
RAWVec – A Method for Watermarking Vector Maps ∗

Douglas Aurélio Marques1, Karina M. Magalhães2, Ricardo R. Dahab2

1 CGU - Controladoria-Geral da União
SAS Q1 BL. A - 70070-905 - Brası́lia - DF - Brazil

2Instituto de Computação – Universidade Estadual de Campinas (UNICAMP)
Caixa Postal 6176 – 13084-971 – Campinas – SP – Brazil

douglas.marques@cgu.gov.br, karina.magalhaes@students.ic.unicamp.br,

rdahab@ic.unicamp.br

Abstract. The information used in geographic information system (GIS) and
in spatial data is represented by digital vector maps, which are expensive to
produce, but easy to copy. Watermarks have been used for a long time in other
digital media for both authentication and tracing. This work presents a new
method for embedding watermarks, in the form of a bitmap image, into digital
vector maps. The detection of the watermark is accomplished by extracting the
embedded image and comparing it with the original one.

1. Introduction
Vector maps represent images using geometric structures like points and circles. They
are used in geographic databases for a large variety of ends and services. It is impor-
tant to counter illegal copying and distribution of these digital contents because they are
expensive to produce, but easy to copy. Watermarks have been used for a long time in
other digital media (like audio, video and bitmap images) for authentication or tracing. In
recent years, however, watermarking vector maps has received more attention, especially
due to the popularity of geographic information systems (GIS) and spatial data on the
Web.

Usually the methods for watermarking vector maps use the map’s objects’ coordi-
nates as the basic parameters to embed the watermark, which may result in changes on the
vector map. As seen in [Sion 2002], attacks that change the watermark significantly also
may change the vector map. This is a big issue in commercial vector maps that usually
have a tolerable maximum error, a measure of its trustworthiness.

Most methods, like [Ohbuchi et al. 2003b], [Ohbuchi et al. 2003a] and
[Voigt et al. 2004], only cover similarity transformations attacks, ignoring more
complex attacks like data changes and projection systems. Moreover, changes on the
objects’ topology when the watermark is embedded are also ignored. The embedding
algorithm must maintain objects’ properties like area, size, shape and connectivity.
In [Shao et al. 2005] and [Ohbuchi and Masuda 2000], the objects’ shape is preserved
and in [Praun et al. 1999], the objects’ connectivity is preserved. Other methods for
watermarking vector maps can be found in [Gou and Wu 2004], [Voigt and Busch 2002],
[Voigt et al. 2004] and [Sonnet et al. 2003].

∗Second author supported by FAPESP scholarship number 2006/05219-7

In this paper, we provide a new method for watermarking vector maps (Raster
Watermarks in Vector Maps, or simply RAWVec), as proposed in [Marques 2005]. The
main feature of our method is that the watermark is represented by a raster image, rather
than a binary sequence. Therefore, the watermark verification can be performed by human
eye (besides a traditional probabilistic algorithm), which increases the effectiveness of our
method.

This paper is organized as follows: in Section 2 we describe the embedding and
detection algorithms; in Section 3 we analyze the method and discuss its robustness
against several attacks. Finally, in Section 4, we present the conclusions and discuss
future work.

2. Algorithm Description
In this Section we describe the RAWVec (Raster Watermarks in Vector Maps) method.
The watermark used in this method is a raster image: a bitmap image represented by a
bi-dimensional matrix whose elements store the color information or intensity for each
pixel.

The embedding algorithm marks the vector map with the raster image by shifting
the geometric structures’ coordinates. The detection algorithm uses the original vector
map to extract a raster image that should be compared with the original one. Both algo-
rithms use, besides the raster image R and the original vector map M , a constant C and
two functions w() and v() described below.

The function w : An×n → An×n modifies a matrix A by shifting its elements as
follows: Let A be a square matrix of order n; then B = w(A), with bij = auv, where
u = n− i+ 1 and v = n− j + 1.

Note thatw(w(A)) = A. Figure 1 shows an example of the application of function
w.

A =


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 => w(A) =


16 15 14 13
12 11 10 9
8 7 6 5
4 3 2 1


Figure 1. An example of function w(A)

Function v calculates the point representation P from a vector map M . Vector
maps are formed by geometric structures and based on these structures’ points it is pos-
sible to create the point representation P = v(M). Thus, each structure is decomposed
into points which are stored according to their type:

• Punctual objects: Structures described by points, like symbols and text. The coor-
dinates of each point are stored.
• Linear objects: Structures described by points’ sequences, like lines and polygons.

The coordinates of each point in the sequence are stored.
• Parameterized objects: Structures described by parameters, like circles and el-

lipses. The object can be segmented in a few points, and these are stored; or the
main points can be stored. If the object is a circle, for example, we can store a few
points of the circle, or only the center.

A point must not be stored more than once, even if it belongs to more than one
object. Furthermore, each coordinate must have a reference to its original objects, making
it possible to rebuild all the structures. An example of the application of function v is
shown in Figure 2.

Figure 2. An example of the application of the function v

2.1. Watermark Embedding

Algorithm 1 below embeds a raster image R in the vector map M producing the marked
vector map M ′. It used a constant C, a positive real constant that controls the maximum
shifting of a pixel, so it will stand below the maximum tolerable error of the vector map.
We discuss more about this on Section 3.1. The four basic steps of this algorithm, as seen
in Figure 3, are:

Algorithm 1 Watermark Embedding
INPUT: raster image R, vector map M and constant C.
OUTPUT: marked vector map M ′.
1. Calculate the point representation P ← v(M) of vector map M .
2. Obtain matrices Ax and Ay from point representation v(M).
3. Resize raster image R, creating the new raster image E.
4. Calculate Bx ← CE + Ax; By ← Cw(E) + Ay, for C a real constant.
5. Build the marked vector map using matrices Bx and By.

Steps 1 and 2 build two square matrices – Ax for the x coordinate and Ay for the
y coordinates – of point representation P = v(M). Let t be the number of points stored
in P , n be the order of the matrices and pi = (xi, yi) be the points stored in P . Then

Figure 3. Watermark Embedding Algorithm Diagram

n =
√
t, (1)

(Ax)ij = xn(i−1)+j and (Ay)ij = yn(i−1)+j (2)

After obtaining matrices Ax and Ay from vector map M , we must resize the raster
image R, creating a new raster image E that has n× n pixels, as illustrated in Figure 4.

Figure 4. Resizing a raster image R, creating a new raster image E

Now that matrices Ax and Ay and the new raster image E have been calculated,
we are able to embed the watermark, calculating Bx and By using the equations (3) and
(4), respectively:

Bx = CE + Ax, (3)

By = Cw(E) + Ay. (4)

Finally, the marked vector map M ′ is built using matrices Bx and By.

2.2. Watermark Detection

The detection algorithm consists in the extraction of the watermark and its comparison
with the original one. It uses the original vector map M , the constant C and the original
watermark R to extract the watermark S from the target vector map N , the one that is
going to be tested. The basic steps are represented in Figure 5 and are described below as
Algorithm 2.

Algorithm 2 Watermark detection
INPUT: raster image R, vector map M , constant C and the vector map to be tested N .
OUTPUT: watermark S.
1. Embed the watermark R on the vector map M by using the algorithm described in Sec-
tion 2.1, returning the marked vector map M ′.
2. Calculate the point representation P ← v(M ′) of map M ′ and the point representa-
tion Q ← v(N) of target map N .
3. Compare the point representations P and Q using Point Pattern Matching (Sec-
tion 2.2.1), returning the point lists Lp, Lq and a transformation T , where M ′ = T (N).
4. Build matrices Ax and Ay from M , and Bx and By from T (N).
5. Calculate Dx ← Bx−Ax

C
; Dy ← w(By)−w(Ay)

C
.

6. Calculate D ← Dx+Dy

2
.

7. Resize the watermark D to its original size, returning the watermark S.

Most attacks consist in transformations on the marked vector map M ′, producing
a vector map N which may not produce the original watermark. Therefore, it is important
to find the transformation T used in the attack and remove it from the vector map N . The
Point Pattern Matching Algorithm finds relations between the points in two vector maps,
looking for transformations T that may have been made in one of them.

The first step of the detection algorithm is to embed the watermarkR on the vector
mapM , resulting on the marked mapM ′. This marked vector map must be compared with
the vector map N to be tested, using the Point Pattern Matching Algorithm. The point
representations from both maps are calculated: v(M ′) = P and v(N) = Q, as described
in Section 2 and the Point Pattern Matching Algorithm is used to find relations between
them. This step is described in Section 2.2.1 and returns two points representations Lp

and Lq from vector maps M ′ and N , respectively, and the transformation T which takes
M ′ to N . Thus M ′ = T (N).

Now we are able to build four matricesAx andAy from v(M) andBx andBy from
v(T (N)). Matrices Ax and Ay represent the original vector map and matrices Bx and By

represent the vector map T (N) that may be M ′. So, we must calculate the watermark in
vector map T (N) and compare it with the original one. The watermark D is calculated
using the four matrices Ax, Ay, Bx and By, the constant C and the function w:

Figure 5. Watermark detection Algorithm Representation

D =
Dx +Dy

2
, (5)

where

Dx =
Bx − Ax

C
and Dy =

w(By)− w(Ay)

C
. (6)

Finally, the watermark D, with size n×n, must be resized to its original size – the
size of watermark R – producing watermark S. Watermarks S and R must be compared
using a probabilistic algorithm and the human eye. According to this comparison we can
conclude whether or not the vector map N was marked.

2.2.1. Point Pattern Matching

The ith point in v(M) matches the ith point in Q = v(M ′). Therefore, if the vector map
N is in fact the vector map M ′, then the ith point in v(M) must match the ith point in
P = v(N). However, the vector map N may be obtained from a transformation T in M ′

and the relation between the points may not be so simple. The Point Pattern Matching
Algorithm finds this relation between points and returns the transformation T that may
have been used in M ′ to produce N . In this paper we use the Point Pattern Matching
Algorithm [van Wamelen et al. 1999] described in Algorithm 3.

The Point Pattern Matching Algorithm finds a transformation that produces (q, b)
from (p, a), tests it in a set of points and finally checks it with all the points. Therefore,

Algorithm 3 Point Pattern Matching
INPUT: point representations P = v(N) and Q = v(M ′).
OUTPUT: transformation T and two points representations Lp and Lq.
1. Obtains the k nearest neighbors (KNN) for each point in P and Q using a Delau-
nay Tree, as described in [Boissonnat and Teillaud 1993]
2. global ← false;
3. while global = false
3.1. for each point p ∈ P
3.1.1 Obtain the nearest point q ∈ Q
3.1.2 Find (af , bf), the furthest of the KNN, with af ∈ KNN(p) and bf ∈ KNN(q)
3.1.3 Calculate the local transformation T that, used on (p, af) produces (q, bf)
3.1.4 if T (p, a) = (q, b) for at least ρ k pairs (a, b) then

3.1.4.1 if T is a global transformation then
3.1.4.1.1 global ← true;
3.1.4.1.2 return (T);

Figure 6. Point Pattern Matching Example

the nearest neighbors (KNN) for each point in P and Q must be obtained, using a Delau-
nay Tree, as described in [Boissonnat and Teillaud 1993]. Moreover, we need to find the
nearest point p ∈ P for each point q ∈ Q and the furthest neighbors a and b, respectively,
for both points, p and q.

The next step is to find the local transformation T that when applied to a produces
b and when applied to p produces q, that is T (a) = b and T (p) = q, with:

T =

(
tx
ty

)
+ s

(
cos θ − sin θ
sin θ cos θ

)
, (7)

where

s =
|~qb|
| ~pa|

, (8)

θ = angle between ~pa and ~qb, (9)

and
tx = qx − pxs cos θ + pys sin θ and ty = qy − pxs sin θ − pys cos θ (10)

Then this transformation must be checked to see if it produces a subset of KNN(q),
if used in a subset of KNN(p) with at least ρk points. These two subsets are two points
representations called La and Lb.

Now, we must check whether the local transformation T is a global transforma-
tion, by calculating the transformation T ′ and applying it on every point q ∈ Q. If T ′(q)
produces a point p ∈ P , then p and q must be included in two point lists Lp and Lq,
respectively.

T ′ =


tx
ty

s cos θ
s sin θ

 =
1

µd


µa 0 −µax µay

0 µa −µay µay

−µax −µay l 0
µay −µax 0 l




µbx

µby

µa+b

µa−b

 , (11)

where

µax =
l∑

i=1

Laxi
and µay =

l∑
i=1

Layi
, (12)

µbx =
l∑

i=1

Lbxi
and µby =

l∑
i=1

Lbyi
, (13)

µa+b =
l∑

i=1

Laxi
Lbxi

+ Layi
Lbyi

, (14)

µa−b =
l∑

i=1

Laxi
Lbyi
− Layi

Lbxi
, (15)

µa =
l∑

i=1

L2
axi
L2

ayi
, (16)

and
µd = lµa − µ2

ax − µ2
ay. (17)

If Lp and Lq have at least ρt points (with t being the size of P and Q) the trans-
formation T is global; if not, another pair (p, q) and another transformation T must be
found. If all points in P and Q were used and no global transformation was found, then
N was not produced from M ′ and, therefore, it is not marked.

3. Experiments and Results

3.1. Algorithm Analysis

Let t be the number of points on the original vector map; then, the RAWVec method
has complexity O(t) for the embedding algorithm and O(t(log t)3/2) for the detection
algorithm. This is because each operation of the embedding and detection algorithms,
except for Point Pattern Matching, has complexity O(t). On the other hand, Point Pattern
Matching has complexity O(t(log t)3/2), as proved in [van Wamelen et al. 1999].

Let C be a constant and Imax and Imin be the maximum and minimum intensities
of pixels in the raster image. Then the maximum shifting of a pixel is ±CI

√
2, with

I = Imax − Imin+Imax

2
, as seen in Figure 7. Therefore, it is possible to control the shifting

of each point using the constant C and the intensity of each pixel on the raster image, but
it is important to normalize the raster image, changing the intensity of each pixel r:

Irnew = Irold
− Imin + Imax

2
. (18)

Figure 7. Maximum shifting of a pixel

The comparison between the original watermarkR and the extracted watermark S
uses two coefficients: r, the Pearson correlation coefficient and h, the quality coefficient.
The quality coefficient h is based on human observation. It can vary from 0 to 5 and it
represents the answer from 5 people to the question ”Do you think that the image R is the
image D after some modifications?” Each positive answer represents 1 and each negative
answer represents 0, and h is the sum of the answers. The Pearson correlation coefficient
r is based on the pixels intensities and it is calculated as follows:

Let ImR
and ImS

be the average intensity of images R and S, respectively, and Irij

and Isij
be the intensity of pixels rij ∈ R and sij ∈ S, respectively. Then

r =

∑
i

∑
j

(Irij
− ImR

)(Isij
− ImS

)√
(
∑

i

∑
j

(Irij
− ImR

)2)(
∑

i

∑
j

(Isij
− ImS

)2)

. (19)

3.2. Attacks
Attacks against a watermark consist in changing the marked vector map, making it dif-
ficult for the watermark to be recognized. The most common attacks that can be used
against a watermark are:

• Transformation: Translation, rotation and downscaling are similarity transforma-
tions that can be used on the marked vector map and that affect the watermark.
They are simple transformations and can be removed using Point Pattern Match-
ing. However, downscaling transformations can affect the watermark even if re-
moved, due to lack of precision. Datum and projection changes are more com-
plex transformations that can also be used to affect the watermark. Point Pattern
Matching does not detect them and the RAWVec Algorithm is not resilient to this
kind of attack.

• Cropping: The marked vector map can be cropped or some objects can be deleted.
Point Pattern Matching can handle cropping because it ignores points and objects
from the original vector map that do not have a match in the marked vector map.
However, if the cropping is too intense, the watermark can be more affected be-
cause each lost point implies in a ”hole” in the extracted watermark. If the raster
image is smaller than the vector map, copies of it will be used as watermark (Fig-
ure 4), and information lost in one copy can be found in another one, making it
possible to rebuild and recognize the image.
• Object insertion: Point Pattern Matching can also handle object insertion, because

it ignores points in the marked vector map that do not have a match in the original
vector map. Therefore, the watermark will not be affected by this kind of attack.
• Object order scrambling: Point Pattern Matching Algorithm is capable of match-

ing the right objects from the two vector maps (the original and the marked one)
even if they differ on the order they appear in the maps.
• Addition of random noise: This attack can be done by adding random numbers

to each coordinate of the vector map, and its amplitude is the maximum number
added. If the amplitude is above the maximum tolerable error, the vector map will
be modified and become useless.
• File format change: There are several commercial file formats and it may be useful

to convert one into another. In some cases, the conversion can modify too much
the vector map, making it useless. Usually, objects are deleted, inserted or its order
is scrambled in the conversion. Point Pattern Matching can handle this problem,
because it finds the matching between the objects in the two vector maps, ignoring
points with no match.

Several tests using these attacks were made. Here we present only some of them
(more can be found on [Marques 2005]). Figure 8 shows a simple test, in which there
are no attacks; Figure 9 shows a test with a combined attack, in which the vector map is
downscaled to one-tenth of its original size, rotated 232o, translated and finally cropped
to half; and Figures 10 and 11 show tests with a cropping attack. Specifically, Figure 10
shows the extracted watermarks for different cropping attacks, and Figure 11 shows the
attacked vector map for the particular case in which 90% of the points were removed.
Note that, for the cropping attack, the watermark detection failed only when the vector
map was clearly changed and became useless.

4. Conclusions and Future Work
In this paper, a new method for watermarking vector map (RAWVec) is presented. This
method embeds a raster image in the vector map as the watermark and shifts the map’s
objects’ coordinates. The detection algorithm extracts a watermark from a vector map
using the original vector map. The extracted watermark is compared with the original
one both algorithmically and using the human eye, increasing its effectiveness. Attacks
can alter or delete pixels from the watermark, but the human eye can easily recognize
the image. The RAWVec method is robust against several attacks including cropping,
addition of random noise, object order scrambling and similarity transformation.

Future works include improving the RAWVec method by making it public, that is,
the original vector map would not be necessary on the detection algorithm. Therefore, the
use of the Point Pattern Matching Algorithm would be avoided, which may improve the

Figure 8. Simple test with no attacks. r = 1 h = 5

Figure 9. Test with a combined attack r = 0.99 h = 5

efficiency of the method. On the other hand, the detection algorithm would be simpler,
which may facilitate the watermark extraction and, therefore, decrease its effectiveness.

References

Boissonnat, J.-D. and Teillaud, M. (1993). On the randomized construction of the delau-
nay tree. Theor. Comput. Sci., 112(2):339–354.

Gou, H. and Wu, M. (2004). Data hiding in curves for collusion-resistant digital finger-
printing. In ICIP, pages 51–54.

Marques, D. A. (2005). Marcas d’Água visuais em mapas vetoriais. Master’s thesis,
UNICAMP.

Ohbuchi, R. and Masuda, H. (2000). Managing cad data as a multimedia data type using
digital watermarking. In Knowledge Intensive CAD, pages 103–116.

Ohbuchi, R., Ueda, H., and Endoh, S. (2003a). Robust watermarking of vector digital
maps. In Proc. IEEE Conference on Multimedia and Expo 2002.

Ohbuchi, R., Ueda, H., and Endoh, S. (2003b). Watermarking 2d vector maps in the
mesh-spectral domain. In SMI ’03: Proceedings of the Shape Modeling International
2003, page 216, Washington, DC, USA. IEEE Computer Society.

Figure 10. Results for several cropping attacks

Figure 11. The vector map after a 90% cropping attack

Praun, E., Hoppe, H., and Finkelstein, A. (1999). Robust mesh watermarking. In Rock-
wood, A., editor, Siggraph 1999, Computer Graphics Proceedings, pages 49–56, Los
Angeles. Addison Wesley Longman.

Shao, C. Y., Wang, H. L., Niu, X. M., and Wang, X. T. (2005). A shape-preserving method
for watermarking 2d vector maps based on statistic detection. IEICE Transactions on
Information and Systems, E89-D:1290–1293.

Sion, R. (2002). Power: A metric for evaluating watermarking algorithms. itcc, 00:0095.

Sonnet, H., Isenberg, T., Dittmann, J., and Strothotte, T. (2003). Illustration watermarks
for vector graphics. In PG ’03: Proceedings of the 11th Pacific Conference on Com-
puter Graphics and Applications, page 73, Washington, DC, USA. IEEE Computer
Society.

van Wamelen, P., Li, Z., and Iyengar, S. (1999). A fast expected time algorithm for the
point pattern matching problem. Technical report, Louisiana State University, Dept. of
Mathematics.

Voigt, M. and Busch, C. (2002). Watermarking 2d-vector data for geographical informa-
tion systems. In Proc. SPIE, Security and watermarking of Multimedia Content, pages
621–628.

Voigt, M., Yang, B., and Busch, C. (2004). Reversible watermarking of 2d-vector data. In
MM&Sec ’04: Proceedings of the 2004 workshop on Multimedia and security, pages
160–165, New York, NY, USA. ACM Press.

