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Abstract. In this paper we presei aeLstroM-0, an evolution of th&VHirLPoOL

hash function with variable output length up to 512 bits. As its predecessor,
MaeLstroM-0 is not oriented towards any particular platform, but its implemen-
tation flexibility facilitates exploiting the features of each underlying environ-
ment. On the other hand, the improved desigmMofeLstrom-0 makes it faster

and arguably more robust than its predecessor and other existing hash func-
tions. By incorporating the state-of-the-art in the design of cryptographically
secure hash function®) aeLstrom-0 Not only constitutes a new primitiyeer se

but also provides an initial assessment on what the minimum requirements for
NIST's “Advanced Hash Standard” might be, and might serve as a valuable
comparison tool for future AHS proposals in terms of securif§ciency, and
flexibility.

1. Introduction

Hash functions, intuitively speaking, are algorithms intended to generate short, (virtually)
unique representatives of (virtually) arbitrarily long messages, so that these representa-
tives can replace the messages in certain computationally expensive processes. Crypto-
graphic hash functions are often adopted as practical instantiations of the more abstract
concept of random oracles [Bellare and Rogaway 1993], which are at the core of most
cryptosystems designed to provide data integrity and authentication without sacrificing
efficiency. Even though some newly proposed alternatives do not rely on random oracles
(see e.g. [Boneh and Boyen 2004]), these do not cover all possible needs of a security
system, nor are they compatible with the conventional, currently deployed public-key in-
frastructure in a global scale. Besides, hash functions have long found their way into
related but dferent applications, like confirmation of knowledge, password-based key
derivation and pseudo-random number generation [Menezes et al. 1999, section 9.2.6]. It
is therefore likely that hash functions will continue to play a prominent role in crypto-
graphic applications for the foreseeable future.

Formally, hash functions map bit strings of any length less than some upper
boundm to bit strings of some fixed length. A hash functionH : {0,1}™ — {0, 1}"
is said to becryptographically securef at least the following conditions are satis-
fied [Rogaway and Shrimpton 2004]:

1. (First pre-image resistangesiven a hash valuR < {0, 1}", it is computationally
infeasible to find a messad# € {0, 1}<" such thatH(M) = R;



2. (Second pre-image resistancéiven a messag® < {0,1}* (and, implicitly,
its hash valueR = H(M), so thatM constitutes a first pre-image &), it is
computationally infeasible to find a distinct messadgé € {0, 1}<™ such that
H(M’) = H(M).

3. (Collision resistancglt is computationally infeasible to find two distinct messages
M, M’ € {0,1}*™ such thatH(M) = H(M’), regardless of what the actual hash
value is.

By “computationally infeasible” we mean that th#aet to break any of these conditions
should be exponential in the hash sizdypically one expect©(2") steps to violate the

first condition, O(2"?) steps to violate the last one, and something in between for the
second condition [Kelsey and Schneier 2004, Kohno and Kelsey 2006]. Because of this,
it is advisable to restriah < 272 at most.

The recent crisis caused by the successful cryptanalysis of standardized hash
functions like MD5, RIPEMD, SHA-0 and (to some extent) SHA-1, for which the last
condition above was provenot to hold in multiblock collision attacks [Klima 2006,
Wang et al. 2005a, Wang et al. 2005b, Wang and Yu 2005], has motivated a renewed in-
terest in the design of cryptographically secure hash functions. It has also led NIST to
prepare a new, soon to be announced international quest to define an “Advanced Hash
Standard,” similar to the Advanced Encryption Standard quest that NIST initiated nearly
a decade ago. Currently, NIST is gathering feedback from the cryptological community
on what the minimum requirements the candidate functions should satisfy to take part in
the quest.

In this paper we describe Mistrom-0, an evolution of the WirLrooL hash func-
tion with variable output length up to 512 bits, designed to achieve higher processing
speed, particularly for longer messages. As its predecessot,siom-0 implemen-
tations on 8-bit and 64-bit processors benefit especially from the function structure,
which nevertheless is not oriented towards any particular platform. On the other hand,
MaeLsTrRoM-0 improves upon its predecessor with techniques not available at the time
WhHirLPoOL Was designed, providing for greater flexibility and a more robust security anal-
ysis. In a sense, we feel thataM.strom-0 represents the state-of-the-art in the design of
cryptographically secure hash functions; as such, besides being a new cryptographic hash
functionper se it provides an initial assessment on what the minimum requirements for
the Advanced Hash Standard might be, and also serves as a basis of comparison for the
future proposals in terms of securityfieiency, and flexibility. It thus potentially consti-
tutes not only a feedback, but also a valuable tool for NIST in the forthcoming “AHS”
process.

The remainder of this paper is organised as follows. We provide an overall view of
MakeLstroM-0 and define the basic mathematical notation we use in section 2. A detailed
formal description of the MeLsTrRoM-0 cOmponents, structure, and the design rationale is
explained in sections 3. through 6. Estimates of the computatidiieékacy in software
and hardware are provided in section 7. We conclude by reviewing the overall strengths
and advantages of theA¥l.strom-0 primitive in section 8.

2. MagLstroM-0 in a nutshell
MaeLsTrROM-0 processes its input iteratively, by chaining a particular compression func-
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tion based on a dedicated block cipher designed according to the Wide Trail strat-
egy [Daemen 1995, Rijmen 1997]. The basic mathematical operations involved (either
linear or nonlinear) are all defined over binary finite fields. This makes it a conservative
but arguably sound proposal [Biham 2005], and since all of its components and their in-
teractions have now been quite extensively analysed in the literature, it is our firm opinion
that the result is at once more secure, flexible, and considerably faster tinanrdyL,

from which it differs in several important points:

e The compression mode is Davies-Meyer [Menezes et al. 1999, Algorithm 9.42]
rather than Miyaguchi-Preneel [Menezes et al. 1999, Algorithm 9.43] except for
very short messages;

e The chaining scheme is a member of/3C+ family [Gauravaram et al. 2006],
which is arguably a more robust mechanism than plain Merkle-Damgard, or MD
mode [Menezes et al. 1999, Algorithm 9.25];

e The underlying block cipher features 512-bit block size but 1024-bit key size,
allowing for a doubled hash rate;

e The initial value (IV) is now a fine-tuning parameter that allows for controlled
truncation of hash values, and thwarts a simple but annoying attack against certain
common uses of hash functions.

In what follows we define and provide a rationale for each component of
MaEeLsTrOM-0 individually.

Given a messaghl, we denote its bit length byM|. We will represent the field
Fos asFo[X]/(X* + x+ 1), the fieldFs asF,[X]/(x + x* + X2 + X2 + 1), and the field? .. as
Fo[X]/ (%12 + X8 + x° + X2 + 1). In the former two cases, the moduli are the first primitive
polynomials of degrees respectively 4 and 8 listed in [Lidl and Niederreiter 1997], so in
either case the polynomialis a generator of the multiplicative group. In the latter case
the modulus is the first irreducible polynomial of degree 512 in lexicographical order. A
polynomialp = Y™ ! pi - X' € F5[X] will be denoted by the numerical valge™! p; - 2' =
p(2), and written in hexadecimal notation.

3. The compression function

An iterated hash function processes messages of theNbrsnM; M, . . . My whereg|M;| =

m, maintaining an internal state that is sequentially modified by each messagewhlock

Let u; denote théh-bit internal state after block; has been processed; for convenience
we defineuy = IV. A compression functiors a computationally one-way mappirfg:
{0,1)™x {0,1}" — {0, 1}" that updates the internal state through the wle f(M;, u_1)

fori = 1,...,k Since an iterative hash scheme is defined only for messages that can be
partitioned into equally sized blocks, a general mesdddeas to be padded to fit that
structure before it is actually processed.

MaeLsTroM-0 padsM with Merkle-Damgard strengthening [Menezes et al. 1999,
sections 9.26 and 9.32], which consists of appending @ single ‘1’-bit followed by as
many ‘0’-bits as necessary to make a string whose bitlength is a multiphe-02h minus
h/2 bits, then completing the remainimg2 bits with the binary representation (3|,
left-padded if necessary with ‘0’ bits before the most significant bit of that representation.
Hence the padded message has the fafm:= MM, ... My where|M;| = mfor 1 <i <Kk,
and the lash/2 bits of M contain the binary representation|bf|. For MaeLstrom-0 the
internal state size is always= 512 bits, and the block size is always= 2h = 1024 bits.
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To define a compression function for aM.stromM-0 we distinguish between
“short” and “long” messages in a precise meaning. A mes$ags shortif |[M| < h,
l.e. if it fits a half padded block; otherwise itleng.

A short padded messagd@’ simply undergoes one application of the Miyaguchi-
Preneel construction, yielding the (untruncated) hash va(i#, IV) = M[M'](1V) &
Ve M.

The compression function adopted for long messages is Davies-Meyer, whereby
f(Mi,ui_1) = M[M](u_1) & u;_; for some block cipheM[K](B) that encrypts a data
block B under a cipher ke¥.

Davies-Meyer is likely the most widely employed compression function in any
concrete hash proposal. But more importantly, it is the only compression function among
the 12 secure constructions analysed (in the context of a single-chain iterated hash func-
tion) by Blacket al. [Black et al. 2002] that naturally allows the underlying block cipher
to accept a key size fierent from the block size; all the remaining 11 functions XOR the
key and the data block, thus forcing either truncation or padding to cope withffaeedit
sizes, and it is unclear to what extent truncation or padding might adver$ett the
security analysis.

Quantitatively, the Miyaguchi-Preneel scheme is slightly more secure (by a
roughly constant factor) than Davies-Meyer, but thiedtence is Giset by the extra flex-
ibility in the choice of the block cipher structure, which allows for faster hashing with
the use of double-length keys. We leave it as an open problem whether the more robust
chaining scheme adopted inakl.sTrom-0 compensates for the slight securityfeirence
between Davies-Meyer and Miyaguchi-Preneel. We will come back to this issue later.

4. Chaining scheme

Short messages are not subjected to any chaining mechanismerstkbm-0. We
therefore assume for the remaining of this section that the message is lonyl’ lzet
MiM,... My be the message to hash, padded as described above. The conventional
Merkle-Damgard mode maintains a single chain of intermediate values of an internal
h-bit state. Letu; be the internal state value after blodk has been processed, i.e.

u = f(Mj,u_p) with up = IV. In that mode, the (untruncated) hash value would be
simply the final statei.

The 3C family of hash modes [Gauravaram et al. 2006], designed to display in-
crease resistance against multiblock collision attacks, generalizes the Merkle-Damgard
construction by maintaining two or more chaugss, t;, ... instead of only one. The ex-
tra chains are transformed into an extra blddk ; = g(s t ...) for some functiory,
and this block is processed to update the first chain one last time, producing the (untrun-
cated) hash value as the post-final statg = f(My.1,Us). This setting also prevents
length-extension attacks [Menezes et al. 1999, example 9.64], as we will show at the end
of this section. The second chadn present in all variants of the 3C family, is a simple
XOR accumulation of all intermediate compression function outputs, recursively defined
ass = 0,5 = u @& s_;. The overhead to maintain this chain is thus very low com-
pared with the cost of each compression function invocation. Thes®family of 3C
maintains a third chaify consisting of a dferent combination of the; states.

4



MaeLstrRoM-0 uses a linear feedback shift register (LFSR) to establish its variant
of the 3C+ family, which we call 3CM. Its third chain is recursively definedtas: 1V,
t = u @ £(ti_1) where( is a shift update defined by mapping its argument ff@ni}"
to an element o, multiplying it by the primitive element® ¢ F,, and then mapping
back to{0, 1}". Like the basic 3@ scheme, MeLstroM-0 takes the simplest choice for
the functiong(s, ty), namely, the concatenation gf andty.

The facton® was chosen so thatcan be implemented as a one-byte left-shift and
a one-byte XOR applied to (thes:2 representation offj_;. Specifically, let the formal
argumenty = 3>25v;x! of £(v) with v; € F, be represented as= %%, w;x¢*) where
w;(X) = ZZZO Vs11. X, Defining the byte valueb; = w;(2), clearlyv corresponds to
the byte sequende= (by, by, . .., bey, bs3). Thens(v) = x8v corresponds to the sequence
b = (by,...,bss ® c1[bo], Co[bg]), where the 16-bit value(by) = (ci[by] < 8) @ co[by]
is given by by < 8)® (by < 5) @ (by < 2) @ by, which can be precomputed as two
256-entry byte-valued tables[] and cp[]. We will see that the” transform is reused in
the key schedule of the dedicated block ciphér

Although the primitive elemenk might look a more obvious alternative, the
choice ofx® is meant to simplify the computation of the third chain in certain impor-
tant platforms (e.g. 8-bit smart cards, which naturally process data bytewise, and SSE2
128-bit registers, which have 8-bit shift instructions but lack straightforward 1-bit shifts),
while keeping the overhead on other platforms, either hardware or software, as low as
possible.

We conjectured above that the slight securitffedience between the Miyaguchi-
Preneel and the Davies-Meyer compression functions that shows up in the context of plain
Merkle-Damgard chaining may be compensated by the adoption of 3CMinskkom-0.

That this is a real possibility is illustrated by the fact that the 3C family contains three-
chain members (including 3CM) with increased resistance against multiblock collision
attacks even if the underlying compression function is not collision-resistant.

The reason why omitting formal chaining when hashing short messages does not
incur susceptibility to length-extension attacks is the following. Given a short message
M, its hash value is;;, = f(M][1]|0*|||M|); the attacker is assumed to knaw and M|
but notM itself. Then any message of forM* = M||1]|0 = |||M]||X for arbitrary X will
be padded tdvi||1]|0*[[|M][IX]|1]|0*|||M*[) and its hash value will ba} = f(uj & uj,u; @

Z(u) @ 22(1V), up) with uj = f(X||1)|0*|IM*|,uf) andu; = uy, which can be computed
from X, u; and|M| alone. Clearly all that is needed to thwart this extension attack is to
ensure that the attacker cannot dedugdrom u; and|MJ; sinceM is unknown to the
attacker, foM| < h this goal can be easily achieved by redefining the hash value to be
u; @ (M]/1]|0%), which means using Miyaguchi-Preneel rather than Davies-Meyer.

5. The initial value

Last, but of course not least, we must define the initial value 1V used by the first and third
chains. The immediate predecessor ofeMtrom-0, WhirLPoOL, adopted the simplest
possible choice, I\= 0°2, but made no provision for “spicing” this value if the hash value
was intended to be truncated. For comparison, SHA-224 and SHA-256 (resp. SHA-384
and SHA-512) are essentially the same algorithm witfedent initial values, truncating

the result from 256 to 224 (resp. from 512 to 384) bits at the end of the hashing process.
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M aeLstrRoM-0 offers the additional flexibility of defining afiierent IV not only for
plain truncation to any desired size, but for a general reduction magdolosome integer
g < 2", namely, by definingV = gmod 2' (note that full-length hash usé¥ = 0.
This flexibility is desirable whenever the hash valdes used in a cryptosystem as an
exponent or scalar factor, since the actual hash value isl it ratherH mod g, which
may make the scheme susceptible to an attack due to Vaudenay [Vaudenay 1996]. An
alternative is to define a rule to selegtind other system parameters, as is the case of
(EC)DSA [NIST 2000]; however, this creates the additional overhead of checking the
selection rule for both the signer and the verifier.

Vaudenay'’s attack is based on the assumption that the hash function is independent
of the desired), which can then be chosen to cause a collision of the ta(M) = H(M’)
(mod qg) (just varyM’ until H(M) — H(M’) is a prime, and take this value @s Adopting
the convention that I\= q thwarts this attack sinckl” would have to be a preimage of
H(M) + g, which we assume to be adflitult as finding a preimage of the basic hash
function (regardless of the V).

A conceivable drawback of this IV convention is that a message that has to be
repeatedly signed with varyinggcannot be hashed only once, but we deem this scenario
to be a very minor restriction since multiple or aggregate signatures most often share
the same public parameters includiggor even globally defined default parameters as
suggested in [NIST 2000]. We stress that the proposed IV convention remains useful
under such circumstances due to its potential to reduce parameter checking overheads.

6. The underlying block cipher

MaEeLstroM-0 is built upon an iterated block ciphé that only difers from thew un-
derlying WhirLpooL in the key schedule, which takes 1024-bit rather than 512-bit keys.
In simple terms, each round @fl is a composition of a nonlinear layer, two linear layers,
and an &ine key addition layer, all of them operation on the internal 512-bit state. Cor-
respondingly, each step of the key schedule consists offare d024-bit key evolution
transform and a nonlinear 512-bit subkey extraction function.

We briefly recall the basic concepts on whigh is based, then describe the ci-
pher in terms of its component transforms, designed according to the Wide Trail strat-
egy [Daemen 1995, Rijmen 1997].

6.1. Preliminaries

A product ofmdistinct Boolean variables is called amth order product of the variables.
Every Boolean functiorf : (F,)" — F, can be written as a sum ovEs of distinct m-
order products of its argumentsOm < n; this is called the algebraic normal form of
Thenonlinear orderof f, denoted/(f), is the maximum order of the terms appearing in
its algebraic normal form. Ainear Boolean function is a Boolean function of nonlinear
order 1, i.e. its algebraic normal form only involves isolated arguments. @ve(F,)",

we denote by, : (F,)" — F, the linear Boolean function consisting of the sum of the
argument bits selected by the bitsaf

n-1
|(l(X) = @(Yi - X
i=0
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A mappingS : Fx — Fa, X — S[X], is called asubstitution boxor S-box for
short. An S-box can also be viewed as a mapgng (F;)" — (F,)" and therefore
described in terms of its component Boolean functignqF,)" —» F,,0<i<n-1,i.e.
S[X] = (so(X), - - -, Sr-1(X)).

The nonlinear orderof an S-boxS, denotedvs, is the minimum nonlinear order
over all linear combinations of the componentsSof

Vs = aEr(]]g?S”{V(la o S)}.

Thes-parameterof an S-boxS is defined as

Os = 2. max#{c € Fon | S[C@ a] @ S[C] = b}
a#0,b

The value 2 - § is called thdifferential uniformityof S.

Thecorrelation  f, g) between two Boolean functiorfsandg is defined as:
c(f,g) = 2" #x| f(X) = g(x)} - 1.

The extreme value (i.e. either the minimum or the maximum, whichever is larger in ab-
solute value) of the correlation between linear functions of input bits and linear functions
of output bits ofS is called thebiasof S. The A-parameterof an S-boxS is defined as

the absolute value of the bias:

As = max |c(li,li o S)|.
S (i,j>¢(o,0)|(' oS

The Hamming distance between two vectoendv from then-dimensional vec-
tor spacelf)" is the number of coordinates wharandv differ. The Hamming weight
wp(a) of an element € (F)" is the Hamming distance betwearand the null vector
of (F»)", i.e. the number of nonzero componentsaofA linear [n, k, d] codeover Fy
Is ak-dimensional subspace of the vector spa&e){, where the Hamming distance be-
tween any two distinct subspace vectors is at lea&ndd is the largest number with
this property). Agenerator matrix Gor a linear p, k, d] codeC is ak x n matrix whose
rows form a basis fo€. A generator matrix is irechelonor standardform if it has the
form G = [l | Axn-k], Wherel. is the identity matrix of ordek. We write simply
G = [I | A] omitting the indices wherever the matrix dimensions are irrelevant for the
discussion, or clear from the context. LinearK, d] codes obey th&ingleton bound
d < n—k+1. A code that meets the bound, ice= n—k+1, is called anaximal distance
separablg§MDS) code. A lineari, k, d] codeC with generator matric = [li | Auxn-k)]
iIs MDS if, and only if, every square submatrix formed from rows and columns igf
nonsingular (cf. [MacWilliams and Sloane 1977, chapter§i,,theorem 8]).

Thebranch numbes of a linear mapping : (Fa»)* — (F)™ is defined as
B(6) = minfwa(a) +wn(6(a))}-
Given a k + m k, d] linear code oveif, with generator matridxG = [l | Mixm], the

linear mapping : (F»»)* — (F»)™ defined byd(a) = a-M has branch numbes(d) = d; if
the code is MDS, such a mapping is calledogmimal djfusion mappingRijmen 1997].
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Table 1. The W HIRLPooL S-box
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BO,
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60,
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BD,
FB,
634
E9,
B4,
97,
3F,
B2,
5E,
51,
3¢,
2A,
164

234
BCy
774
5D,
EE,
02,
OF,
54,
00,
55,
E6,
78,
99,
81,
BB,
34,

C6y
9B,
37,
10,
7Cy
AA,
D5,
93,
CF,4
A2,
OE,
38,
6Dy
94,
Cly
69

E8,
8E,
E5,
F4,
66y
714
80,
22,
2B,
EA,
1F,
8Cy
0Dy
F7,
53,
09,

87x
A3,
9F,
CB,4
DDy
84
BE,
64,
765
65y
62,
D1,
FA,
B9,
DCy
70,

B8,
0C,
FO,
3E,
17,
19,
CD,
F1,
82,
BA,
D4,
A5,
DF,
13,
0B,
B6

01,
7B
4A,
05,
47,
49,
34,
73,
D6y
2F,
A8,
E2,
7E,
2C,
9D,
DO,

4F,
35,
DA,
674
9E,
D9,
48,
12,
1By
COy
96,
61y
24,
D3,
6Cy
EDy

365
1D,
58,
E4,
CA,
F2,
FF,
40,
B5,
DE,
F9,
B3,
3B,
E7y
31,
CCy

A6y
EQ,
C9y
274
2D,
E3,
7A,
08,
AF,
1Cy
C5y
21,
AB,
6E,
74,
42,

D2y
D7y
29,
41,
BF,
5By
90,
C3y4
6A,
FDy
25,
9C,
CEy
Cdy
F6y
98,

F5,
C2y
0A,
8B,
07,
88,
5F,
ECy
50,
4D,
59,
1E,
11,
03,
46,
A4,

79
2E,
B1,
A7,
AD,
9A,
20,
DB,
45,
92,
84,
43,
8F,
56,
ACy
28,

6Fy
4B,
AQ,
7Dy
5A,
26y
68y
Al,
F3,
754
72,
C7y
4E,
44,
89,
5Cy

91,
FE,
6B,
95,
83,
32,
1A,
8D,
30,
06,
39,
FCy
B7,
7Fy
14,
F8,

52,
57,
85
D8,
33,
BO,
AE,
3D,
EF,
8A,
4C,
04,
EB,
A9,
El,
865

6.2. The nonlinear layery

Functiony : GLg(F») — GLg(Fx) consists of the parallel application of a nonlinear
S-boxS : Fx — Fus, X — S[X] to all bytes of the argument individually:

Y@ =b o b =S[g;], 0<i,j<7.

MaeLsTrROM-0 uses the same S-box as its predecessarMbor (see [ISQIEC 2004]).

This S-box satisfies the following properties:

The detailed microstructure and the rationale on the choice of that particular S-box is
found in [Barreto and Rijmen 2000]. For completeness, we list that S-box in table 1.

e Thes-parameter is & 278,

e TheA-parameter is 14 275.

e The non-linear order is maximum, namely, 7.

6.3. The cyclical permutationsx

The permutationr : GLg(Fss) — GLg(F4s) cyclically shifts each column of its argument
independently, so that columns shifted downwards by positions:

(@) = b & byj = & modgj, 0<i,j<7.

The purpose of is to disperse the bytes of each row among all rows.

6.4. The linear diffusion layer@

The MaeLstrom-0 diffusion layerd : GLg(Fy) — GLg(Fg) is directly inherited from

its predecessor, WkiLrooL (see [ISQIEC 2004]). It is a linear mapping based on the

[16, 8,9] MDS code with generator matri@: = [I | C] whereC is the circulant matrix
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cir(®1,,01,,04,,01,,08,, 05, 02,,09,), so that¥d(a) = b & b = a- C. The dfect ofo

IS to mix the bytes in each state row. The detailed rationale on this choesdbund

in [Barreto and Rijmen 2000, revised May 2003]; for completeness, we list hel@ the
matrix:

[ 01, 01, 04, 01, 08, 05, 02, 09, ]
09, 01, 01, 04, 01, 08, 05, 02,
02, 09, 01, 01, 04, 01, 08, 05,
05, 02, 09, 01, 01, 04, 01, 08,
08, 05, 02, 09, 01, 01, 04, 01,
01, 08, 05, 02, 09, 01, 01, 04,
04, 01, 08, 05, 02, 09, 01, 01,

| 01, 04, 01, 08, 05, 02, 09, 01, |

6.5. The key additiono[K]

The dfine key additiono[k] : GLg(Fxs) — GLg(Fs) consists of the bitwise addition
(XOR) of a key matrixk € GLg(Fs):

olKl(@) =b e b =a;ekj, 0<i,j<7.

6.6. The round function p[K]

The r-th round function is the composite mappipfk] : GLg(Fx) — GLg(Fss),
parametrised by the key matrkxe GLg(F») and given by:

plkl = ok ofomoy

6.7. The round constantsc'
The round constant for theth round,r > 0, is a matrixc’ € GLg(F2) defined as

G = S[lér+j], 0<j<7,
¢, = S[16r+8+j], 0<j<7,
G = 0,i#37,0<j<7

6.8. The key schedule

The key schedule expands the 1024-bit cipher Kegnto a sequence of 512-bit round
keysK?, ..., KR with K" € GLg(Fx). The bit sequenc& = (Vo,...,Viga) is initially
mapped to a column-vect@t_; = (k2 k%) € Fasi X Fasz by the rulesc, = 3535 vpet,
K_1 = Z?ié Vj+512X511_J-

At each steps > 0 the column-vectofKs 1 = (kos 2, k25 1) IS transformed into
a new vector by thd&ey evolution transformi(s = (kos, k25:1) = & - Ks 1 + Cs, Where
& € GLy(Fos12) is defined as
1 1
X x84+1

and the elements of the column-vect®s = (Cps, Cosi1) € Fosiz X Fosi2 correspond to
the round constants® and c®*, respectively. This matrix generates a multiplicative

E=

9



subgroup of GhL(Fs12) of sizeO(2°19). Besides, it and at least its first 100000 powers are
all MDS.

Recall that multiplication by® € Fys12 is accomplished by thetransform defined
in the context of the third 3CM chain. Thus each key evolution transform costs only one
£ invocation plus twds:. additions.

The actual round keys are given BY = (k;), where thekey extraction function
Y consists of mapping to a matrixk" € GLg(Fs), then applying the S-box to the lings
such that! is nontrivial (i.e. does not consist of a sequence of Rulelements) obtaining
the modified matrix", and finally applying the linear fiusion layer to those same lines
exclusively,Ki = k{ - C, the remaining lines dk" coinciding with the corresponding lines
of k.

Notice that, sinceR is even, the key evolution transform as described produces
one extra elemenig.1, Which is discarded.

This scheduling scheme is lighter than that ofui¥rooL, yet its nonlinearity is
higher than that of the AES [NIST 2001]. The present choice ensures that it is not possi-
ble to choose a étierence in the key input such that the inputetiences to all the S-box
applications due to the key extraction function are zero, i.e. it prevents an attacker from
completely avoiding the nonlinearity in the key schedule. To achieve this, the minimum
total number of 8< 8 S-box applications for a 1024-bit key along its evolution must be
1024/8 = 128 (the actual number of S-box applications in thesMtrom-0 key schedule
is 16(R + 1) = 176) and the mapping from the key to the S-boxes inputs must be bijec-
tive (as it indeed is, since the key evolution transformfima and all powers of are
nonsingular).

6.9. The complete internal ciphermM

Given a sequence of functioffig, fni1, - .., fn-1, fa, M < N, we use the notatio®,._,,, f =
fmo fnpr0---0ofr g0 fy,andO;" f; = foo fhjo0-- 0 fug 0 fy; if M > n, both expressions
stand for the identity mapping.

The dedicatedR-round block ciphetM[K] : GLg(Fus) x (F2)%%* — GLg(Fys) is
defined as

r=R r 0
MIK) = (St o o1k
where the round keyk?, ..., KR are derived fronK by the key schedule.

7. Efficiency

All implementation techniques proposed for components shared betwegnrdér and
MaeLstrRoM-0 remain valid [Barreto and Rijmen 2000, section 7]. Techniques specific to
the few new components like tlfgransform have already been pointed out in the text.

Using the WhrLrooL reference implementation in C as basis for a direct (non-
optimized) implementation of MeLstroM-0 in I1A-32 assembly language, we observe the
results listed in table 2 for messages 1500 bytes long, the typical size of an IP packet.
The benchmark platform is an Intel Pentium M 1.40 GHz processor. The core operation
consists of the underlying cipher operating in the proper chaining mode and compres-
sion function. The full timings take lkering, padding, and other kinds of overhead into
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Table 2. Efficiency (cycles/byte)
WhHirLPOOL | MAELSTROM-0
Core 126 30

Full 157 103

Table 3. Extrapolation (cycles/byte)
SHA-512 | WHairLrooL | SHA-256 | MAELsTROM-0

40 36 22 14

account. All figures refer to the full 512-bit hash value to avoid extra costs needed for
truncations or modular reductions.

We remark that, for the full timings, virtually the samefiaun processing code was
used for WirLpooL and MaeLstrom-0, namely the reference code forairoor with a
few changes to account for AdLstrom-0’s differing block size. When originally written,
this code didn’t require optimization as it wasn’t considered a bottleneck fokndboL,
but the full timing figures indicate MeLstrRom-0 is severely fiected by the ingiciency
of this code; unfortunately, due to time constraints, we were unable to optimize it. We
are confident that a properly optimized implementation dfdaprocessing will achieve
considerably better figures.

Extrapolating to MeLstrom-0 the best results on MikirooL available to us
in software (exploiting the use of assembly language instructions on an 1A-32 plat-
form) [Nakajima and Matsui 2002], we anticipate the figures in table 3 for messages of
the same size above or longer, concentrating on the core operation.

Similar extrapolation factors may be expected in throughput-oriented FPGA de-
vices [Kitsos and Koufopavlou 2004] with only a modest increase in hardware resources
(say, about 15%). That would produce a throughput of nearly 12.§<iia frequency
of about 90 MHz, using roughly 6500 CLB slices. Although the expected number of
CLB slices is nearly six times that of SHA-512, the corresponding throughput is almost
27 times higher for MeLstrom-0. Alternatively, one may be interested in minimizing
the required hardware resources [Pramstaller et al. 2006]; this might produce a through-
put of nearly 1 Gbjs at a frequency of about 130 MHz, using roughly 1700 CLB slices.
This is less than the expected resources needed for either SHA-512 or SHA-384, yet the
throughput is 2—3 times higher.

We stress that these are only estimates; a complete hardware project will include
the still experimental (and therefore omitted) special handling of very short messages.

8. Conclusion

We have presented Mrstrom-0, an evolution of WirLpooL that incorporates the state-
of-the-art in the design of cryptographically secure hash functions. The overall structure
of MaeLstroM-0 makes it essentially platform-independent, yet facilitates exploiting the
features of each particular environment. Still, its improved design makes it faster and
arguably more robust than its predecessor and other comparable hash functions like SHA-
512.

11



We hope that MeLstrom-0 fulfils its role not merely as a new hash function,
but as a feedback to NIST on which minimum requirements the future “Advanced Hash
Standard” should satisfy, and also as a valuable comparison tool for AHS candidates in
terms of security, #iciency, and flexibility.
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