
Anonymous one-time broadcast using non-interactive dining
cryptographer nets with applications to voting

Jeroen van de Graaf

1Laboratório de Computação Cientı́fica – Universidade Federal de Minas Gerais (UFMG)
Av. Antônio Carlos 6627 – 31270-901 – Belo Horizonte (MG) – Brasil

jvdg@lcc.ufmg.br

Abstract. All voting protocols proposed so far, with the exception of afew, have
the property that the privacy of the ballot is only computational. In this paper
we outline a new and conceptually simple approach allowing us to construct
a protocol in which the privacy of the ballot is unconditional. Our basic idea
is to modify the protocol of Fujioka, Okamoto and Ohta[10], which uses blind
signatures so that the voter can obtain a valid ballot. However, instead of using
a MIX net, we use a new broadcast protocol for anonymously publishing the
vote, a non-interactive variation of the Dining Cryptographer Net.

1. Introduction

1.1. Motivation

Voting protocols are often divided in three categories: based on MIX networks, based
on blind signatures, and based on homomorphic encryption. See for instance [11] for a
some what simplified but nevertheless interesting overview. A major flaw of most voting
protocols proposed so far, is that the privacy of the ballot is only computational:

MIX For protocols based on MIX nets[2] this is so since, besides the usual assumptions
about the authorities not revealing the permutations, their security is also based
on RSA or ElGamal: if one knows the private key used for mixing, one can trace
back a vote through the cascade of mixes and find out who submitted the vote.

blind signatures The blind signature[4] allows a voter to obtain a signed ballot from a
voting authority, who will cross out the voter from the list of voters. After un-
blinding his vote, the voter needs to publish his ballot anonymously. All protocols
published so far use a MIX net for this purpose, which reducesit to the previous
case.

homomorphic encryption A homomorphic encryption scheme (see for instance [5])
uses a clever way to encrypt each individual vote, such that by manipulating (in
most cases: multiplying) the encryptions the votes can be tallied, so that the prob-
lem reduces to decrypting collectively some specific value.It is obvious that some-
one with infinite computational power could decrypt all the ballots and therefore
discover who voted for whom.

This flaw is really worrisome for the following reason: with storage becoming cheaper and
cheaper every year, wemustassume that all data that has been made public through an

election protocol, will never be erased, i.e. that some copyof it will be stored forever. We
also must assume that at some point in the future it will be possible to break the underlying
computational assumption, and then it will become public who voted for whom. Though
one can argue that this information might have become irrelevant after many decades,
this point is more important than it seems. For instance, people might like to know who
the President of the United States voted for when he was young. He might have had a
flirt with the communist party, who knows. Even today historians will find it interesting
to know Churchill’s voting behavior in 1900, when he was about 25 years old. A more
dramatic example (due to an anonymous referee) is a scenarioin which a dictator gets
elected democratically after decades of trying. Once in power, he systematically goes
after the voters who voted against him in earlier elections,or after their descendents.

Real world voting systems always have had the property that the vote (the information
containing the voter’s choice) is irretrievably destroyed. Newly proposed protocols should
have this property too.Computational privacy is not enough for voting, since one day
or another the computational assumption will be broken. Of course, in less important
elections it might be acceptable that the privacy of the voteis only computational. But
it should be pointed out that estimating for how long the privacy of the ballot will be
preserved is notoriously difficult, as various examples exist of computational assumptions
being broken much earlier than expected.

1.2. This paper

In this paper we describe a conceptually simple voting protocol which has unconditional
voter privacy. The main ingredient is that we propose a non-interactive (i.e. one round)
version of the well-known Dining Cryptographers protocol[3], which, as far as we know,
has not been published before, and is of separate interest. Though the basic idea is simple,
some technical subtleties need to be resolved since, unlikethe original protocol, there is
only one round. In the next section we will give a high level sketch of the proposed voting
protocol, whereas Section 3 contains a detailed description of the non-interactive variation
of the Dining Cryptographers protocol.

1.3. Relation to other work

We are not aware of any paper that proposes the non-interactive use of the Dining Cryp-
tographers protocols. Bos [1] presents a voting protocol based on DC nets, but this pro-
tocol makes the (in our opinion unrealistic) assumption that all voters are simultaneously
online.

The protocol of Cramer et al. [6] uses techniques whose mathematics is similar to the math
of DC nets. This protocol is exclusively devoted to voting and uses only one slot (as is the
case with [1]), while we propose the use of many slots to alloweach participant to broad-
cast his vote. As a consequence, their protocol has a much smaller message size than ours
but is also less general. It only deals with Yes/No votes, butif the number of candidates or
the way preferences are expressed changes, the protocol hasto re-engineered. This is not
the case for our protocol; we basically propose an anonymousbroadcast channel which is
insensitive to the exact lay-out of the message sent throughit.

Another interesting paper is [9], which argues for “everlasting privacy” in voting, like
we do. It uses a non-interactive bit commitment scheme as theunderlying assumption, a
primitive that we also need, but in most other aspects the techniques used in their paper
are completely different.

2. A high-level sketch of the new voting protocol

The basic idea for this new voting protocol consists of two main ingredients, which are
presented separately. Note that the first ingredient is not new.

2.1. The first ingredient: Blind signatures

The idea is that by using a Chaum-like blind signature, the voter gets a valid ballot from
the voting authority. In particular there is the Fujioka, Okamoto e Ohta protocol[10] that
could be used here. This protocol allows the voter Alice to contact a Ballot Issuing Au-
thority in order to submit a blinded ballot. The Authority responds by (blindly) signing
Alice’s ballot and sending it back to her. Because the blinding process is perfect (since all
blinding factors are equiprobable, all possible votes are), the authority obtains no infor-
mation whatsoever about Alice’s vote.

It is important that the Authority marks Alice’s name on the list of eligible voters, thus
avoiding that Alice tries to vote twice. Equally important is that both parties sign their
messages and maintain records of them, in order to resolve later disputes.

When receiving the message from the Authority, Alice unblinds it and verifies that it
contains a valid, signed ballot.

2.2. Mixnets and their disadvantages

The next step is that Alice must cast her ballot through some anonymous broadcast mech-
anism. One possible way to accomplish this is by using MIX-nets. This allows the voter
to submit his ballot in encrypted form, usually with severallayers of encryption. All the
ballots related to one election could be placed on a web site,for instance. Now Mixing
Authorities are involved in decrypting the batch of ballotslayer by layer, while shuffling
the intermediate results. If the voter followed the protocol correctly, the last decryption
will show the vote, signed by the Ballot Issuing Authority, in the clear. Later some au-
dit protocol is run to verify (with high probability) that none of the mixing authorities
cheated.

When submitting their vote, there is no reason for voters to withhold their identity. On
the contrary, one can imagine that the identity of the voter is placed next to his encrypted
vote, since the privacy is supposedly guaranteed by the mix net. However, when (and
not: if) at some moment in the future the private (RSA or ElGamal) keys are broken, the
permutation used by each mix can be reconstructed and all thelinks can be established
between the encrypted vote as submitted by the user, and the fully decrypted result of the
mix. So the privacy of the ballot will be violated.

2.3. The second ingredient: Non-interactive Dining Cryptographers

We therefore introduce a second and new ingredient of our protocol: instead of us-
ing a mix-net, the voter uses a non-interactive variation ofthe Dining Cryptographers
protocol[3] to post her vote. This protocol can be informally described as follows:

Three cryptographers are having dinner. When they have finished their meal, the waiter
informs them that their meal has been paid already. The cryptographers decide they want
to find out whether the meal was paid by an outsider (the NSA), or by one of the three
present. However, if the payer is one of them, the identity ofthis payer should remain
secret, i.e. the payer should be anonymous. In order to accomplish this, they decide to
run the following protocol:

1. Each one flips a coin, and shares the result with his neighbouron the right.
2. Each one looks at his own coin and the one of his left neighbor.The two coins

can have the same face up (heads-heads, tails-tails) or different faces up (heads-
tails, tails-heads). Each person announces publicly “SAME” or “DIFFERENT”,
but with the additional rule that the person who paid reverses his statement (he
“lies”).

3. When an odd number of persons announces “DIFFERENT” they know one of
them has paid; when an even number of persons announces “DIFFERENT” they
know an outsider paid.

It is not difficult to see how this protocol extends to many bits and many parties. See [3]
and [1], Chapter 2. However, the model used in these papers iscompletely based on a
network setting: people connected to each other through a LAN (Ethernet), broadcasting
messages to each other. An implication of this model is that if problems occur, new
transmission rounds are available to resolve those problems.

Here we propose a non-interactive variation of the DC net, anidea which, as far as we
know, has not been explored in the literature. The idea is that each voter submitsonce
a bit sequence, properly identified, which gets published onthe Bulletin Board. This
sequence might be long but should still be reasonable for transmission, in the order of ten
of megabytes, say. The non-interactive variation works very much like the original DC
proposal:

1. in a preliminary phase, each pair of parties exchanges random bits.
2. based on these random bits and on the party’s input, it broadcasts a message.
3. all message are combined in such a way that all the random bits cancel, and only

the inputs of all parties remain.

It is well known that DC-nets provide unconditional anonymity; this follows from the fact
that the probability distribution on the random bits is uniform. See [3] for details.

In the non-interactive case, to avoid collisions, most bitsof the sequence published will
contain theXORs of the bits exchanged with other parties, but no message bits. Only at
a very short interval a message, containg the vote with its signature, will be added to the
XORs as well. Very short signatures that allow blinding can be obtained using elliptic
curves, resulting in signature lengths of 160-200 bits.

Note that the signature scheme only need to be resistant to attacks from the voters for the
duration of the election to avoid any insertion of false votes. If the signature scheme gets
broken after the election, the result is not compromised; indeed, revealing the private key
after the election has completed (more precisely: when no more ballots can be issued by
the Ballot Issuing Authority) would not affect security.

After each participant has submitted (published) his sequence, the bitwiseXOR for each
bit position over all the sequences is computed, yielding anonymously the net messages
published by the participants, i.e. the votes. A tallying authority calculates the final result,
which can be verified by any scrutineer who cares to.

2.4. Some subtle issues

Ideally this would be the end of it, but there are three problems to be resolved:

Collisions A collision happens when more than one message is published in the same
slot. The collision probability must be kept very low since it implies that at least
two (random) votes get lost. However, there exist various straightforward tech-
niques to keep the collision probability low. They basically consist of increasing
the length of the bit sequence, or of sending the same messagevarious times,
through a different channel or through the same one. See Section 4.1 for discus-
sion.

Disrupters A disrupter is a party that deviates from the protocol by broadcasting a
garbage string (arbitrary random bits), instead of a stringbased on shared ran-
dom bits and the party’s input. his is truly an annoying problem because in the
traditional (interactive) DC setting catching disruptersis already problematic: all
participants have to engage in an on-line protocol to drive out the disrupter(s).
In our case we cannot catch disrupters afterwards, so we mustcatch them when
they submit. This can be done by having the parties commit on their random bits
exchanged. To preserve privacy we will need a Bit CommitmentScheme that
is computationally binding and unconditionally hiding. Then we will use a cut-
and-choose protocol in which the sender shows that he is following the protocol.
In particular he needs to show that for the whole sequence, except the part that
contains the message (vote), the bits are truly the result ofXORs of bits already
committed to. Whether he follows the protocol for the bits dedicated to the mes-
sage we could check but don’t have to; he could sent in garbage, but at least he
won’t disrupt the channel.

No-showers A no-shower is a party that went through the initial phase of the protocol,
has shared its random bits with other parties, but did not submit any sequence.
His identity will become known, and the best solution is to have people who have
interacted with him recalculate their submissions. Alternatively, in a setting of a
small set of authorities who exchange random bits with each voter, the authorities
can simply disregard the random bits of the no-shower(s).

Note that in a situation where there is a relatively large amount of trust between the par-
ticipants, disrupters and no-showers are of no concern.

3. A detailed description of the Non-interactive AnonymousBroadcast
protocol

In this section we describe a Non-Interactive version of theDining Cryptographers pro-
tocol. Though the motivation for this protocol is voting, wedescribe the protocol in a
general setting, i.e. we do not use voting-specific terminology. But we do assume the
same message size for all participants.

Some parts of the protocols are of a challenge-response nature, in which the responses
are always either random bits or random permutations (which, of course, can be obtained
from random bits). In the protocol description we will writethat a party commits, and then
receives a challenge from a trusted random source. However,it will be understood that
this is implemented using the Feige-Shamir heuristic: after having fixed the commitments,
the party applies a hash function to them and uses the resultsfor the challenge. This
technique generally believed to be secure, and reduces a three-step protocol to one with
only one step.

3.1. Notation

We suppose there areP participantsPi, with i ∈ {1 . . . P}. The purpose of each partici-
pantPi is to publish a messagevi anonymously.

To this end a DC channel is available of total sizeN bits, which is divided intoS slots,
each of sizeL. We define the net input of participantPi to the DC channel asMi =
Mi[1] . . .Mi[S]; here eachMi[s] denotes a slot.

Now Pi may occupy at most 1 out of thoseS slots to publishvi, so there is ones ∈
{1 . . . S}. The otherS − 1 slots must remain empty, i.e. fors′ 6= s we have thatMi[s

′] =
0L, a string consisting ofL zeroes.

As in the original DC protocol, any pair of participantsPi,Pj can choose to engage in an
exchange of random bits. If this is the case they share an edgein the so-called privacy
graph and we call them neighbors. The privacy properties of this protocol are identical to
those described in the original paper[3].

We introduce the following notation:

• M [s] is thesth slot ofM
• M [[u]] is theuth bit of M
• We denote the random string of sizeN = SL shared betweenPi andPj with Rij.

If no sharing takes place, we defineRij = 0N .
• The overall random string used byPi for encryption isRi =

⊕

Rij, wherej
ranges over the neighbors ofPi.

• Pi’s overall contribution to the channel is calledCi, and we have therefore that
Ci = Mi ⊕ Ri.

• We denote bit commitments with a bar:x is a commitment to the bitx.
• In the next section we will use bit commitments with a specialproperty, which can

be implemented as a vector of pairs of ordinary bit commitments. They will be
denote by−→x .

3.2. Bit commitments with XOR

An essential property of our protocol is that each participant must commit to his contri-
bution, and show that it has the proper format, though without showing the value.

Since we want unconditional privacy, we obviously need a bitcommitment scheme that
is unconditionally hiding and computationally binding. There are various options here,
but for concreteness we use a bit (string) commitment schemebased on hash functions, as
presented in [8].

Actually, ordinary bit commitments are not good enough for our protocol, since we will
need a way to prove that linear relations between bit commitments hold without opening
the values. For instance, we would like to show thatx1 ⊕ x2 ⊕ . . . xk = 0. That is,
we want to show that the equalityx1 ⊕ x2 ⊕ . . . xk = 0 holds without revealing any
other information about thexi. We will show a general construction to accomplish this
property forany kind of bit commitment, at the expense of a factor2K, whereK is a
security parameter.

The solution presented here, attributed to Bennett and Rudich, is described Section 2.2
of [7], where it is called ”Bit Commitment with XOR”, abbreviated BCX. The idea is to
represent each BCX bit commitment as a vector of pairs of simple bit commitments, such
that each pairXORs to the committed bit value. This allows for challenges on one half of
the bit commitment, without revealing its value. We describe the scheme here informally,
using a simple example. A more formal description is given in[7], which also shows that
the scheme generalizes easily to proving linear relations between many bit commitments.

Using this approach, a bit commitment tox = 1 has the following representation:
−→x =〈(0, 1),(1, 0),(0, 1),(0, 1),(1, 0)〉, whereK = 5, an artificially low value. SupposeA
is committed tox = 1 and also toy = 0 as follows:−→y =〈(1, 1),(1, 1),(0, 0),(1, 1),(0, 0)〉,
and that she needs to prove that the two bit commitments are different, i.e. thatx⊕ y = 1.

1. The first step of the protocol is thatA tells for each pair of−→x and−→y whether
the left component is equal or different (the two components(columns) are la-
beled0 and1, also namedleft andright; the rows are labeled from 1 toK). Or,
equivalently, she opens the valueszk = xk0 ⊕ yk0 for k = 1, . . . , K.

2. In the second step she receivesK challenge bitsb1, . . . , bK from the trusted ran-
dom source.

3. Thirdly, for eachbk = 0, she is required to open the left component,xk0 andyk0,
of thekth pair of−→x and−→y , andB must check that they are equal. Ifb1 = 1 then
A opensxk1 andyk1 andB must check that they are different (their mod 2 sum
adds to 1). This must be executed for each challenge bitb1, . . . , bK .

It is easy to see thatA does not reveal the actual values of the bit commitments through
this protocol since only either the left or the right component of each pair is revealed,
while the value is defined as theXOR of both. As far as the binding property is concerned:
obviously, for each row in which she tries to cheat,A gets caught with a probability1/2.

It is important to observe that in the protocol of (in)equality between two BCXs, the
unopened halves are not lost (useless), implying that the BCX can and must be preserved.

For instance, after a proof that−→x = −→y , the remaining halves constitute a new BCX
−→
t

with the property thatt = x = y. Note that the view of the protocol showing inequality
should be stored and will be needed when opening, since ifzk = 1, this has the effect
of flipping the semantics of the corresponding bit commitment for the kth pair: t =
xkb′

k
⊕ ykb′

k
⊕ zk, whereb′k = 1 ⊕ bk, the bitwise complement ofbk.

3.3. Preliminary phase

As in the original DC protocol, during the preliminary phaseeach pair of neighbors creates
a random bit stringRij of sizeN . But unlike the original protocol, we require that both
Pi andPj commit individually to each bit ofRij using the BCX bit commitment scheme
explained above. To avoid any type of collusion between them, it is essential that they
show to the world (the other participants, and any other observer) that they are committed
to the same value.

We do this as follows: we first considerPi andPj as one party, writtenPij , who will
jointly create a set ofN BCXs, but of size2K instead ofK. (If they cannot agree on
how to do this jointly, we assume that at least one party aborts and that this particular
pair of parties will not contribute.) They will prove the well-formedness to the other
participants by showing that all pairs of the same BCX−→x encode the same values, i.e.
thatxk0 ⊕ xk1 = x for k ∈ {1, . . . , 2K}. This is done as follows:

1. Pij creates an additional BCX−→y of the same value, i.e.x = y.
2. The trusted source of randomness supplies2K challenge bitsbi, as well as a ran-

dom permutationσ on{1, . . . , 2K}.

3. Pij proves equality between−→x and−→y , applying the permutationσ to shuffle the
pairs, i.e. by showing that eitherxk0 = yσ(k)0 or xk1 = yσ(k)1, depending on the
valuebk.

If Pij tries to cheat on a subsetA, this remains undetected only if the permutationσ maps
A onto itself. Ifa = #A > 1 this happens with probability

(

2K
a

)

/(2K)!. By repeating the
protocol this probability can be reduced to any desired level of security.

After this protocol has completed,Pi andPj split their double BCX of size2K in two
BCXs of sizeK by dividing the pairs evenly between them, for instancePi stays with the
first K pairs1, . . . , K andPj stays with the secondK pairsK + 1, . . . , 2K.

3.4. Publication phase

During the second phase of the protocol each participant decides which messagevi he
wants to publish, for instance a signed vote. This part consists of the following substeps:

1. Pi commits to his inputMi, which containsvi, and proves that it has the proper
format;

2. Pi commits to the contributionCi and proves that it has the proper format.

3.4.1. Commitment and proof ofMi

1. Let vi be the message thatPi wants to publish.Pi now createsMi by selecting
a slots ∈ {1, . . . , S} randomly. He setsMi[s] := vi, whereas fors′ 6= s he sets
Mi[s

′] := 0L, a slot with only zeroes.
2. Pi commits toMi[[1..N]], the individual bits ofMi.
3. Through a proof,Pi must show thatMi has the proper format, i.e. that at least

S − 1 slots are zero. To this end we use a straightforward subprotocol:
i Pi chooses a random permutationσ of sizeS, and uses it to permute the slots

in Mi, thus creatingM ′

i . In other words,M ′

i [s] := Mi[σ(s)]. Then he commits
to the individual bits ofM ′

i .
ii A random challenge bitc is generated by the trusted source.

iii If c = 0 thenPi reveals the permutationσ and proves equality between
−→
M ′

i

and
−→
Mi under the permutationσ. If c = 1 thenPi opens the bit commitments

of M ′

i for those slots that contain zeroes only.

This protocol must be executedK times in parallel, whereK is a security parameter.
Cheating succeeds only ifPi can predict the challenge bits in each round, which happens
with probability2−K .

3.4.2. Commitment and proof ofCi

Pi now adds the random bitsRi exchanged between his neighbors to the inputMi in
order to compute his contributionCi as follows:Ci[[n]] = Mi[[n]] ⊕ Ri[[n]] = Mi[[n]] ⊕
Rij1[[n]] ⊕ · · · ⊕ Riju

[[n]], wherej1, . . . , ju are the indexes ofPi’s neighbors, and where
n ranges from 1 toN . ThenPi publishesCi and signs.

Observe that during the preliminary phasePi committed himself toRij, and in the first
step of the publication phase he committed toMi, in both cases using the specialBCX

commitment scheme presented in section 3.2. So using the protocol presented in that
section,Pi can show (in the ”committed world”) that the assignment ofCi is correct, i.e.

that indeedCi[[n]] =
−−−−→
Mi[[n]] ⊕

−−−−−→
Rij1 [[n]] ⊕ · · · ⊕

−−−−−→
Riju

[[n]] for eachn.

4. Technical considerations

4.1. Calculating the Collision Probability

Considered separately from the context of voting, the NI DC channel deserves a perfor-
mance analysis. Since participants choose slots randomly,there always exists a chance
that a collision occurs, i.e. two participants occupy the same slot, and consequently the
corresponding slot contents (thev’s) are lost. IfS = 365 andP = 23, we are back to the
birthday paradox: with probability approximately 1/2 we have a collision, so the message
of two participants is lost. To reduce this probability we can increaseS. A well-known
formula that approximates the collision probability for this case is1 − e−P (P−1)/2S .

Another solution is to runQ DC nets in parallel. The probability that in all of them a
collision occurs is(1/2)Q, and that thesameparticipant is involved in all of them equals

(2
P
)Q (where we assume that the collisions in the DC nets are independent, and where

we ignore collisions which involve more than two participants (which have a very low
probability)).

But we can do even better. Instead of usingQ = 10 (say) parallel nets, it is certainly
more effective to use the same total number of slots, i.e.S ′ = 3650 but let the participant
choose 10 slots randomly, instead of only one. Since the firstversion (Q parallel nets) is
a special case of the second (S ′ = QS), the collision probability of the second is bounded
by the first. Preliminary computers simulations suggest it is orders of magnitudes lower.

Approximating this probability accurately is not a simple exercise and a more careful
analysis is appropriate. For instance, it would be interesting to see how the parameters
interrelate and be able to answer questions such as: Given a total ofS slots andP partici-
pants, how many messageT should each participant send in order to maximize successful
completion of the protocol? Or reversely, givenP participants, how should we chooseS
andT if we want the failure probability to be really low, say10−20? These questions are
still subject of ongoing research.

4.2. Optimizing the BCX

The current version of the protocol is rather crude, the mainpoint of this paper showing
the possibility of unconditional privacy in voting in a conceptually simple way. Very
rough estimates indicate that the current version of this protocol will result in files in
the order of giga- or terabytes, forP = 500 (the average size of a precinct in Brazil).
However, it seems probable that by fine-tuning of the protocol and a careful analysis of
the probabilities, substantial gains can be obtained.

For instance, a major cause is the expansion caused by the BCX, as every bit of the
channel needs at least one BCX, which is very inefficient representation. In fact, the bit
commitment scheme used by Bos in his voting protocol ([1], Chapter 3) have exactly the
desired properties resulting in substantial gains. Another possibility for savings is that
the current protocol is in some sense too robust, and that by trading off the probability of
catching someone cheating on an individual vote some efficiency can be gained.

4.3. Ballot marking

A major flaw of the current protocol is that there are various ways in which a voter can
mark his ballot, which leaves the protocol very vulnerable to vote buying and selling.

After reading an earlier version, Madhu Sudan observed thata voter can mark his ballot
by choosing a particular (set of) slot(s). A newer version tried to address this issue by
taking away this freedom to choose the slot(s). However, TalMoran observed that this
does not solve the problem, since the voter is the only one whoknows beforehand which
slot(s) he is entitle to. In addition, an anonymous referee observed that (a hash of) the
signature on the ballot from the Fujioka-Okamoto-Ohta scheme can also be used for such
purposes.

These are serious concerns, and at the moment their does not seem a simple way to address
them.

5. Conclusions

This paper shows a conceptually simple protocol for voting with unconditional privacy.
The paper does so using a non-interactive version of the Dining-Cryptographers protocol,
which is not as efficient (in terms of message size) as other voting protocols that offer
unconditional privacy, but is of interest in itself since itmay have other applications. A
serious drawback of the protocol is that it permits ballot marking, that is, the voter can
show which vote in the final output was her’s.

The resulting protocol is certainly feasible for voting in small groups (up to 50 partici-
pants, say) where the chance of someone disrupting or not participating is low. Otherwise
it might be wiser to define a small number of authorities, whose main role is to reduce
the interactions necessary to eliminate no-showers. As in the mix networks, these au-
thorities protect the privacy of the voters, but unlike the mix case, there is no additional
computational assumption.

The author strongly believes that unconditional privacy for voting is a desirable property.
The fact that at some unknown point in the future voter privacy is completely violated
is not acceptable, and the public may actually reject electronic voting systems once this
point becomes clear. Therefore, the search for practical voting protocols with this property
is an important challenge. However, it seems that to get unconditional privacy each voter
must exchange a sequence of random bits (dispose of a privatechannel) with other voters
or with authorities. For large elections this might be a verydifficult to accomplish.

Acknowledgements

I would like to thank Berry Schoenmakers, who gave importantfeedback on an earlier
(and erroneous) version of this paper. Ron Rivest and Madhu Sudan generously shared
information on the issue of approximating the collision probability in the protocol. I also
would like to thank those anonymous referees whose contributions have helped to improve
the quality of the paper.

References

[1] Bos, J.N.E.Practical Privacy, PhD Thesis, http://citeseer.ist.psu.edu/bos92practical.html.

[2] Chaum, D.Untraceable electronic mail, return addresses, and digital pseudonyms.Com-
munications of the ACM, 24(2):84-88, 1981.

[3] Chaum, D.The Dining Cryptographers Problem: Unconditional Sender and Recipient
Untraceability.Journal of Cryptology, 1, 1988, pages 65–75.

[4] Chaum, D.Untraceable electronic mail, return addresses, and digital pseudonyms.Com-
munications of the ACM, 24(2):84-88, 1981.

[5] Cramer, R., Gennaro, R., Schoenmakers, B.,A Secure and Op-
timally Efficient Multi-Authority Election Scheme. CRYPTO 97
http://citeseer.ist.psu.edu/cramer97secure.html.

[6] Cramer, R., Franklin, M., Schoenmakers, B., Yung, M.Multi-Authority
Secret Ballot Elections with Linear Work. EUROCRYPTO 96
http://citeseer.ist.psu.edu/cramer96multiauthority.html.

[7] Crépeau, C., van de Graaf, J. and Tapp, A.Committed Oblivious Transfer and Private
Multy-Party ComputationCRYPTO’95, Springer, LNCS, vol. 963, 1995, pp.110-123.

[8] Jakobsson, M., Juels, A. and Rivest, R.Making Mix Nets Robust For Electronic Voting By
Randomized Partial Checking(published where?).

[9] Moran, T. and Naor, M.Receipt-Free Universally-Verifiable Voting With Everlasting Pri-
vacy, CRYPTO 2006.

[10] Fujioka, Okamoto, OhtaA Practical Secret Voting Scheme For Large Scale
Elections. (AUSCRYPT ’92). See http://theory.lcs.mit.edu/∼rivest/voting/papers/-
FujiokaOkamotoOhtaAPracticalSecretVotingScheme-ForLargeScaleElections.pdf

[11] Traoré, J., Arditti, D. e Girault, M.Voting protocols — state of the art and e-poll project.
http://www.francetelecom.com/sirius/rd/fr/-memento/mento20/chap2.html.php.

