
Merging Prêt-à-Voter and PunchScan

Jeroen van de Graaf

1Laboratório de Computação Cientı́fica – Universidade Federal de Minas Gerais (UFMG)
Av. Antônio Carlos 6627 – 31270-901 – Belo Horizonte (MG) – Brasil

jvdg@lcc.ufmg.br

Abstract. We describe a variation of Prêt-à-Voter that keeps the same ballot
layout but borrows and slightly modifies the underlying cryptographic primitives
from Punchscan, substituting the mix network for bit commitments.

1. Introduction

Over the last few years we have seen a sequence of papers on voter-verifiable elections.
The idea of such systems is that the voter takes home a receiptwhich allows him to verify
that her vote is included in the tally without revealing any usefull information about her
vote. Though this idea is not new, Chaum’s paper [2] arguablygave a new impetus to this
line of research (see also [1]).

Chaum’s paper was improved upon in two significant ways. First there is a pro-
tocol called Prêt-à-Voter (PaV), as described in [3], which has several advantages over
[2], such as a simpler ballot lay-out, pre-printed ballots on which the voter marks his
preferences with a pen thus insuring that the voting machine(DRE) does not learn the
vote, etc. However, PaV still uses decryption mixing. Inspired by this, Chaum developed
PunchScan (PS). See the sitewww.punchscan.orgfor fancy demos. For a detailed proto-
col description we refer to [6] and [4]. PS differs from PaV inseveral aspects:(1) in each
ballot both the top and bottom layer are permuted;(2) a mark is placed on both layers;
(3) the voter gets to choose which layer he keeps and which gets destroyed;(4) no mixing
takes place; the only cryptographic primitive needed is a Bit Commitment scheme.

In this paper we obtain a new protocol by merging PaV and PS as follows: we
maintain PaV’s ballot lay-out but we borrow the underlying cryptographic primitives from
PS. Apart from giving us a thorough understanding of the similarities and differences
between the two protocols, the final result seems superior toboth because compared to
PaV it disposes of mixing, while compared to PS it results in asimpler ballot lay-out.

The outline of this paper is as follows: we start with a high-level description of
the PaV ballot, but instead of using mixing we describe how toapply the underlying cryp-
tographic ideas used in PS to PaV. We also propose some improvements to the protocol,
and provide a very brief description of the cryptography of Punchscan. We assume that
the reader is familiar with the general setting and the terminology of voting protocols.

2. The Prêt-à-Voter Ballot

The ballots used in PaV are described in detail in [3], section 4, using an example
with 4 candidates. A base canonical ordering of candidates is defined: 0: Anarchist, 1:
Alchemist, 2: Nihilist, 3: Buddhist. An example ballot looks like this (section 4.1):



3: Buddhist X
0: Anarchist
1: Alchemist
2: Nihilist
(Offsetx = 1) Qqkr3c

The left part contains a cyclic permutation (shift) of the candidates; in this case
the offsetx = 1 (we use cyclic permutations to simplify the exposition, butthe protocols
generalize to full permutations). The right part is empty except for the last row, and the
voter votes by putting an “X” in one of its first four cells. Themagic stringQqkr3c (in
reality probably longer) is an encryption ofx, encrypted with the public keys of the mixes.

Casting the vote consists of separating the left and the right columns, destroying
the left column and scanning the right column. Either manually or through OCR the row
containing the X and the encryption of the offset are associated to the ballot image. The
voter can take the right column home as a receipt. At the end ofthe day, all ballots will
enter the mix process. That is, each mix contributes in decrypting the shift and shuffling
all the ballots; see section 6 of [3].

3. Using bit commitments instead of mixing

Mixing is a tedious process and has several disadvantages: it is difficult to explain to
the average person, the privacy of the ballot is only computational, it is computationally
intensive, etc. A protocol that uses bit commitment does nothave these disadvantages:
pieces of papers in an enveloppe serve as an excellent explanation for BCs, uncondition-
ally hiding bit commitment schemes exist, and they are certainly not less efficient than
mixing. Therefore our purpose here is to develop a variant ofPaV using BCs.

Since Punchscan uses two permutatons, both the top and the bottom layer, a
straightforward idea is to break the offset valuex in two, i.e. to choosex1 andx2 random
such thatx = x1 + x2(mod m). We let the Election Authority(EA) commit tox1 and
x2. We write these BCs at the bottom of the right column on the ballot (like in PaV) or,
alternatively, we have the EA commit to these values publicly and use a unique ballot id
number to establish the link between the two BCs published and the printed ballot.

Furthermore we use the following notation:x is the offset;y is the number of
the row marked by the voter, counting from 0 tom − 1; v is the actual vote, that is, the
row chosen in the canonical representation. Obviously,y = x + v(mod m), where the
modulusm is the number of candidates on the ballot; in the examplem = 4.

Let us now describe the table to be created by the Election Authority (EA) before
the election which is a simplification of Punchscan’s. Note the hats on the symbols for
some columns; these mean that each cell in that column is a bitcommitment. The columns
labelledy, y − x1 andv will remain empty until the counting of the votes, as we will see
below.

i y ĵ x̂1 y − x1 x̂2 π̂2(j) v
1
· · ·

· · ·

2R



Observe that the table is divided in a left, middle and right part. Letπ1 be the
permutation between the rows of the left and the middle part,andπ2 between the rows of

the middle and the right part. Then the columns labelledĵ = π̂1(i) andπ̂2(j) are used to
define and to verify these two permutations.

Auditing the ballot construction Let there be2R rows. The set of rows is
divided randomly in an audit setA and election setE both of sizeR. The EA is now
required to open all bit commitments related toA: it must open all rowsi in the left part
of the table ifi ∈ A and all rows with indexj in the middle part of the table ifj = π1(i)
andi ∈ A. The right part contains no commitments. Scrutineers should check that all bit
commitments were created honestly. After the audit, the EA prints the unopened ballots
with indexi ∈ E.

The election The voter casts her vote as described earlier, and for each vote the
valueyi is determined. Since EA also knowsx1 andx2 he can compute the corresponding
valuesyj − xj1 andvk.

Publishing the results After the election, the EA publishesyi for eachi ∈ E,
yj − xj1 for eachj ∈ π1(E) andvk for eachk ∈ π2(π1(E)). From the column labelledv
he calculates the tally, which can be verified by anybody.

Auditing the votes published The EA could try to cheat by modifying the values
vk. We therefore first define the followingnaiveapproach: for eachj in the middle part
of the table a random bit is created out of EA’s control: Left or Right, which has the
following sematics:

Left The EA openŝxj1 and it is verified whetheryπ
−1

1
(j) − xj1 = (y − x1)j holds.

Right The EA openŝxj2 and it is verified whether(y−x1)j = xj2+vπ2(j) holds. Observe
that this equation should be satisfied becausey = x+v = x1 +x2 +v soy−x1 =
x2 + v.

Using this approach we catch a cheating EA with probability1/2 for each vote
vk he modifies. However, too much information is revealed aboutthe overall permutation
π = π2 ◦ π1 between the left and the right part of the table, violating voter privacy. We
can think of three possible ways out:

(1) We doK versions of this protocol in parallel, each with different bit commit-
ments and one Left/Right choices for all rows in each parallel version. Then the proba-
bility of EA getting away is2−K . This is the solution adopted by Punchscan ([4], section
5.4).

(2) Instead of using two permutationsπ1 andπ2, we use four. We also splitx in
four parts:x = x1 + x2 + x3 + x4(mod m). Then we use Chaum´s improvement [2] of
the mixing protocol proposed in [5]. See [1] for a detailed description.

(3) We use a special kind of bit commitment scheme that has a homomorphic
property: we assume that the multiplication of two bit commitments is equivalent to the
addition(mod m) of their contents. BCs with this property can be constructedfrom from
homomorphic encryption schemes. This variant does not trivially generalize to elections
in which a mere cyclic shift will not do and full permutationsare needed.



4. A brief description of Punchscan
The header of the table used by Punchscan is as follows:

i x̂1 x̂2 y ĵ t̂1 y − t1 t̂2 π̂2(j) v
P.1 P.2 P.3 D.1 D.2 D.3 D.4 D.5 R.1

· · ·

The first row shows the notation introduced in this paper, whereas the second row
shows the notation of [4] and [6]. Observe that where they usex, y, z as the indices of
the left (P), middle (D) and right (R) part of the table, we usei, j, k, so that when they we
write (x, P3) we would writeyi, etc. Also, the description of Punchscan usesm = 2, so
that adding1(mod 2) is called “flipping” or “inverting” the bit.

Simplifying this table by definingx1 = t1; x2 = t2 is tempting but leads to
an insecureprotocol because of the following difference between PaV and PS. In PaV
the offset (or offsets, in the new protocol) is (are) kept secret: the left side of the ballot
is destroyed, and the value on the right side is protected by abit commitment. But in
Punchscan the offset from the top (x1) or bottom (x2) layer can be deduced from the
printed ballot. One layer gets destroyed but the other has its scanned image published, so
this information, combined with the information about the destroyed layer revealed during
the post-election audit, compromises the ballot security,which happens withp = 1/2.
Thereforex1, x2, t1 andt2 are chosen randomly satisfyingx1 + x2 = t1 + t2(mod m).

5. Conclusion
This paper started as a study the similarities and differences between Prêt-à-Voter and
Punchscan. Surprisingly we found a merge which seems an improvement on both. Section
4 shows that cryptographically PS is actually slightly morecomplicated than the PaV
variant presented in Section 3: the fact thatboth the top and the bottom layer can be
flipped seems to complicate matters while the choice betweentop and bottom layers does
not seem to add to the security of Punchscan, unlike in [2]. Also in terms of ballot lay-out
there seems little difference between the two schemes.

References
[1] Bryans, J. and Ryan, P.A dependability analysis of the Chaum Voting Scheme.Technical

Report CS-TR-809, University of Newcastle, 2003.

[2] Chaum, D.Secret-Ballot receipts: True Voter-Verifiable elections.IEEE Security and Pri-
vacy, 2(1):38-47, Jan/Feb 2004.

[3] Ryan, P.Y.A.A Variant of the Chaum Voting Scheme.Technical Report CS-TR-864, Uni-
versity of Newcastle, 2004. Also Proceedings of the Workshop on Issues in the Theory
of Security(ACM), 2005. pg 81-88.

[4] Hosp, B., Popovenuic, S.Punchscan Voting Summary.Version dated Feb 13, 2006, ob-
tained from first author.

[5] Jakobsson, M., Juels, A. and Rivest, R.Making Mix Nets Robust For Electronic Voting By
Randomized Partial Checking.Usenix 2002.

[6] Popovenuic, S., Hosp, B.An Introduction to Punchscan.Version dated Oct 15, 2006.
http://punchscan.org/papers/popoveniuchosppunchscanintroduction.pdf.


