate
to the AES Development Process. Both ciphers use the same nonlinear compo-
nents (fixed 8×32-bit S-boxes, key-dependent bit-rotation, modular addition and
subtraction on 32-bit words) and a Feistel Network structure. We exploit the fact
that the S-boxes are non-surjective mappings to construct iterative linear distin-
guishers for both ciphers. As far as we are aware of, this paper describes the
first known-plaintext analysis of reduced-round variants of these ciphers.
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1. Introduction
This paper describes a linear analysis of reduced-round versions of the CAST-128 and
CAST-256 block ciphers. There are many different versions of CAST ciphers reported
in the literature [2, 4, 5, 15, 23, 26]. Consequently, attacks such as non-surjective, dif-
ferential and the related-key techniques have already been applied to these other CAST
variants. Nonetheless, no known-plaintext attacks have been applied to CAST-128 and
CAST-256, in particular. Even though our attacks do not threaten any full-round cipher
version, they help justify the selected number of rounds, and may serve as a first step
towards more powerful attacks.

CAST-128 is block cipher designed by C. Adams and S. Tavares in 1996 [4].
CAST-128 operates on 64-bit text blocks under a key of variable size, 40 bits up to 128
bits, in increments of 8 bits. This cipher has a Feistel Network structure (like the DES
[24]) with 12 or 16 rounds [2]. In real applications, CAST-128 is part of the suite of
symmetric ciphers used by GnuPG [13, 31], under the name CAST-5.

The Feistel structure of CAST-128 operates on a 64-bit plaintext block M0 =
(L0, R0), where both L0 and R0 are 32-bit strings.

• key schedule: compute 16 pairs of subkeys (Kmi, Kri) from the user key K, with
one pair of subkeys per round. A 32-bit key-dependent value Kmi is used as a
”masking” key and a 5-bit quantity Kri is used as a ”rotation” key of the i-th
round.

• for 1 ≤ i ≤ 16 compute Li and Ri as follows: Li = Ri−1 and Ri = Li−1 ⊕
fi(Ri−1, Kmi, Kri), where fi is the round function (fi may be of Type 1, Type 2
or Type 3, depending on i), described later on.
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• the ciphertext is (R16, L16).

From [2], there are three different round functions in CAST-128. These round
functions, denoted fi, operate on the data input represented by I = Ia|Ib|Ic|Id where Ia

until Id are the most significant byte through the least significant byte of I , respectively.
The symbol | denotes bitstring concatenation. The symbols ”+” and ”-” denote addition
and subtraction modulo 232, ⊕ is bitwise XOR, and ≪ denotes the circular left-shift
operation.

Type 1: I = ((Kmi + X) ≪ Kri)

f1 = ((S1[Ia] ⊕ S2[Ib]) − S3[Ic]) + S4[Id]

Type 2: I = ((Kmi ⊕ X) ≪ Kri)

f2 = ((S1[Ia] − S2[Ib]) + S3[Ic]) ⊕ S4[Id]

Type 3: I = ((Kmi − X) ≪ Kri)

f3 = ((S1[Ia] + S2[Ib]) ⊕ S3[Ic]) − S4[Id]

Rounds 1, 4, 7, 10, 13 and 16 use f1 (Type 1 function), while rounds 2, 5, 8, 11
and 14 use f2 (Type 2 function), and finally, rounds 3, 6, 9, 12 and 15 use f3 (Type 3
function).

CAST-128 uses eight (fixed) substitution boxes: S1, S2, S3, S4 for the round func-
tion, and S5, S6, S7, S8 for the key schedule. Although these S-boxes require a total
of eight KBytes of storage, only four KBytes are required during actual encryption and
decryption since subkey generation is typically done prior to any data input.

Since our attacks do not depend on the key schedule, we omit its description. We
refer to [2, 4] for further details.

2. CAST-256

The CAST-256 block cipher is a former candidate to the AES Development Process [1, 3].
Even though CAST-256 was not among the finalists to the AES Process, its analysis may
help understand the design rationale of other ciphers from the CAST family.

CAST-256 operates on 128-bit text blocks under keys of 128, 192 or 256 bits.
CAST-256 has a Generalized Feistel Network structure [28] and iterates 48 rounds for all
key sizes.

Let a plaintext block be denoted P = (A,B,C,D), where each of A, B, C and D
is a 32-bit string. Let a quad-round be defined as the following four rounds, in order:

C = C ⊕ f1(D,Kr0i
, Km0i

);

B = B ⊕ f2(C,Kr1i
, Km1i

);

A = A ⊕ f3(B,Kr2i
, Km2i

);

D = D ⊕ f1(A,Kr3i
, Km3i

);

where Krji
and Kmji

are generated by the key schedule algorithm of CAST-256
(further details of the key schedule algorithm can be found in [3]). The inverse quad-round
is defined as
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D = D ⊕ f1(A,Kr3i
, Km3i

);

A = A ⊕ f3(B,Kr2i
, Km2i

);

B = B ⊕ f2(C,Kr1i
, Km1i

);

C = C ⊕ f1(D,Kr0i
, Km0i

);

Notice that since exclusive-or is an involution, the fi mappings need not be invert-
ible for the decryption operation.

The encryption of a 128-bit plaintext block in CAST-256 consists of six quad-
rounds followed by six inverse quad-rounds (or 48 single rounds).

Previous analysis of ciphers of the CAST type include [14, 15, 23] but their
analyses do not apply to either CAST-128 nor CAST-256. In [30], Sung et al. de-
scribed a related-cipher attack on 4-round CAST-128 requiring 217 chosen plaintexts and
adaptively-chosen ciphertexts (CPACC), and 240 encryptions.

In [26], Rijmen et al. describe non-surjective attacks on 6- and 8-round ver-
sions of (old) CAST designs denoted CAST32, in which the round function did not mix
exclusive-or with modular addition. We have found that the round functions f1, f2 and
f3 above are non-surjective, but the fraction of output values of each one of them are 1 −
1580054165/232 ≈ 0.63211; 1 − 1580108708/232 ≈ 0.6321 and 1 − 1580028865/232 ≈
0.63212, respectively. All of these values are close to 1 − 1/e, which is the expected
number of output values for a random function [26]. So, non-surjective attacks do not
seem effective against CAST-256 and CAST-128.

In [5], Adams et al. provided some reasoning to justify the security of the full
CAST-256 against conventional differential and linear analysis. But, they do not discuss
the security of reduced-round variants of CAST-256.

In [6], Biham claimed an attack on 20-round CAST-256 by the impossible differ-
ential technique, but no details were provided (see Sect. 6.).

3. Linear Cryptanalysis
The linear cryptanalysis (LC) technique was developed by Matsui and applied success-
fully against Feistel ciphers such as the DES [20] and FEAL [22]. This technique is one of
the most general known attacks on block ciphers, and has become a benchmark technique
for evaluating the security of any new modern cipher (AES [12], LOKI97 [9, 17], RC6
[27]). LC is a known-plaintext (KP) attack, but it has already been used in other settings
such as chosen-plaintext [18] and ciphertext-only [19], which makes it quite attractive in
a real-life setting.

The fundamental tool of a linear attack is a linear distinguisher which consists of
a linear equation involving bits of plaintext, ciphertext and key, holding with non-uniform
probability. This discrepancy between the probability of a linear relation of a cipher and
that of a random behavior is called bias. Usually, linear relations are derived for each
individual component in a cipher. Further, the linear relations are combined, leading to
linear approximations of larger structures, until reaching multiple rounds. Intuitively,
linear approximations are performed preferably on the nonlinear components, such as S-
boxes. Let an S-box S : ZZ

n
2
→ ZZ

m
2

, and two bit strings, ΓX ∈ ZZ
n
2

and ΓY ∈ ZZ
m
2

, known
as bit masks. The linear relation involving the input bits of S, designated by ΓX , and
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its output bits, designated by ΓY , is X · ΓX ⊕ S[X] · ΓY = 0. The probability that this
relation holds is

PΓX,ΓY =
#{X ∈ ZZ

n
2
|X · ΓX = S[X] · ΓY }

#{X ∈ ZZ
n
2
}

. (1)

If ΓX = ΓY = 0, then the bitmask is called trivial; otherwise, it is called non-trivial.
The bias of this linear relation is |PΓX,ΓY − 1/2|. An exhaustive list containing all input
and output bit masks of an S-box S is called the Linear Approximation Table (LAT) of S
[20]. The LAT allows one to identify the most promising (non-trivial) linear relations for
S, namely the ones with highest bias.

The bias of the combination of two linear approximations is derived using Mat-
sui’s Piling-Up Lemma [20]. We will employ this lemma even though it is not always
strictly correct [8, 29]. The Piling-Up Lemma assumes all round subkeys are independent,
in order to calculate the combined bias of independent linear relations. The round sub-
keys in CAST, though, are not independent but generated via a key schedule algorithm.
Nonetheless, we assume the approximation is reasonably good, as already assumed in
previous linear attacks on the DES cipher [20].

But, one cannot combine an arbitrary number of linear relations. An obvious
restriction is to limit the attack effort to less than that of an exhaustive key search. The
key size for CAST-128 is at least 40 bits, and for CAST-256 at least 128 bits. Moreover,
for both CAST-128 and CAST-256, we have looked for attacks that did not require more
text than the full codebook (264 and 2128 text blocks, respectively). Otherwise, an attacker
could collect the codebook and use it decrypt (and forge) cryptograms without knowing
the key (and while the key is not changed).

4. Linear Analysis of CAST-128
The four S-boxes of CAST-128 have dimension 8 × 32 bits, and thus, are non-surjective.
Consequently, we looked for linear relations for these S-boxes with the form 0

S−box
→ Γ,

where 0 stands for a zero 8-bit mask, and Γ stands for a nonzero (non-trivial) 32-bit
mask. This notation means that the exclusive-or of no input bits to the S-boxes causes
an exclusive-or of output bits selected by Γ (with a nonzero bias). It means that the
exclusive-or of only output bits is zero. Naturally, this linear relation only makes sense if
the associated probability is away from 1/2.

Due to the modular addition and subtraction operations in the round function of
CAST-128, we have looked for bitmasks Γ with nonzero bits preferably in the least sig-
nificant bit positions, to avoid decreasing the bias due to carry and borrow bits in the
modular addition and subtraction operations. The best choice is Γ = 1 (Fig. 1).

Thus, the linear relations we chose for the round functions F have either the form
00000000x

F
→ 00000000x or 00000000x

F
→ 00000001x, where the subscripts x

indicate hexadecimal value. The rationale is to maximize the bias, and to minimize the
number of active S-boxes in building linear relations across the round function (a strategy
already employed against the DES cipher [21]). Nonetheless, due to the construction
of the F function, either all four S-boxes are active or none is. An active S-box is
effectively used in a linear approximation, in the sense that either the input or the output
mask is nonzero (non-trivial).
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Figure 1. Bit masks showing the propagation of a linear relation across the round function F of
CAST-128.
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Figure 2. Dual two-round iterative linear relations for CAST-128.

The bias of the linear approximation 0 → 1 for each S-box was computed sepa-
rately, and is 2−5 for all four S-boxes.

Notice that since we approximate only output bits from the S-boxes, our linear
relations are not affected by the subkeys Kmi and Kri at the input to the round functions.

We have focused efforts on searching for iterative linear relations, which means
linear distinguishers that can be concatenated with themselves. We arrive at the 2-round
iterative linear relations in Fig. 2(a) and Fig. 2(b), with one active F function and four
active S-boxes for every two rounds. Notice that each linear distinguisher in (2) holds for
any of the round function types f1, f2 and f3 (independent of the combination of +, −
and ⊕), since Fig. 2 exploits only the least significant bit in the linear approximations.
Thus, changing the order of round functions or permuting the order of these arithmetical
operations do not matter.

These linear distinguishers applied to 2t-round CAST-128 allow us to distinguish
these reduced-round ciphers from a random permutation (with the same block size).
For instance, Fig. 2(a) applied to 2t rounds leads to the linear relation (L0 ⊕ L2t) ·
00000001x = 0 and Fig. 2(b) leads to (R0 ⊕ R2t) · 00000001x = 0.

Since the block size of CAST-128 is only 64 bits, and the computed bias (using
the Piling-Up lemma) of Fig. 2(a) is 23 · (2−5)4 = 2−17, a distinguish-from-random attack
on two rounds requires 237 KP (using Matsui’s estimate 8 ∗ (bias)−2 in [20]). For three
rounds, one could use Fig. 2(b), at the same cost as for two rounds.

A key-recovery attack using one of the 2-round distinguishers in Fig. 2 requires
guessing 37 subkey bits at once: five bits for the rotation subkey (Kmi) and 32 bits for the
addition subkey (Kri). For example, an attack on 3-round CAST-128, using two rounds of
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Figure 3. One quad-round iterative linear relation for CAST-256.

Fig. 2(a) would recover Km3 and Kr3 at the cost of 237 · 237 = 274 one-round decryptions,
or 274/3 ≈ 272.5 3-round computations.

5. Linear Analysis of CAST-256

The same S-boxes of CAST-128 are also used in CAST-256. Likewise, the same three
kinds of round functions of CAST-128 are applied in groups of four rounds called quad-
rounds. Thus, we use in CAST-256 the same bit masks used in our analysis of CAST-128.
It is interesting to observe that [5] already predicted linear approximations with nonzero
output masks only. But, the authors of [5] did not discuss this issue further.

The first linear relations we have for CAST-256 are 4-round iterative (Fig.3) which
stands for one quad-round. Only one (out of four) round is active, and all four fi functions
of this round are active. Notice that relations in Fig. 3 can be applied to the inverse quad-
rounds as well (and with the same bias).

We computed the bias for the linear approximation with masks (00x, 00000001x),
for each of the four S-boxes S1 until S4. The bias is exactly 2−5 for all of them.

We could have constructed alternative iterative linear relations, with higher-order
bits set such as 00000002x or 00000003x. For the bit mask 00000002x all S-boxes
present bias 2−5, and for 00000003x the bias are 2−6, 2−5, 2−6 and 2−7 for S-boxes
S1 to S4, respectively. These masks lead to a decrease of 2−3 in the combined bias due
carry and borrow bits in the modular addition and subtraction operations in the round
functions. For instance, for one full round, using mask 00000002x, the bias becomes
24 ·2−5 ·2−5 ·2−5 ·2−5 ·2−3 = 2−19. The factor 2−3 is due to the approximation of modular
subtraction and addition with mask 00000002x. Thus, we got no significant advantage
in using these alternative bit masks instead of 00000001x.

The linear relation in Fig. 3 can be used to distinguish a number of quad-rounds
of CAST-256 from a random permutation (with the same block size). Similar to Sect. 4.,
one can derive a linear relation such as (D ⊕ H) · 00000001x = 0, where (A,B,C,D)
denotes a plaintext block, and (E,F,G,H) denotes a ciphertext block after a number of
quad-rounds.
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Figure 4. One quad-round iterative linear relations for CAST-256.

5.1. Key-Recovery Attacks

Similar to Sect. 4., a key recovery attack using Fig. 3 or similar distinguishers in Fig.4
can recover 37 subkey bits from a round (function) at the end of the distinguisher. For
instance, an attack on 5-round CAST-256 using a 4-round distinguisher would recover
Km5 and Kr5, using 237 KP, and would take 237 · 237 one-round decryptions, or 274/5 =
271.7 5-round computations.

Similarly, attacking 9-round CAST-256 using an 8-round distinguisher would re-
quire 269 KP, and 269 · 237 one-round decryptions or 2106/9 ≈ 2103 9-round computations.

6. Differential Cryptanalysis: negative results

The four S-boxes S1, S2, S3 and S4 are injective, but non-surjective mappings. We have
further computed the values of the round functions f1, f2 and f3 for all 32-bit input values
without the Kmi and Kri subkeys (because these key-dependent operations only permute
the input values).

More precisely, only 2714938431 ≈ 231.34 values, out of the 232, show up at the
output to f1, namely, 1580028865 ≈ 230.56 are missing. Analogously, 1580108708 ≈
230.56, out of the 232 output values from f2, are missing. Finally, 1580054165 ≈ 230.56,
out of the 232 output values from f3, are missing i.e. only 2714913131 ≈ 231.34 values can
appear.

Thus, whatever the value of Kmj and Krj , none of fi, 1 ≤ i ≤ 3, is surjective.
On one hand, this property protects CAST-128 and CAST-256 from conventional multi-
set/square attacks [11] and impossible differential (ID) attacks [16] since a nonzero input
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xor-difference can cause a zero output difference (although with a small probability). This
last fact may explain the absence of ID distinguishers claimed by Biham in [6]. This same
fact, namely the existence of some xor-difference ∆ 6= 0 that can cause a zero output xor-
difference with nonzero probability for all three round functions, means the existence of
iterative differential characteristics which have a dual form to that of linear relation (2),
namely, with nonzero input xor-difference but zero output xor-difference.

Nonetheless, unlike the linear relation (2), the differential characteristic is very
dependent on Kmj and Krj , since they control the actual input differences to fi. In order
to bypass these subkeys and minimize the number of active S-boxes, suppose we could
find an input difference of the form ∆ = 2t, for some 0 ≤ t ≤ 31 (the lowest possi-
ble Hamming weight). In particular, for i = 31 the characteristic would have the form
80000000x

fi

→ 00000000x for the round function (fi). The difference 80000000x
was chosen to bypass the modular addition with a subkey Kmj prior to the S-boxes. The
reason for a 1-bit difference is the key-dependent rotation with a subkey Krj . Using a
1-bit difference means that whatever the rotation amount Krj only one S-box would be
active, because only one S-box would have a nonzero input difference. But, since the S-
boxes are injective, it is not possible to affect only one S-box and expect a nonzero output
difference. At least two S-boxes have to be active per fi function.

We have further analyzed differences of the form 2i ⊕ 2j , for i 6= j, 0 ≤ i, j ≤ 31,
but we could only find a few pairs of texts with an xor-difference that affects only two S-
boxes (independent of Kmj and Krj), and generates a zero output difference for all three
fi. These differences have a probability between 77 · 2−31 ≈ 2−24.73 and 2 · 2−31 = 2−30.

Nonetheless, it would still require particular values for Kmj and Krj in order to
preserve the difference. Further, the successive round functions alternate between f1, f2

and f3, and the nonzero input differences with high probability are distinct.

Thus, our preliminary differential analysis indicate that iterative differential dis-
tinguishers, using input differences with Hamming weight one, two, three or four do not
lead to a better attack than linear cryptanalysis.

7. Conclusion
This paper described linear distinguishers and attacks for CAST-128 and CAST-256. As
far as we are aware of, this paper reports the first known-plaintext attack on reduced-round
versions of these ciphers.

Table 1 summarizes the known-plaintext attacks on CAST-128 and CAST-256.
For CAST-128 we assume the key is larger than 73 bits. For CAST-256 we assume the
key sizes specified for the AES Process (128, 192 or 256 bits).

Our linear analyses exploited only the output bits of each 8 × 32-bit S-box, and
consequently, only the output of the round functions. Our linear masks exploit only ap-
proximations involving the least significant bit of the output of S-boxes and round func-
tions. Therefore, these approximations hold for all of the different round functions, fi,
1 ≤ i ≤ 3, effectively bypassing the mixing of modular addition, exclusive-or and modu-
lar subtraction.

Since our linear masks exploit the least significant bit of some data value, we
expect no significant linear hull effect [25].
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Table 1. Summary of linear attacks on CAST-128 and CAST-256.

Cipher # Rounds Data (KP)/ Time Comments
Memory

CAST-128 2 237 237 Fig.(2)(a); distinguishing attack
3 237 237 Fig.(2)(b); distinguishing attack
3 237 272.5 Fig.(2)(a); 37 key bits recovered

CAST-256 4 237 237 distinguishing attack
5 237 271.7 37 key bits recovered
8 269 269 distinguishing attack
9 269 2103 37 key bits recovered
12 2101 2101 distinguishing attack

We leave as open problems the potential combination of linear and differential
characteristics, and other attack techniques to improve the results in this paper.

We have analysed the Algebraic Normal Form (ANF) of each output bit of each
8 × 32-bit S-box of CAST-128 and CAST-256, and we have verified that each such
Boolean function has nonlinear order exactly 4 (see Appendix 8.).

Further, according to Courtois-Pieprzyk [10] and Biryukov-DeCanniere [7], one
might expect

(

40

0

)

+
(

40

1

)

+
(

40

2

)

− 28 = 780+40+1− 256 = 565 quadratic equations for
8 × 32-bit S-boxes. We have computed all of these quadratic equations, and confirmed
these predictions (see example in Appendix8.). It is left as an open problem how to exploit
these quadratic equations in an effective (algebraic) attack on CAST-128 and CAST-256.
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8. appendix
Let X = (x7, x6, x5, x4, x3, x2, x1, x0) denote the input, and Y = (y31, . . . , y0) denote the
output of such S-boxes. This section provides the Algebraic Normal Form (ANF) of y31

of S-box S1 of CAST-128 and CAST-256 as an example of the output Boolean functions
of the 8 × 32-bit S-boxes.

y31 = x0+x0x1+x0x1x2+x3+x0x3+x0x1x3+x2x3+x1x2x3+x1x4+x0x1x4+
x0x3x4 + x2x5 + x1x2x5 + x1x3x5 + x0x4x5 + x6 + x0x1x6 + x2x6 + x1x2x6 + x3x6 +
x1x3x6+x0x1x3x6+x2x3x6+x4x6+x0x4x6+x1x4x6+x0x1x4x6+x2x4x6+x0x2x4x6+
x0x3x4x6 +x2x3x4x6 +x2x5x6 +x0x2x5x6 +x1x2x5x6 +x3x5x6 +x2x3x5x6 +x4x5x6 +
x1x4x5x6 + x0x7 + x1x7 + x0x1x7 + x0x1x2x7 + x3x7 + x0x3x7 + x1x2x3x7 + x4x7 +
x0x4x7 + x0x2x4x7 + x2x3x4x7 + x0x5x7 + x1x5x7 + x0x1x5x7 + x1x2x5x7 + x3x5x7 +
x4x5x7 +x1x4x5x7 +x3x4x5x7 +x1x6x7 +x0x1x6x7 +x0x2x6x7 +x3x6x7 +x1x3x6x7 +
x2x3x6x7+x4x6x7+x0x4x6x7+x3x4x6x7+x0x5x6x7+x1x5x6x7+x3x5x6x7+x4x5x6x7.

An example of quadratic equation for S-box S1 is

1 + x1 + x2 + x4 + y0 + y1 + y2 + y3 + y5 + y6 + y7 + y8 + y10 + y11 + y13 + y14 +
y15 + y16 + y18 + y20 + y21 + y22 + y23 + y28 + y29 + y31 + x0x2 + x0x5 + x0x6 + x0y2 +
x0y6 + x0y7 + x0y8 + x0y9 + x0y10 + x0y11 + x0y12 + x0y13 + x0y15 + x0y17 + x0y18 +
x0y19 +x0y21 +x0y22 +x0y25 +x0y30 +x0y31 +x1y0 +x1y4 +x1y5 +x1y6 +x1y7 +x1y9 +
x1y11 +x1y12 +x1y16 +x1y17 +x1y20 +x1y22 +x1y24 +x1y26 +x1y27 +x1y28 +x1y30 +
x1y31 +x2x3 +x2y0 +x2y4 +x2y6 +x2y7 +x2y8 +x2y11 +x2y12 +x2y14 +x2y15 +x2y18 +
x2y20 +x2y25 +x2y26 +x2y29 +x2y31 +x3x4 +x3x6 +x3y1 +x3y3 +x3y4 +x3y5 +x3y6 +
x3y7 + x3y9 + x3y10 + x3y11 + x3y12 + x3y14 + x3y15 + x3y21 + x3y24 + x3y25 + x3y27 +
x3y30 +x4x7 +x4y1 +x4y2 +x4y3 +x4y6 +x4y8 +x4y9 +x4y11 +x4y14 +x4y18 +x4y21 +
x4y22 +x4y23 +x4y25 +x4y27 +x4y30 +x5x7 +x5y1 +x5y13 +x5y15 +x5y21 +x5y28 = 0.
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