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Abstract. In this paper we presentM-0, an evolution of theW
hash function with variable output length up to 512 bits. As its predecessor,
M-0 is not oriented towards any particular platform, but its implemen-
tation flexibility facilitates exploiting the features of each underlying environ-
ment. On the other hand, the improved design ofM-0 makes it faster
and arguably more robust than its predecessor and other existing hash func-
tions. By incorporating the state-of-the-art in the design of cryptographically
secure hash functions,M-0 not only constitutes a new primitiveper se,
but also provides an initial assessment on what the minimum requirements for
NIST’s “Advanced Hash Standard” might be, and might serve as a valuable
comparison tool for future AHS proposals in terms of security, efficiency, and
flexibility.

1. Introduction

Hash functions, intuitively speaking, are algorithms intended to generate short, (virtually)
unique representatives of (virtually) arbitrarily long messages, so that these representa-
tives can replace the messages in certain computationally expensive processes. Crypto-
graphic hash functions are often adopted as practical instantiations of the more abstract
concept of random oracles [Bellare and Rogaway 1993], which are at the core of most
cryptosystems designed to provide data integrity and authentication without sacrificing
efficiency. Even though some newly proposed alternatives do not rely on random oracles
(see e.g. [Boneh and Boyen 2004]), these do not cover all possible needs of a security
system, nor are they compatible with the conventional, currently deployed public-key in-
frastructure in a global scale. Besides, hash functions have long found their way into
related but different applications, like confirmation of knowledge, password-based key
derivation and pseudo-random number generation [Menezes et al. 1999, section 9.2.6]. It
is therefore likely that hash functions will continue to play a prominent role in crypto-
graphic applications for the foreseeable future.

Formally, hash functions map bit strings of any length less than some upper
boundm to bit strings of some fixed lengthn. A hash functionH : {0,1}<m → {0,1}n

is said to becryptographically secureif at least the following conditions are satis-
fied [Rogaway and Shrimpton 2004]:

1. (First pre-image resistance) Given a hash valueR ∈ {0,1}n, it is computationally
infeasible to find a messageM ∈ {0,1}<m such thatH(M) = R;



2. (Second pre-image resistance) Given a messageM ∈ {0,1}∗ (and, implicitly,
its hash valueR = H(M), so thatM constitutes a first pre-image ofR), it is
computationally infeasible to find a distinct messageM′ ∈ {0,1}<m such that
H(M′) = H(M).

3. (Collision resistance) It is computationally infeasible to find two distinct messages
M,M′ ∈ {0,1}<m such thatH(M) = H(M′), regardless of what the actual hash
value is.

By “computationally infeasible” we mean that the effort to break any of these conditions
should be exponential in the hash sizen; typically one expectsO(2n) steps to violate the
first condition,O(2n/2) steps to violate the last one, and something in between for the
second condition [Kelsey and Schneier 2004, Kohno and Kelsey 2006]. Because of this,
it is advisable to restrictm6 2n/2 at most.

The recent crisis caused by the successful cryptanalysis of standardized hash
functions like MD5, RIPEMD, SHA-0 and (to some extent) SHA-1, for which the last
condition above was provennot to hold in multiblock collision attacks [Klima 2006,
Wang et al. 2005a, Wang et al. 2005b, Wang and Yu 2005], has motivated a renewed in-
terest in the design of cryptographically secure hash functions. It has also led NIST to
prepare a new, soon to be announced international quest to define an “Advanced Hash
Standard,” similar to the Advanced Encryption Standard quest that NIST initiated nearly
a decade ago. Currently, NIST is gathering feedback from the cryptological community
on what the minimum requirements the candidate functions should satisfy to take part in
the quest.

In this paper we describe M-0, an evolution of the W hash func-
tion with variable output length up to 512 bits, designed to achieve higher processing
speed, particularly for longer messages. As its predecessor, M-0 implemen-
tations on 8-bit and 64-bit processors benefit especially from the function structure,
which nevertheless is not oriented towards any particular platform. On the other hand,
M-0 improves upon its predecessor with techniques not available at the time
Wwas designed, providing for greater flexibility and a more robust security anal-
ysis. In a sense, we feel that M-0 represents the state-of-the-art in the design of
cryptographically secure hash functions; as such, besides being a new cryptographic hash
functionper se, it provides an initial assessment on what the minimum requirements for
the Advanced Hash Standard might be, and also serves as a basis of comparison for the
future proposals in terms of security, efficiency, and flexibility. It thus potentially consti-
tutes not only a feedback, but also a valuable tool for NIST in the forthcoming “AHS”
process.

The remainder of this paper is organised as follows. We provide an overall view of
M-0 and define the basic mathematical notation we use in section 2. A detailed
formal description of the M-0 components, structure, and the design rationale is
explained in sections 3. through 6. Estimates of the computational efficiency in software
and hardware are provided in section 7. We conclude by reviewing the overall strengths
and advantages of the M-0 primitive in section 8.

2. M-0 in a nutshell

M-0 processes its input iteratively, by chaining a particular compression func-
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tion based on a dedicated block cipher designed according to the Wide Trail strat-
egy [Daemen 1995, Rijmen 1997]. The basic mathematical operations involved (either
linear or nonlinear) are all defined over binary finite fields. This makes it a conservative
but arguably sound proposal [Biham 2005], and since all of its components and their in-
teractions have now been quite extensively analysed in the literature, it is our firm opinion
that the result is at once more secure, flexible, and considerably faster than W,
from which it differs in several important points:

• The compression mode is Davies-Meyer [Menezes et al. 1999, Algorithm 9.42]
rather than Miyaguchi-Preneel [Menezes et al. 1999, Algorithm 9.43] except for
very short messages;
• The chaining scheme is a member of 3C/3C+ family [Gauravaram et al. 2006],

which is arguably a more robust mechanism than plain Merkle-Damgård, or MD
mode [Menezes et al. 1999, Algorithm 9.25];
• The underlying block cipher features 512-bit block size but 1024-bit key size,

allowing for a doubled hash rate;
• The initial value (IV) is now a fine-tuning parameter that allows for controlled

truncation of hash values, and thwarts a simple but annoying attack against certain
common uses of hash functions.

In what follows we define and provide a rationale for each component of
M-0 individually.

Given a messageM, we denote its bit length by|M|. We will represent the field
F24 asF2[x]/(x4+ x+ 1), the fieldF28 asF2[x]/(x8+ x4+ x3+ x2+ 1), and the fieldF2512 as
F2[x]/(x512+ x8 + x5 + x2 + 1). In the former two cases, the moduli are the first primitive
polynomials of degrees respectively 4 and 8 listed in [Lidl and Niederreiter 1997], so in
either case the polynomialx is a generator of the multiplicative group. In the latter case
the modulus is the first irreducible polynomial of degree 512 in lexicographical order. A
polynomialp =

∑m−1
i=0 pi · xi ∈ F2[x] will be denoted by the numerical value

∑m−1
i=0 pi · 2i =

p(2), and written in hexadecimal notation.

3. The compression function
An iterated hash function processes messages of the formM′ = M1M2 . . .Mk where|Mi | =

m, maintaining an internal state that is sequentially modified by each message blockMi.
Let ui denote theh-bit internal state after blockMi has been processed; for convenience
we defineu0 = IV. A compression functionis a computationally one-way mappingf :
{0,1}m × {0,1}h → {0,1}h that updates the internal state through the ruleui = f (Mi ,ui−1)
for i = 1, . . . , k. Since an iterative hash scheme is defined only for messages that can be
partitioned into equally sized blocks, a general messageM has to be padded to fit that
structure before it is actually processed.

M-0 padsM with Merkle-Damgård strengthening [Menezes et al. 1999,
sections 9.26 and 9.32], which consists of appending toM a single ‘1’-bit followed by as
many ‘0’-bits as necessary to make a string whose bitlength is a multiple ofm= 2h minus
h/2 bits, then completing the remainingh/2 bits with the binary representation of|M|,
left-padded if necessary with ‘0’ bits before the most significant bit of that representation.
Hence the padded message has the formM′ = M1M2 . . .Mk where|Mi | = m for 1 6 i 6 k,
and the lasth/2 bits ofMk contain the binary representation of|M|. For M-0 the
internal state size is alwaysh = 512 bits, and the block size is alwaysm= 2h = 1024 bits.

3



To define a compression function for M-0 we distinguish between
“short” and “long” messages in a precise meaning. A messageM is short if |M| < h,
i.e. if it fits a half padded block; otherwise it islong.

A short padded messageM′ simply undergoes one application of the Miyaguchi-
Preneel construction, yielding the (untruncated) hash valuef (M′, IV) ≡ M[M′](IV) ⊕
IV ⊕ M′.

The compression function adopted for long messages is Davies-Meyer, whereby
f (Mi ,ui−1) ≡ M[Mi](ui−1) ⊕ ui−1 for some block cipherM[K](B) that encrypts a data
block B under a cipher keyK.

Davies-Meyer is likely the most widely employed compression function in any
concrete hash proposal. But more importantly, it is the only compression function among
the 12 secure constructions analysed (in the context of a single-chain iterated hash func-
tion) by Blacket al. [Black et al. 2002] that naturally allows the underlying block cipher
to accept a key size different from the block size; all the remaining 11 functions XOR the
key and the data block, thus forcing either truncation or padding to cope with the different
sizes, and it is unclear to what extent truncation or padding might adversely affect the
security analysis.

Quantitatively, the Miyaguchi-Preneel scheme is slightly more secure (by a
roughly constant factor) than Davies-Meyer, but this difference is offset by the extra flex-
ibility in the choice of the block cipher structure, which allows for faster hashing with
the use of double-length keys. We leave it as an open problem whether the more robust
chaining scheme adopted in M-0 compensates for the slight security difference
between Davies-Meyer and Miyaguchi-Preneel. We will come back to this issue later.

4. Chaining scheme

Short messages are not subjected to any chaining mechanism in M-0. We
therefore assume for the remaining of this section that the message is long. LetM′ =
M1M2 . . .Mk be the message to hash, padded as described above. The conventional
Merkle-Damgård mode maintains a single chain of intermediate values of an internal
h-bit state. Letui be the internal state value after blockMi has been processed, i.e.
ui = f (Mi ,ui−1) with u0 = IV. In that mode, the (untruncated) hash value would be
simply the final stateuk.

The 3C family of hash modes [Gauravaram et al. 2006], designed to display in-
crease resistance against multiblock collision attacks, generalizes the Merkle-Damgård
construction by maintaining two or more chainsui , si , ti , . . . instead of only one. The ex-
tra chains are transformed into an extra blockMk+1 = g(sk, tk, . . . ) for some functiong,
and this block is processed to update the first chain one last time, producing the (untrun-
cated) hash value as the post-final stateuk+1 = f (Mk+1,uk). This setting also prevents
length-extension attacks [Menezes et al. 1999, example 9.64], as we will show at the end
of this section. The second chainsi, present in all variants of the 3C family, is a simple
XOR accumulation of all intermediate compression function outputs, recursively defined
as s0 = 0, si = ui ⊕ si−1. The overhead to maintain this chain is thus very low com-
pared with the cost of each compression function invocation. The 3C+ subfamily of 3C
maintains a third chainti consisting of a different combination of theui states.
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M-0 uses a linear feedback shift register (LFSR) to establish its variant
of the 3C+ family, which we call 3CM. Its third chain is recursively defined ast0 = IV,
ti = ui ⊕ ζ(ti−1) whereζ is a shift update defined by mapping its argument from{0,1}h

to an element ofF2h, multiplying it by the primitive elementx8 ∈ F∗
2h, and then mapping

back to{0,1}h. Like the basic 3C+ scheme, M-0 takes the simplest choice for
the functiong(sk, tk), namely, the concatenation ofsk andtk.

The factorx8 was chosen so thatζ can be implemented as a one-byte left-shift and
a one-byte XOR applied to (theF2512 representation of)ti−1. Specifically, let the formal
argumentv =

∑511
j=0 vj x j of ζ(v) with vj ∈ F2 be represented asv =

∑63
j=0 w j x8(63− j) where

w j(x) =
∑7
`=0 v511−`x7−`. Defining the byte valuesbj = w j(2), clearlyv corresponds to

the byte sequenceb = (b0,b1, . . . ,b62,b63). Thenζ(v) = x8v corresponds to the sequence
b = (b1, . . . ,b63 ⊕ c1[b0], c0[b0]), where the 16-bit valuec(b0) ≡ (c1[b0] � 8) ⊕ c0[b0]
is given by (b0 � 8) ⊕ (b0 � 5) ⊕ (b0 � 2) ⊕ b0, which can be precomputed as two
256-entry byte-valued tablesc1[] and c0[]. We will see that theζ transform is reused in
the key schedule of the dedicated block cipherM.

Although the primitive elementx might look a more obvious alternative, the
choice ofx8 is meant to simplify the computation of the third chain in certain impor-
tant platforms (e.g. 8-bit smart cards, which naturally process data bytewise, and SSE2
128-bit registers, which have 8-bit shift instructions but lack straightforward 1-bit shifts),
while keeping the overhead on other platforms, either hardware or software, as low as
possible.

We conjectured above that the slight security difference between the Miyaguchi-
Preneel and the Davies-Meyer compression functions that shows up in the context of plain
Merkle-Damgård chaining may be compensated by the adoption of 3CM in M-0.
That this is a real possibility is illustrated by the fact that the 3C family contains three-
chain members (including 3CM) with increased resistance against multiblock collision
attacks even if the underlying compression function is not collision-resistant.

The reason why omitting formal chaining when hashing short messages does not
incur susceptibility to length-extension attacks is the following. Given a short message
M, its hash value isu1 = f (M‖1‖0∗‖|M|); the attacker is assumed to knowu1 and |M|
but notM itself. Then any message of formM+ = M‖1‖0 ∗ ‖|M|‖X for arbitraryX will
be padded toM‖1‖0∗‖|M|‖X‖1‖0∗‖|M+|) and its hash value will beu+3 = f (u+2 ⊕ u+1 ,u

+
2 ⊕

ζ(u+1) ⊕ ζ2(IV),u+2) with u+2 = f (X‖1‖0∗‖|M+|,u+1) andu+1 = u1, which can be computed
from X, u1 and |M| alone. Clearly all that is needed to thwart this extension attack is to
ensure that the attacker cannot deduceu+1 from u1 and |M|; sinceM is unknown to the
attacker, for|M| < h this goal can be easily achieved by redefining the hash value to be
u1 ⊕ (M‖1‖0∗), which means using Miyaguchi-Preneel rather than Davies-Meyer.

5. The initial value
Last, but of course not least, we must define the initial value IV used by the first and third
chains. The immediate predecessor of M-0, W, adopted the simplest
possible choice, IV= 0512, but made no provision for “spicing” this value if the hash value
was intended to be truncated. For comparison, SHA-224 and SHA-256 (resp. SHA-384
and SHA-512) are essentially the same algorithm with different initial values, truncating
the result from 256 to 224 (resp. from 512 to 384) bits at the end of the hashing process.
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M-0 offers the additional flexibility of defining a different IV not only for
plain truncation to any desired size, but for a general reduction moduloq for some integer
q 6 2h, namely, by definingIV ≡ q mod 2h (note that full-length hash usesIV ≡ 0h).
This flexibility is desirable whenever the hash valueH is used in a cryptosystem as an
exponent or scalar factor, since the actual hash value is notH but ratherH modq, which
may make the scheme susceptible to an attack due to Vaudenay [Vaudenay 1996]. An
alternative is to define a rule to selectq and other system parameters, as is the case of
(EC)DSA [NIST 2000]; however, this creates the additional overhead of checking the
selection rule for both the signer and the verifier.

Vaudenay’s attack is based on the assumption that the hash function is independent
of the desiredq, which can then be chosen to cause a collision of the formH(M) ≡ H(M′)
(mod q) (just varyM′ until H(M)−H(M′) is a prime, and take this value asq). Adopting
the convention that IV= q thwarts this attack sinceM′ would have to be a preimage of
H(M) ± q, which we assume to be as difficult as finding a preimage of the basic hash
function (regardless of the IV).

A conceivable drawback of this IV convention is that a message that has to be
repeatedly signed with varyingq cannot be hashed only once, but we deem this scenario
to be a very minor restriction since multiple or aggregate signatures most often share
the same public parameters includingq, or even globally defined default parameters as
suggested in [NIST 2000]. We stress that the proposed IV convention remains useful
under such circumstances due to its potential to reduce parameter checking overheads.

6. The underlying block cipher

M-0 is built upon an iterated block cipherM that only differs from theW un-
derlying W in the key schedule, which takes 1024-bit rather than 512-bit keys.
In simple terms, each round ofM is a composition of a nonlinear layer, two linear layers,
and an affine key addition layer, all of them operation on the internal 512-bit state. Cor-
respondingly, each step of the key schedule consists of an affine 1024-bit key evolution
transform and a nonlinear 512-bit subkey extraction function.

We briefly recall the basic concepts on whichM is based, then describe the ci-
pher in terms of its component transforms, designed according to the Wide Trail strat-
egy [Daemen 1995, Rijmen 1997].

6.1. Preliminaries

A product ofmdistinct Boolean variables is called anm-th order product of the variables.
Every Boolean functionf : (F2)n → F2 can be written as a sum overF2 of distinct m-
order products of its arguments, 06 m6 n; this is called the algebraic normal form off .
Thenonlinear orderof f , denotedν( f ), is the maximum order of the terms appearing in
its algebraic normal form. Alinear Boolean function is a Boolean function of nonlinear
order 1, i.e. its algebraic normal form only involves isolated arguments. Givenα ∈ (F2)n,
we denote bylα : (F2)n → F2 the linear Boolean function consisting of the sum of the
argument bits selected by the bits ofα:

lα(x) ≡
n−1⊕
i=0

αi · xi .
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A mappingS : F2n → F2n, x 7→ S[x], is called asubstitution box, or S-box for
short. An S-box can also be viewed as a mappingS : (F2)n → (F2)n and therefore
described in terms of its component Boolean functionssi : (F2)n→ F2, 0 6 i 6 n− 1, i.e.
S[x] = (s0(x), . . . , sn−1(x)).

Thenonlinear orderof an S-boxS, denotedνS, is the minimum nonlinear order
over all linear combinations of the components ofS:

νS ≡ min
α∈(F2)n

{ν(lα ◦ S)}.

Theδ-parameterof an S-boxS is defined as

δS ≡ 2−n ·max
a,0,b

#{c ∈ F2n | S[c⊕ a] ⊕ S[c] = b}.

The value 2n · δ is called thedifferential uniformityof S.

Thecorrelation c( f ,g) between two Boolean functionsf andg is defined as:

c( f ,g) ≡ 21−n · #{x | f (x) = g(x)} − 1.

The extreme value (i.e. either the minimum or the maximum, whichever is larger in ab-
solute value) of the correlation between linear functions of input bits and linear functions
of output bits ofS is called thebiasof S. Theλ-parameterof an S-boxS is defined as
the absolute value of the bias:

λS ≡ max
(i, j),(0,0)

|c(l i , l j ◦ S)|.

The Hamming distance between two vectorsu andv from then-dimensional vec-
tor space (F2p)n is the number of coordinates whereu andv differ. The Hamming weight
wh(a) of an elementa ∈ (F2p)n is the Hamming distance betweena and the null vector
of (F2p)n, i.e. the number of nonzero components ofa. A linear [n, k,d] codeoverF2p

is ak-dimensional subspace of the vector space (F2p)n, where the Hamming distance be-
tween any two distinct subspace vectors is at leastd (andd is the largest number with
this property). Agenerator matrix Gfor a linear [n, k,d] codeC is ak × n matrix whose
rows form a basis forC. A generator matrix is inechelonor standardform if it has the
form G = [Ik×k | Ak×(n−k)], whereIk×k is the identity matrix of orderk. We write simply
G = [I | A] omitting the indices wherever the matrix dimensions are irrelevant for the
discussion, or clear from the context. Linear [n, k,d] codes obey theSingleton bound:
d 6 n−k+1. A code that meets the bound, i.e.d = n−k+1, is called amaximal distance
separable(MDS) code. A linear [n, k,d] codeCwith generator matrixG = [Ik×k | Ak×(n−k)]
is MDS if, and only if, every square submatrix formed from rows and columns ofA is
nonsingular (cf. [MacWilliams and Sloane 1977, chapter 11,§4, theorem 8]).

Thebranch numberB of a linear mappingθ : (F2p)k → (F2p)m is defined as

B(θ) ≡ min
a,0
{wh(a) + wh(θ(a))}.

Given a [k + m, k,d] linear code overF2p with generator matrixG = [Ik×k | Mk×m], the
linear mappingθ : (F2p)k → (F2p)m defined byθ(a) = a·M has branch numberB(θ) = d; if
the code is MDS, such a mapping is called anoptimal diffusion mapping[Rijmen 1997].
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Table 1. The W  S-box
00x 01x 02x 03x 04x 05x 06x 07x 08x 09x 0Ax 0Bx 0Cx 0Dx 0Ex 0Fx

00x 18x 23x C6x E8x 87x B8x 01x 4Fx 36x A6x D2x F5x 79x 6Fx 91x 52x

10x 60x BCx 9Bx 8Ex A3x 0Cx 7Bx 35x 1Dx E0x D7x C2x 2Ex 4Bx FEx 57x

20x 15x 77x 37x E5x 9Fx F0x 4Ax DAx 58x C9x 29x 0Ax B1x A0x 6Bx 85x

30x BDx 5Dx 10x F4x CBx 3Ex 05x 67x E4x 27x 41x 8Bx A7x 7Dx 95x D8x

40x FBx EEx 7Cx 66x DDx 17x 47x 9Ex CAx 2Dx BFx 07x ADx 5Ax 83x 33x

50x 63x 02x AAx 71x C8x 19x 49x D9x F2x E3x 5Bx 88x 9Ax 26x 32x B0x

60x E9x 0Fx D5x 80x BEx CDx 34x 48x FFx 7Ax 90x 5Fx 20x 68x 1Ax AEx

70x B4x 54x 93x 22x 64x F1x 73x 12x 40x 08x C3x ECx DBx A1x 8Dx 3Dx

80x 97x 00x CFx 2Bx 76x 82x D6x 1Bx B5x AFx 6Ax 50x 45x F3x 30x EFx

90x 3Fx 55x A2x EAx 65x BAx 2Fx C0x DEx 1Cx FDx 4Dx 92x 75x 06x 8Ax

A0x B2x E6x 0Ex 1Fx 62x D4x A8x 96x F9x C5x 25x 59x 84x 72x 39x 4Cx

B0x 5Ex 78x 38x 8Cx D1x A5x E2x 61x B3x 21x 9Cx 1Ex 43x C7x FCx 04x

C0x 51x 99x 6Dx 0Dx FAx DFx 7Ex 24x 3Bx ABx CEx 11x 8Fx 4Ex B7x EBx

D0x 3Cx 81x 94x F7x B9x 13x 2Cx D3x E7x 6Ex C4x 03x 56x 44x 7Fx A9x

E0x 2Ax BBx C1x 53x DCx 0Bx 9Dx 6Cx 31x 74x F6x 46x ACx 89x 14x E1x

F0x 16x 3Ax 69x 09x 70x B6x D0x EDx CCx 42x 98x A4x 28x 5Cx F8x 86x

6.2. The nonlinear layerγ

Functionγ : GL8(F28) → GL8(F28) consists of the parallel application of a nonlinear
S-boxS : F28 → F28, x 7→ S[x] to all bytes of the argument individually:

γ(a) = b⇔ bi j = S[ai j ], 0 6 i, j 6 7.

M-0 uses the same S-box as its predecessor W (see [ISO/IEC 2004]).
This S-box satisfies the following properties:

• Theδ-parameter is 8× 2−8.
• Theλ-parameter is 14× 2−6.
• The non-linear orderν is maximum, namely, 7.

The detailed microstructure and the rationale on the choice of that particular S-box is
found in [Barreto and Rijmen 2000]. For completeness, we list that S-box in table 1.

6.3. The cyclical permutationπ

The permutationπ : GL8(F28) → GL8(F28) cyclically shifts each column of its argument
independently, so that columnj is shifted downwards byj positions:

π(a) = b⇔ bi j = a(i− j) mod 8, j , 0 6 i, j 6 7.

The purpose ofπ is to disperse the bytes of each row among all rows.

6.4. The linear diffusion layerθ

The M-0 diffusion layerθ : GL8(F28) → GL8(F28) is directly inherited from
its predecessor, W (see [ISO/IEC 2004]). It is a linear mapping based on the
[16,8,9] MDS code with generator matrixGC = [I | C] whereC is the circulant matrix
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cir(01x, 01x, 04x, 01x, 08x, 05x, 02x, 09x), so thatθ(a) = b ⇔ b = a · C. The effect of θ
is to mix the bytes in each state row. The detailed rationale on this choice ofθ is found
in [Barreto and Rijmen 2000, revised May 2003]; for completeness, we list here theC
matrix:

C =



01x 01x 04x 01x 08x 05x 02x 09x

09x 01x 01x 04x 01x 08x 05x 02x

02x 09x 01x 01x 04x 01x 08x 05x

05x 02x 09x 01x 01x 04x 01x 08x

08x 05x 02x 09x 01x 01x 04x 01x

01x 08x 05x 02x 09x 01x 01x 04x

04x 01x 08x 05x 02x 09x 01x 01x

01x 04x 01x 08x 05x 02x 09x 01x


.

6.5. The key additionσ[k]

The affine key additionσ[k] : GL8(F28) → GL8(F28) consists of the bitwise addition
(XOR) of a key matrixk ∈ GL8(F28):

σ[k](a) = b⇔ bi j = ai j ⊕ ki j , 0 6 i, j 6 7.

6.6. The round functionρ[k]

The r-th round function is the composite mappingρ[k] : GL8(F28) → GL8(F28),
parametrised by the key matrixk ∈ GL8(F28) and given by:

ρ[k] ≡ σ[k] ◦ θ ◦ π ◦ γ.

6.7. The round constantscr

The round constant for ther-th round,r > 0, is a matrixcr ∈ GL8(F28) defined as

cr
3 j ≡ S[16r + j], 0 6 j 6 7;

cr
7 j ≡ S[16r + 8+ j], 0 6 j 6 7;

cr
i j ≡ 0, i , 3,7; 06 j 6 7.

6.8. The key schedule

The key schedule expands the 1024-bit cipher keyK onto a sequence of 512-bit round
keys K0, . . . ,KR, with Kr ∈ GL8(F28). The bit sequenceK = (v0, . . . , v1023) is initially
mapped to a column-vectorK−1 ≡ (κ−2, κ−1) ∈ F2512×F2512 by the rulesκ−2 =

∑511
j=0 vj x511− j,

κ−1 =
∑511

j=0 vj+512x511− j.

At each steps > 0 the column-vectorKs−1 = (κ2s−2, κ2s−1) is transformed into
a new vector by thekey evolution transformKs = (κ2s, κ2s+1) ≡ E · Ks−1 + Cs, where
E ∈ GL2(F2512) is defined as

E ≡

[
1 1
x8 x8 + 1

]
,

and the elements of the column-vectorCs ≡ (c2s, c2s+1) ∈ F2512 × F2512 correspond to
the round constantsc2s and c2s+1, respectively. This matrix generates a multiplicative
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subgroup of GL2(F2512) of sizeO(2510). Besides, it and at least its first 100000 powers are
all MDS.

Recall that multiplication byx8 ∈ F2512 is accomplished by theζ transform defined
in the context of the third 3CM chain. Thus each key evolution transform costs only one
ζ invocation plus twoF2512 additions.

The actual round keys are given byKr = ψ(κr), where thekey extraction function
ψ consists of mappingκr to a matrixκr ∈ GL8(F28), then applying the S-box to the linesκr

i
such thatcr

i is nontrivial (i.e. does not consist of a sequence of nullF28 elements) obtaining
the modified matrix ˜κr , and finally applying the linear diffusion layer to those same lines
exclusively,Kr

i = κ̃
r
i ·C, the remaining lines ofKr coinciding with the corresponding lines

of κr .

Notice that, sinceR is even, the key evolution transform as described produces
one extra elementκR+1, which is discarded.

This scheduling scheme is lighter than that of W, yet its nonlinearity is
higher than that of the AES [NIST 2001]. The present choice ensures that it is not possi-
ble to choose a difference in the key input such that the input differences to all the S-box
applications due to the key extraction function are zero, i.e. it prevents an attacker from
completely avoiding the nonlinearity in the key schedule. To achieve this, the minimum
total number of 8× 8 S-box applications for a 1024-bit key along its evolution must be
1024/8 = 128 (the actual number of S-box applications in the M-0 key schedule
is 16(R+ 1) = 176) and the mapping from the key to the S-boxes inputs must be bijec-
tive (as it indeed is, since the key evolution transform is affine and all powers ofE are
nonsingular).

6.9. The complete internal cipherM

Given a sequence of functionsfm, fm+1, . . . , fn−1, fn, m6 n, we use the notation©n
r=m fr ≡

fm◦ fm+1◦ · · · ◦ fn−1◦ fn, and©r=n
m fr ≡ fn◦ fn−1◦ · · · ◦ fm+1◦ fm; if m> n, both expressions

stand for the identity mapping.

The dedicatedR-round block cipherM[K] : GL8(F28) × (F2)1024→ GL8(F28) is
defined as

M[K] =

(
r=R
©
1
ρ[Kr ]

)
◦ σ[K0],

where the round keysK0, . . . ,KR are derived fromK by the key schedule.

7. Efficiency

All implementation techniques proposed for components shared between W and
M-0 remain valid [Barreto and Rijmen 2000, section 7]. Techniques specific to
the few new components like theζ transform have already been pointed out in the text.

Using the W reference implementation in C as basis for a direct (non-
optimized) implementation of M-0 in IA-32 assembly language, we observe the
results listed in table 2 for messages 1500 bytes long, the typical size of an IP packet.
The benchmark platform is an Intel Pentium M 1.40 GHz processor. The core operation
consists of the underlying cipher operating in the proper chaining mode and compres-
sion function. The full timings take buffering, padding, and other kinds of overhead into
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Table 2. Efficiency (cycles/byte)
W M-0

Core 126 30
Full 157 103

Table 3. Extrapolation (cycles/byte)
SHA-512 W SHA-256 M-0

40 36 22 14

account. All figures refer to the full 512-bit hash value to avoid extra costs needed for
truncations or modular reductions.

We remark that, for the full timings, virtually the same buffer processing code was
used for W and M-0, namely the reference code for W with a
few changes to account for M-0’s differing block size. When originally written,
this code didn’t require optimization as it wasn’t considered a bottleneck for W,
but the full timing figures indicate M-0 is severely affected by the inefficiency
of this code; unfortunately, due to time constraints, we were unable to optimize it. We
are confident that a properly optimized implementation of buffer processing will achieve
considerably better figures.

Extrapolating to M-0 the best results on W available to us
in software (exploiting the use of assembly language instructions on an IA-32 plat-
form) [Nakajima and Matsui 2002], we anticipate the figures in table 3 for messages of
the same size above or longer, concentrating on the core operation.

Similar extrapolation factors may be expected in throughput-oriented FPGA de-
vices [Kitsos and Koufopavlou 2004] with only a modest increase in hardware resources
(say, about 15%). That would produce a throughput of nearly 12.8 Gbit/s at a frequency
of about 90 MHz, using roughly 6500 CLB slices. Although the expected number of
CLB slices is nearly six times that of SHA-512, the corresponding throughput is almost
27 times higher for M-0. Alternatively, one may be interested in minimizing
the required hardware resources [Pramstaller et al. 2006]; this might produce a through-
put of nearly 1 Gbit/s at a frequency of about 130 MHz, using roughly 1700 CLB slices.
This is less than the expected resources needed for either SHA-512 or SHA-384, yet the
throughput is 2–3 times higher.

We stress that these are only estimates; a complete hardware project will include
the still experimental (and therefore omitted) special handling of very short messages.

8. Conclusion

We have presented M-0, an evolution of W that incorporates the state-
of-the-art in the design of cryptographically secure hash functions. The overall structure
of M-0 makes it essentially platform-independent, yet facilitates exploiting the
features of each particular environment. Still, its improved design makes it faster and
arguably more robust than its predecessor and other comparable hash functions like SHA-
512.
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We hope that M-0 fulfils its role not merely as a new hash function,
but as a feedback to NIST on which minimum requirements the future “Advanced Hash
Standard” should satisfy, and also as a valuable comparison tool for AHS candidates in
terms of security, efficiency, and flexibility.
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