
Strand spaces and fair exchange: More on how to trace
attacks and security problems∗

Fabio R. Piva1, José R. M. Monteiro1,2, Ricardo Dahab1

1Instituto de Computação – Universidade Estadual de Campinas (UNICAMP)
Caixa Postal 6176 – 13084-971 – Campinas – SP – Brasil

2Centro de Pesquisa e Desenvolvimento para a Segurança das Comunicações –
CEPESC/Abin Brası́lia – DF – Brasil

fabio.piva@students.ic.unicamp.br, {monteiro, rdahab}@ic.unicamp.br

Abstract. In this work we use our proposed adaptation of the strand spaces
method in the analysis of a fair exchange protocol for payment, proposed in
[Zuo and Li 2005]. The protocol fails to provide timeliness and fairness to
the buyer (Downloader), and four previously unreported attacks are traced
regarding those properties. This is a continuation of the work started in
[Piva et al. 2006].

1. Introduction
Fairness presents a difficult problem in Internet transactions, that can be mitigated

by the use of fair exchange protocols. Such protocols provide communicating parties with
assurances regarding the outcome of the exchange: each party receives the item desired if
and only if the other party gets his or hers. Exchanges usually happen over insecure chan-
nels, and between mutually distrusting parties. Solutions comprise protocols based on a
trusted third party (TTP), with varying degrees of involvement. The optimistic proto-
cols, in particular, rely on online TTP s, which are limited to resolving conflicts between
parties (as opposed to being involved in the entire communication between them), thus
reducing the occurrence of bottlenecks.

According to [Asokan 1998], desirable fair exchange properties are: (i) effective-
ness; (ii) fairness; (iii) timeliness; (iv) non-repudiation of the actions of each party; (v)
verifiability of the TTP; and (vi) abuse freeness. Exceptions may arise either from misbe-
havior of one of the parties, or from third party interference, or from faults in the commu-
nication channel. Optimistic fair exchange protocols usually enforce timeliness through
the use of local timeouts and a TTP to resolve disputes. If that TTP misbehaves, but
does not collude with any party, it is called a semi-trusted third part (STTP).

Fair exchange properties are usually established through informal arguments;
however these arguments can be made less suceptive to mistakes by using a formal
verification thechnique. The original strand spaces method [Thayer et al. 1999b] allows
one to represent protocols for authentication and key establishment, as well as to prove
authentication-related properties. An adaptation proposed in [Thayer et al. 1999a] allows
for parallel executions of the analysed protocol, but forbids exchange of terms in a parallel
run of the protocol’s main body (which is exactly what occurs in fair exchange protocols).
In [Guttman and Thayer 2002], authentication tests are introduced; by the use of test com-
ponents, the authors show how to determine ambiguities in the origin of terms in entity
traces.

∗First author supported by CNPq

In [Piva et al. 2006], we show how the strand spaces method can be applied
on the verification of fair exchange protocols, in a similar way to that introduced in
[Guttman and Thayer 2002]. We suggest how fair exchange properties should be trans-
lated into strand spaces theorems and give general examples of each property.

In this work we employ the adaptation proposed in [Piva et al. 2006] to show how
a supposedly fair payment protocol fails to achieve fairness and timeliness. Specifically,
we will use strand spaces to analyse the Zuo and Li’s p2p file market protocol for pay-
ment [Zuo and Li 2005] (which we shall refer to as Zuo-Li protocol from now on). We
also propose two corrections for this protocol, one of which relies on Verifiable and Re-
coverable Encryption Signatures (VRES) [A. Nenadic and Goble 2005]. We assume fa-
miliarity with fair exchange protocols and the strand spaces method1.

This paper is organised as follows: in Section 2, we describe the common notation
used in the remaining sections; in Section 3, we describe the concept of the file market
proposed in [Zuo and Li 2005]; in Section 4 we use our adaptation of the strand apaces
method, as proposed in [Piva et al. 2006], to trace four attacks to their system; in Section
5 we show our proposed modifications to the protocol and finally, Section 6 accounts for
results and conclusions. The reader can refer to Appendix A for the general forms of the
theorems used in Section 4.

2. Notation
In this section we describe the common notation used throughout the text. Items

i-xi are commonly used in the study of cryptographic protocols and strand spaces, while
items xii-xx were introduced in [Zuo and Li 2005]. A user registered in the market is a
peer. During exchanges, peers are refered to as parties.

i. A and B are the parties in the exchange – the Provider and the Downloader re-
spectively – and T or TTP is the mutually trusted third party;

ii. Xevil: a dishonest party X;
iii. SIGX(M): message M , signed with party X’s private key (serves as non-

repudiation evidence that X transmitted message M at some point);
iv. SEK (M): message M , symmetrically encrypted with key K;
v. EX (M): message M , asymmetrically encrypted with party X’s public key;

vi. DX (M): asymmetrical decryption of message M , using party X’s private key;
vii. H(M): the hash of a message M , obtained by applying a collision-free, one-way

function H() to message M ;
viii. M‖N or M, N : concatenation of two messages, M and N ;

ix. X : L: message transmition contaning term L to party X;
x. G1, G2, G3, ...: alternative representation of terms that are untestable to the party

receiving them (the Downloader, in most cases);
xi. X : omitted: party X fails to receive the intended message, either because the

sender intentionally did not send it, or because X did not recognize the received
information as a valid message;

xii. M
?

== N : comparison between messages M and N , which returns TRUE if
M = N , or FALSE otherwise;

1See [Piva et al. 2006] for a more complete description on related work

xiii. AC: the accounting center, an entity responsible for managing accounts from each
peer (by subtracting from the account of any given money equivalent to issued
cheques and adding money equivalent to earned cheques);

xiv. MaxNum: maximum number of cheques that a certain peer can issue;
xv. MaxV alue: maximum value of any cheque that a certain peer can issue;

xvi. CurT ime: the current date and time registered by the system clock;
xvii. CashExp: expiration time of a certain capital certificate;

xviii. CCX : capital certificate of peer X;
xix. TS: timestamp;
xx. FileID: the file identificator in the system (its name and size, for instance);

xxi. KP : the key piece, a file piece that the Provider randomly chooses to be symmet-
rically encrypted with a key unknown to the Downloader. This key will be traded
during the payment step by a cheque signed by the Downloader;

xxii. ChequeSN : the serial number of a given cheque (to be compared to MaxNum
by the payee). It reflects the payer’s personal counter, which is incremented every
time he issues a cheque;

xxiii. Price: the price to be payed for the file in a given exchange, in the form of one or
more signed cheques.

3. The Zuo-Li p2p file market
We now describe the file market proposed in [Zuo and Li 2005]. In their original

work, the authors describe how to construct a hypothetically fair file-exchanging com-
munity, based on the p2p (peer to peer) technology. Section 3.1 shows the protocols
suggested by the authors for each phase of the exchange, and Section 3.2 gives a more
detailed description of the actions performed by each party during the whole process.

3.1. Buying a file: An overview
Files can be obtained in exchange for virtual payment (in the form of signed

cheques) accounting for a value. The exchange itself happens in three steps: the Negotia-
tion Step (Protocol 1), in which general parameters are chosen by parties; the Download
Step, in which the Downloader obtains all the file pieces; and the Payment Step (Proto-
col 2, a fair exchange protocol in the sense introduced in [Asokan 1998]), in which the
Downloader exchanges a signed cheque for a key to decrypt a particular file piece (aka,
the key piece), thus enabling the reassembly of the whole file. If the Downloader fails
to receive the correct key, he can invoke the TTP by running an auxiliary subprotocol
(Protocol 3), in order to retrieve the key from her.

3.2. Concept description
In this section we detail the proposed file market – from user registration (Setup

Phase) to cheque accounting (Accounting Phase), including the steps mentioned in Sec-
tion 3.1.

1. System setup: AC registers a new user as a peer in the system. It chooses its iden-
tity (say, X), generates and transmits its private key and issues him a capital certifi-
cate CCX = SIGAC(X ‖ ChequeSN ‖ CashExp ‖ MaxV alue ‖ MaxNum).

2. Download: The peer chooses and downloads2 the file – piece by piece – and pays
for it. This phase has two steps:

2Files are divided into several pieces, such as in BitTorrent. Each piece has a sequence number.

Protocol 1 Protocol for the Negotiation Step
Setup: After the setup phase, each entity has a capital certificate (CCX))
Results: B knows the sequence number of the key piece, and is allowed to download
1. B: - Chooses which file to download;

- Generates and signs DownREQ = (FileID ‖ B ‖ ChequeSN ‖ TS);
 A: DownREQ ‖ SIGB(DownREQ) ‖ CCB

2. A: - Checks B’s signature on SIGB(DownREQ) and AC’s signature on CCB;
- Checks if ChequeSN ≤ MaxNum in CCB and if CashExp ≥ CurT ime;
- Selects a file piece (key piece (KP), with sequence number DownRES) to
be encrypted;
 B: DownRES;

Protocol 2 Protocol for the Payment Step (Fair Exchange)
Setup: After negotiation, Downloader B already downloaded every piece of the desired
file (the key piece KP is encrypted with a secret key K)
Results: A has a valid SIGB(C, Z) and B has K

1. A: - Generates Z = ETTP (A, B, K) and
C = (A ‖ B ‖ TTP ‖ ChequeSN ‖ Price ‖ TS ‖ H(KP) ‖ H(SEK(KP)));
 B: C ‖ Z ‖ SIGA(C, Z)

2. B: - Checks C;
 A: SIGB(C, Z);

3. A: - Checks SIGB(C, Z);
 B: K;

4. B: - Waits for K or timeout; in case of error, runs Protocol 3;

Protocol 3 Subprotocol for the Payment Step (Fair Exchange)
Setup: Downloader B has encountered some problem and has not correctly received K
Results: B has K and A has SIGB(C, Z)

1. B: TTP : C ‖ Z ‖ SIGA(C, Z) ‖ SIGB(C, Z)

2. TTP : - Checks if the first three terms of C are A, B and the TTP ’s identities;
- Computes DTTP (Z) and checks if the result equals (A, B, ∗);
 B: K;
 A: SIGB(C, Z);

(a) Negotiation: Downloader B requests a file hosted by Provider A. The
request is described as a signed term DownREQ (Protocol 1). B must
also provide his capital certificate CCB, so that A can verify if B still has
credit. If all checks succeed, A sends DownRES to B. It contains the
sequence number of a random piece of the file (known as key piece, or
KP), wich will be encrypted by A with a key K unknown to B. This key
will be negotiated during the next step. B is now allowed to download all
file pieces (including the encrypted KP).

(b) Payment: To reassemble the original file from the downloaded pieces, B
must obtain the key K. Only then he will be able to get the key piece KP .
A will trade the correct key by a signed cheque from B, which will then
be converted by the AC into credit for A. This procedure happens through
a fair exchange protocol, presented in Protocols 2 and 3.
Note that, if B fails to receive key K after sending the signed cheque, he
can invoke the assistance of a trusted third party (TTP). The third party
will require the cheque and some other information from B, as described
in Protocol 3. If all checks performed by the TTP succeed, she will send
K to B and the signed cheque to A; if any check fails, the TTP stops.

3. Accounting: After the exchange is complete, A must obtain the money from the
signed cheque. She then sends a quadruplet (C, Z, SIGX(C, Z), K) to the ac-
counting center AC, which should reject expired packages and quadruplet repli-
cation. AC will subtract the value – according to the cheque’s value – from B’s
account, and add it to A’s account. But first, AC checks if: 1) both A and B’s
identities are in C; 2) ETTP (A, B, K) = Z; 3) B’s signature is correct.

4. Attacks on the protocol for payment using the strand spaces model
We now use the method described in Appendix A to show why the proposed pro-

tocol for payment fails to achieve both strong fairness and timeliness for the Downloader.
Notice that proofs of failure are derived by contradiction. This is a peculiarity of our
adaptation of the strand spaces method.

4.1. Traces definition

1. A strand sp ∈ PROV[X, Y, TTP, K, SIGY (C, Z), C, SIGX(C, Z)] iff sp has
trace of the form

〈+C ‖ Z ‖ SIGX(C, Z), −SIGY (C, Z), +K〉, where

i. X, Y ∈ Tname with X 6= Y , TTP ∈ Tttp with Tname and Tttp disjoint;
ii. C = (X ‖ Y ‖ TTP ‖ChequeSN ‖ Price ‖ TS ‖ H(KP) ‖ H(SEK(KP)));
ii. Z = ETTP (X, Y, K);

iii. H() is a one-way, collision-free hash function;
iv. K ∈ K is X’s initial object with description C; and
v. SIGY (C, Z) is Y ’s object with description SIGX(C, Z).

The principal associated with a strand sp ∈ PROV[] is A.
2. A strand sd ∈ DOWN[X, Y, TTP, K, SIGY (C, G1), C, SIGX(C, G1)] iff sd

has trace of the form

〈−C ‖ G1 ‖ SIGX(C, G1), +SIGY (C, G1), −K〉, where

i. X,Y ∈ Tname with X 6= Y , TTP ∈ Tttp with Tname and Tttp disjoint;
ii. C = (X ‖ Y ‖ TTP ‖ ChequeSN ‖ Price ‖ TS ‖ G2 ‖ H(G3)) with

G1, G2, G3 ∈ A;
ii. Z = ETTP (X, Y, K);

iii. H() is a one-way, collision-free hash function;
iv. K ∈ K is X’s initial object with description C; and
v. SIGY (C, G1) is Y ’s object with description SIGX(C, G1).

The principal associated with a strand sd ∈ DOWN[] is B.

At the end of the protocol, the Downloader represented by sd should be able
to verify that G1 = Z = ETTP (X, Y, K), with G2 = H(KP) and H(G3) =
H(SEK(KP)). But until K is received, he will accept absolutly any term gener-
atable by the algebra A as a valid Z (because Z is untestable by the Downloader,
as its generation requires knowledge of K).

4.1.1. Strong fairness for B

In this section we show that, by failing to satisfy theorem 1, the protocol does not
achieve strong fairness to the Downloader. Proof follows by contradiction. The protocol
also fails to achieve timeliness for that party, as many untestable terms are required to
begin a subprotocol run (see theorem 6 and refer to [Piva et al. 2006] for more details).

Theorem 1. Let B be a principal associated with a strand sB ∈
DOWN[A, B, TTP, ∗, SIGB(C ′, G1), C ′, SIGA(C ′, G1)], where:

I. C ′ = (A ‖B ‖TTP ‖ChequeSN ‖Price ‖TS ‖G2 ‖H(G3));
II. G3 was received on the downloading phase as encrypted KP .

Then, if the protocol provides strong fairness for B, one of the following occurs:

1. sB ∈ DOWN[A, B, TTP, K, SIGB(C ′, Z), C ′, SIGA(C ′, Z)], where
(a) C ′ = (A ‖B ‖TTP ‖ChequeSN ‖Price ‖TS ‖G2 ‖H(G3));
(b) G2 = H(KP);
(c) G3 = SEK(KP);
(d) Z = ETTP (A, B, K).

2. ∀sX ∈ PROV[∗, B, ∗, ∗, ∗, C ′, SIGX(C ′, G1)], then
sX /∈ PROV[∗, B, ∗, ∗, SIGB(C ′, G1), C ′, SIGX(C ′, G1)], with:

(a) X ∈ Tname

(b) G1 = ETTP (A, B, G4)
3.

Proof: Supose that the comunication channel between principals is resilient. For
a given bundle C, if ∃sB ∈ DOWN[A, B, TTP, ∗, SIGB(C ′, G1), C ′, SIGA(C ′, G1)],
then ∃sA ∈ PROV[A, B, ∗, SIGB(C ′, G1), ∗, C ′, SIGA(C ′, G1)] with C−height ≥ 2.
The following cases are possible: C−height(sA) = 1 (no item is transmitted, no harm
done); C−height(sA) = 2 (see below); and C−height(sA) = 3 (effectiveness if message 3
contains K, same as C−height(sA) = 2 otherwise).

Say that sA has C−height = 2. As C−height(sA) < 3, message 3 is never transmit-
ted, so B must invoke the auxiliary subprotocol to complete the exchange. Then ∃sTTP ∈

3Note that it is not necessary that G1 = Z, nor that
C ′ = C = (A ‖B ‖TTP ‖ChequeSN ‖Price ‖TS ‖H(KP) ‖H(SEK(KP))) for SIGB(C ′, G1) to
be valid. This is a consequence of the checks performed by the AC during the accounting phase of the
protocol; it does not check if G4 is a valid key, neither if G2 and G3 are what they are supposed to be
(information on KP would be required), but it checks if the two first terms of the triple (A,B,G4) are A’s
and B’s identities, and if G1 is an encryption of that triple using the TTP ’s public key.

TRUST[A, B, TTP, ∗, SIGB(C ′, G1), C ′, SIGA(C ′, G1)] with C−height ≥ 1. Be-
cause the TTP is trustworthy, she will always behave honestly and try to complete the
subprotocol run.

After receiving B’s request for intervention, the TTP will compute DTTP (G1).
This will result in one of the following situations:

1. DTTP (G1) fails4: The TTP fails to obtain G4 (which it expects to be the key K),
and can not provide fairness to B. This is represented by Attack 1.

Attack 1 Timeliness attack exploring untestability of Z (Zbogus 6= ETTP (∗))
Assumptions: B obtained SEK(KP)) during the negotiation phase
Steps: Steps 1-3 represent a particular run of the payment protocol, while steps 4-5
represent an attempt of B to run the subprotocol
Results: B is unable to successfully invoke TTP using Protocol 3
1. Aevil: - Generates C ′ and Zbogus, with Zbogus 6= ETTP (∗), and

C ′ = (A ‖ B ‖ TTP ‖ ChequeSN ‖ Price ‖ TS ‖ G2 ‖ H(G3));
 B: C ′ ‖ Zbogus ‖ SIGA(C ′, Zbogus)

2. B: - Computes H(SEK(KP))) and checks if it equals to H(G3);
- Checks if C ′ = (A ‖ B ‖ TTP ‖ ...) and A’s signature;
- Signs (C ′, Zbogus);
 Aevil: SIGB(C ′, Zbogus);

3. Aevil: - Checks B’s signature;
 B: ommited;

4. B: - Waits for K until timeout;
 TTP : C ′ ‖ Zbogus ‖ SIGA(C ′, Zbogus) ‖ SIGB(C ′, Zbogus);

4. TTP : - Checks if C ′ = (A ‖ B ‖ TTP ‖ ...);
- Computes DTTP (Zbogus) and obtains (W1, W2, W3);
- Checks that W1 6= A and W2 6= B, and stops.

This situation happens because even though C ′ = (A ‖ B ‖ TTP ‖ ...) ap-
pears to be a proof that A and B agree over the TTP ’s identity, the proto-
col does not guarantee that A will use that TTP ’s public key to generate Z
(which is untestable to B). This should already be clear from the fact that sA ∈
PROV[A, B, ∗, SIGB(C ′, G1), ∗, C ′, SIGA(C ′, G1)] is not limited by the
TTP ’s identity (i.e., the third parameter is a “*”).

2. DTTP (G1) succeeds: TTP reads the triple (t1, t2, t3). If t1 6= A or t2 6= B,
TTP also stops, which results in Attacks 2 and 3 (notice that those attacks are
very similar to the previous one, in the sense that they also rely on a specially
constructed Zbogus). If (t1, t2, t3) = (A, B, K), then G1 = ETTP (A, B, K) and
we have both sB ∈ DOWN[A, B, TTP, K, SIGB(C ′, Z), C ′, SIGA(C ′, Z)]

4By “fails” we mean that the decryption results in useless data or garbage, in the sense that G1 is not an
encryption with the TTP ’s public key. Attacks 2 and 3 are actually subcases of Attack 1, but we believe
that the case-by-case approach is far clearer than the straightforward one.

and sA ∈ PROV[A, B, TTP, SIGB(C ′, Z), ∗, C ′, SIGA(C ′, Z)], with C ′ =
(A ‖ B ‖ TTP ‖ ChequeSN ‖ Price ‖ TS ‖ G2 ‖ H(G3)). Notice that now B is
finally able to decrypt G3, but nothing guarantees that this decryption will succeed
and B will get KP . This is another flaw of the market proposed by the authors.

Attack 2 Timeliness attack exploring untestability of Z (Zbogus = ETTP (A, W, G4))
Assumptions: B obtained SEK(KP)) during the negotiation phase
Steps: Steps 1-3 represent a particular run of the payment protocol, while steps 4-5
represent an attempt of B to run the subprotocol
Results: B is unable to successfully invoke TTP using Protocol 3
1. Aevil: - Generates C ′ and Zbogus, with Zbogus = ETTP (A, W, G4), W 6= B and

C ′ = (A ‖ B ‖ TTP ‖ ChequeSN ‖ Price ‖ TS ‖ G2 ‖ H(G3));
- Generates Zbogus = ETTP (A, W, G4), with W 6= B;
 B: C ′ ‖ Zbogus ‖ SIGA(C ′, Zbogus)

2. B: - Computes H(SEK(KP))) and checks if it equals to H(G3);
- Checks if C ′ = (A ‖ B ‖ TTP ‖ ...) and A’s signature;
- Signs (C ′, Zbogus);
 Aevil: SIGB(C ′, Zbogus);

3. Aevil: - Checks B’s signature;
 B: ommited;

4. B: - Waits for K until timeout;
 TTP : C ′ ‖ Zbogus ‖ SIGA(C ′, Zbogus) ‖ SIGB(C ′, Zbogus);

5. TTP : - Checks if C ′ = (A ‖ B ‖ TTP ‖ ...);
- Computes DTTP (Zbogus) and obtains (W, B, G4);
- Checks that W 6= B and stops.

If t3 6= K, on the other hand, we have another subcase of the above situation, now
with Zbogus = ETTP (A, B, Kbogus). All the above problems keep B from getting
K, but do not provide A with a valid Z ′ (one which would be recognized by the
AC). Attack 4 details this vulnerability, which undermines strong fairness.
Notice that Zbogus = ETTP (A, B, Kbogus) is a valid Z ′, as it passes all the checks
performed by the AC. This implies that a dishonest Provider Aevil can success-
fully cash B’s payment SIGB(C ′, Zbogus) without providing him with the right
key to KP . The honest Downloader B would end up without the file, while A
would receive the money from B’s account.

4.2. Discussion and correction
The last attack only succeeds because AC cannot verify that the key delivered to

the Downloader is the one used to encrypt the key piece KP . This allows A to encrypt
the key piece with one key and transmit another key within message 2 of the protocol
for payment. Notice that by sending Zbogus = ETTP (A, B, Kbogus) to B, A completely
invalidates the TTP ’s presence. The Downloader will try to decrypt SEK(KP) with
Kbogus, and will fail to obtain KP . As Kbogus was provided by the TTP , B will no longer
have any reason to trust the TTP . The Provider, on the other hand, will manage to cash
B’s signed cheque. He generates the quadruplet (C ′, Zbogus, SIGB(C ′, Zbogus), Kbogus).

Attack 3 Timeliness attack exploring untestability of Z (Zbogus = ETTP (W, B, G4))
Assumptions: B obtained SEK(KP)) during the negotiation phase
Steps: Steps 1-3 represent a particular run of the payment protocol, while steps 4-5
represent an attempt of B to run the subprotocol
Results: B is unable to successfully invoke TTP using Protocol 3
1. Aevil: - Generates C ′ and Zbogus, with Zbogus = ETTP (W, B, G4), W 6= A and

C ′ = (A ‖ B ‖ TTP ‖ ChequeSN ‖ Price ‖ TS ‖ G2 ‖ H(G3));
 B: C ′ ‖ Zbogus ‖ SIGA(C ′, Zbogus)

2. B: - Computes H(SEK(KP))) and checks if it equals to H(G3);
- Checks if C ′ = (A ‖ B ‖ TTP ‖ ...) and A’s signature;
- Signs (C ′, Zbogus);
 Aevil: SIGB(C ′, Zbogus);

3. Aevil: - Checks B’s signature;
 B: ommited;

4. B: - Waits for K until timeout;
 TTP : C ′ ‖ Zbogus ‖ SIGA(C ′, Zbogus) ‖ SIGB(C ′, Zbogus);

5. TTP : - Checks if C ′ = (A ‖ B ‖ TTP ‖ ...);
- Computes DTTP (Zbogus) and obtains (W, B, G4);
- Checks that W 6= A and stops.

The three checks performed by AC (item 3 of Section 3.2) succeed, and so AC accepts
the cheque as valid.

5. Corrected version for the payment protocol

In the last section we have shown that the original protocol for payment fails to
achieve both timeliness and fairness for B. All suggested attacks were based on the fact
that the Downloader is not able to test (as defined on Appendix A, Definition A.2.6) term
Z, which is necessary for starting a subprotocol run with the TTP . In particular, Attacks
1, 2 and 3 undermine Timeliness, and rely on the non-testability of the first two values
of Z – which represent the Provider and Downloader’s identities, respectively. One way
to overcome this weakness is to allow the Downloader to test the first two values of Z,
by breaking it into two pieces. This idea originated a corrected version of the protocol,
illustrated by Protocols 4 and 5

Notice that now the Downloader is able to test if the identities in Z1 are correct,
by encrypting (A, B) and comparing the ciphertext with the received Z1. If the check
succeeds, B can be sure that, in case of any problems on later steps of the exchange,
he will be able to invoke the TTP by running the subprotocol. Although making terms
testable usually solve Timeliness problems, this does not work with fairness, as K can still
be different from the key used to encrypt KP (and the TTP does not check its correct-
ness). Moreover, if the Downloader knew the value of K (for the purpose of generating
ETTP (K) and comparing it with Z2), he would be able to simply stop the exchange with-
out sending the signed cheque to the Provider (which would represent unfairness for the
Provider).

Attack 4 Fairness attack exploring the fact that the AC does not check K

Assumptions: B obtained SEK(KP)) during the negotiation phase
Steps: Steps 1-3 represent a particular run of the payment protocol, while steps 4-6
represent an attempt of B to run the subprotocol
Results: B is unable to obtain the correct key K, while A obtains a valid cheque
signed by B

1. Aevil: - Generates both Zbogus = ETTP (A, B, Kbogus), with Kbogus 6= K, and
C ′ = (A ‖ B ‖ TTP ‖ ChequeSN ‖ Price ‖ TS ‖ G2 ‖ H(G3));
 B: C ′ ‖ Zbogus ‖ SIGA(C ′, Zbogus)

2. B: - Computes H(SEK(KP))) and checks if it equals to H(G3);
- Checks if C ′ = (A ‖ B ‖ TTP ‖ ...) and A’s signature;
- Signs (C ′, Zbogus);
 Aevil: SIGB(C ′, Zbogus);

3. Aevil: - Checks B’s signature;
 B: ommited;

4. B: - Waits for K until timeout;
 TTP : C ′ ‖ Zbogus ‖ SIGA(C ′, Zbogus) ‖ SIGB(C ′, Zbogus);

4. TTP : - Checks if C ′ = (A ‖ B ‖ TTP ‖ ...);
- Computes DTTP (Zbogus) and obtains (A, B, Kbogus);
- Checks indentities of A and B;
 B: Kbogus;
 Aevil: SIGB(C ′, Zbogus)

Protocol 4 Proposed protocol for payment step (providing Timeliness)
Setup: After negotiation, Downloader B already downloaded every piece of the desired
file (except for one piece, the key piece KP)
Results: A has a valid SIGB(C, Z1, Z2) and B has the sent K

1. A: - Generates Z1 = ETTP (A, B) and Z2 = ETTP (K);
 B: C ‖ Z1 ‖ Z2 ‖SIGA(C, Z1, Z2)

2. B: - Checks C and if Z1 = ETTP (A, B);
 A: SIGB(C, Z1, Z2);

3. A: - Checks SIGB(C, Z1, Z2);
 B: K;

4. B: - Waits for K or timeout; in case of error, runs the auxiliary subprotocol for
payment;

One solution for this unfairness is the use of Verifiable and Recoverable Encryp-
tion Signatures (VRES). The use of VRES implies in four phases: i.initialization, ii.VRES
generation, iii.VRES verification and, iv.VRES recovery. One implementation using DSA
signatures (DSA-CEGD) was proposed in [A. Nenadic and Goble 2005], where an en-
cryption key is exchanged for a signature. In the initialization phase, the interaction of

Protocol 5 Proposed subprotocol for payment step (providing Timeliness)
Setup: Downloader B has not correctly received the expected K
Results: B has the sent K and A has SIGB(C, Z1, Z2)

1. B: TTP : C ‖ Z1 ‖ Z2 ‖ SIGA(C, Z1, Z2) ‖ SIGB(C, Z1, Z2)

2. TTP : - Checks if the first three terms of C are A, B and the TTP ’s identities;
- Computes DTTP (Z1) and checks for A and B’s identities;
 B: K;
 A: SIGB(C, Z1, Z2);

the TTP and each party generates the certificates CBT and CAT
5. The DSA-CEGD pro-

tocol ensures several properties for exchange of e-goods: (i) strong fairness; (ii) non-
repudiation; (iii) content assurance (the receiver can verify during execution that the item
to be received will indeed match the description); and (iv) offline STTP (semi-trusted
and transparent third party). The payment protocol (Protocol 6) and recovery subprotocol
(Protocol 7) are the following:

Protocol 6 Proposed protocol for payment step (providing Fairness)
Setup: certificates CBT and CAT

Results: A has a valid SIGB(C, Z) and B has K

1. A: generates Z = ETTP (A, B, K);
 B: C ‖ Z ‖ CAT ‖ SIGA(C, Z)

2. B: checks CAT , SIGA(C, Z) and the TTP ’s signature on items;
 A: VRESB(C, Z)‖ CBT ;

3. A: checks VRESB(C, Z) and CBT ;
 B: K;

4. B: waits for K or timeout
 A: SIGB(C, Z);

5. A: checks SIGB(C, Z);
in case of error, runs the auxiliary subprotocol for recovery of B’s signature.

Protocol 7 Proposed recovery subprotocol for payment step (providing Fairness)
Setup: Downloader B has encountered some problem and has not correctly received K
Results: B has K and A has SIGB(C, Z)

1. B: TTP : CBT ‖ CAT ‖ VRESB(C, Z) ‖ K

2. TTP : B: K;
 A: SIGB(C, Z);

6. Results and conclusions
Using the parameterization proposed in [Piva et al. 2006], we provide a formal

proof that the protocol for payment suggested in [Zuo and Li 2005] is not fair. Our verifi-
5CertDa in [A. Nenadic and Goble 2005].

cation shows that the intended optimistic two-party fair exchange protocol fails to achieve
both strong fairness and timeliness – two of the desirable fair exchange properties pro-
posed by [Asokan 1998]. We trace four potential attacks on that protocol, one of which
allows a dishonest Provider to account a cheque even when the Downloader did not obtain
the desired file.

Our results show that, although requiring deep protocol understanding and care-
ful enunciation of theorems for each verification, our method produces insightful results
and details regarding security flaws, possible attacks and eventual corrections. The the-
orems must still be handwritten, even though we believe that part of the process can be
automated.

References
A. Nenadic, N. Zhang, Q. S. and Goble, C. (2005). DSA-based verifiable and recoverable

encryption of signatures and its application in certified e-goods delivery. In EEE ’05:
Proceedings of IEEE Conference on e-Technology, e-Commerce and e-Service. IEEE
Computer Society.

Asokan, A. (1998). Fairness in Electronic Commerce. PhD thesis, University of Waterloo.

Guttman, J. D. and Thayer, F. J. (2002). Authentication tests and the structure of bundles.
Theor. Comput. Sci., 283(2):333–380.

Piva, F. R., Monteiro, J. R. M., Devegili, A. J., and Dahab, R. (2006). Applying strand
spaces to certified delivery proofs. In Anais do IV SBSeg, Simpósio Brasileiro em
Segurança da Informação e de Sistemas Computacionais.

Thayer, F. J., Herzog, J. C., and Guttman, J. D. (1999a). Mixed strand spaces. I Computer
Security Foundations Workshop, 1999, pages 72–82.

Thayer, F. J., Herzog, J. C., and Guttman, J. D. (1999b). Strand spaces: Proving security
protocols correct. Journal of Computer Security, 7(2–3):191–230.

Zuo, M. and Li, J. (2005). Constructing fair-exchange p2p file market. In Proceedings of
the 4th International Conference on Grid and Cooperative Computing, pages 941–946.

A. Fair exchange protocols in the strand spaces method
This appendix briefly describes how the strand spaces method can be adapted to

allow formal verification of two-party optimistic fair exchange protocols, as introduced in
[Piva et al. 2006].

A.1. Fair exchange roles with general parameters

Fair exchange properties [Asokan 1998] can be mapped to the strand spaces
method in the same way that authentication properties do. In strand spaces, demonstra-
tions are based in theorem proving through derivation of trace parameters. Fair exchange
properties can also be verified in this manner.

Two-party fair exchange protocols usually involve three roles: an initiator, the
principal who starts the protocol; a responder, the principal who is initially contacted by
the initiator; and a trusted third party (TTP), which is only invoked if the initiator or the
responder decides to abandon the exchange before the end of the main protocol.

Although the parameters that compose a regular strand definition may vary from
one protocol to another, there are some parameters common to fair exchange protocols.
Most regular trace definitions will have the following parameters:

[X, Y, T, o, o′, d, d′, C, F],
where X , Y and T are the initiator, the responder and the TTP’s identities respec-

tively; o is the initiator’s object, which shall be given to the responder; o′ the responder’s
object, which shall be given to the initiator; d is the description of o, the same as DESC(o).
It is an information that the responder will use as a guarantee that o is what he expects it to
be; d′ is the description of o′, the same as DESC(o′). It is an information that the initiator
will use as guarantee that o′ is what he expects it to be; C is the cancellation token, issued
by the TTP to the caller of the cancel protocol; and F is the finishing token, issued by the
TTP to the caller of the finish protocol.

These parameters are generally necessary during fair exchange protocol verifica-
tion. Note that some of them may not matter in some moments (C and F are ignored
during effectiveness analysis), but it is common practice to represent them as *’s rather
than simply ignoring them.

A.2. Fair exchange properties in the strand spaces method
In this section we present each fair exchange property as described in

[Asokan 1998] along with its representation as a general strand spaces theorem. No-
tice that for a protocol to achieve any of these properties it is necessary that it achieves
that property for each principal interested in the exchange. Here we present each theo-
rem on behalf of the initiator. During the complete verification of the property, analogous
theorems must be devised for the responder as well.

A.2.1. Effectiveness

Suppose a player A behaves correctly. If player B also behaves correctly, and
both A and B do not want to abandon the exchange, then when the protocol is completed,
A has o′ such that DESC(o′) = d′.

Theorem 2. Let A be a principal associated with a strand sA ∈
INIT[A, ∗, T, o, ∗, d, d′, ∗, ∗] and B be a principal associated with a strand sB ∈
RESP[∗, B, T, ∗, o′, d, d′, ∗, ∗]. If both A and B do not want to abandon the exchange,
then sA ∈ INIT[A, ∗, T, o, o′, d, d′, ∗, ∗] and sB ∈ RESP[∗, B, T, o, o′, d, d′, ∗, ∗],
where d = DESC(o) and d′ = DESC(o′), and d and d′ are the respective descriptions of
A’s starting object and B’s starting object.

A.2.2. Strong fairness

Supose a player A behaves correctly. Then, when the protocol is completed,
either A has o′ such that DESC(o′) = d′, or B has gained no additonal information about
o.

Theorem 3. Let A be a principal associated with a strand sA ∈
INIT[A, B, T, o, ∗, d, d′, ∗, ∗]. Then either sA ∈ INIT[A, B, T, o, o′, d, d′, ∗, ∗]
with d′ = DESC(o′) or sB /∈ (RESP[∗, B, ∗, o, o′, d, d′, ∗, ∗] ∪
INIT[B, ∗, ∗, ∗, o, ∗, d, ∗, ∗]), where d = DESC(o).

A.2.3. Weak fairness

Suppose a player A behaves correctly. Then, when the protocol is completed,
either A has o′ such that DESC(o′) = d′, or B has gained no additonal information about
o, or A can prove to an arbiter that B has received (or can still receive) o such that
d = DESC(o), without any further intervention from A.

Theorem 4. Let A be a principal associated with a strand sA ∈
INIT[A, B, T, o, ∗, d, d′, ∗, ∗]. Then either theorem 3 holds or ∃sB ∈
(RESP[∗, B, ∗, o, o′, d, d′, ∗, ∗] ∪ INIT[B, ∗, ∗, ∗, o, ∗, d, ∗, ∗]), where
d = DESC(o).

A.2.4. Non-repudiability

Suppose a player A behaves correctly. Then, after a effective exchange (i.e., A
has received o′ at the end of the exchange), A will be able to prove

• Non-repudiability of origin: that o′ originated from B, and
• Non-repudiability of receipt: that B received o.

Theorem 5. Let A be a principal associated with a strand sA ∈
INIT[A, B, T, o, o′, d, d′, ∗, ∗] with d′ = DESC(o′) and d = DESC(o). Then:

• of origin: ∃sB ∈ (RESP[∗, B, ∗, ∗, o′, ∗, d′, ∗, ∗] ∪ INIT[B, ∗, ∗, o′, ∗, ∗, d, ∗, ∗]),
with d′ = DESC(o′).

• of receipt: ∃sB ∈ RESP[∗, B, ∗, o, ∗, d, ∗, ∗, ∗] ∪ INIT[B, ∗, ∗, ∗, o, ∗, d, ∗, ∗]),
with d = DESC(o).

A.2.5. Verifiability of TTP

Assuming that the third party T can be forced to eventually send a valid reply to
every request, this property requires that if T misbehaves, resulting in the loss of fairness
for A, then A can prove the misbehaviour of T to an arbiter (or verifier) in an external
dispute. In other words, each of the other players has a weak fairness guarantee even in
the case of a misbehaving TTP.

A.2.6. Timeliness

Suppose a player A behaves correctly. Then A can be sure that the protocol will
be completed at a certain point in time. At completion, the state of the exchange as of
that point is either final or any change to the state will not degrade the level of fairness
achieved by A so far.

Definition An item i is testable by a principal X if and only if X can check i’s validity
by doing some computation (by reconstructing i from other testable items, by decrypting
i with a known key, etc). If an item is not testable by X , we say it is untestable by X .
Theorem 6. A protocol achieves timeliness for principal A if and only if every item A
needs to provide to the TTP in a subprotocol call is testable by A.

