
Applying Strand Spaces to Certified Delivery Proofs
Fabio R. Piva1, José R. M. Monteiro1,2, Augusto J. Devegili1, Ricardo Dahab1

1Instituto de Computação – Universidade Estadual de Campinas (UNICAMP)
Caixa Postal 6176 – 13084-971 – Campinas – SP – Brasil

2Centro de Pesquisa e Desenvolvimento para a Segurança das Comunicações –
CEPESC/Abin Brası́lia – DF – Brasil

{fabio.piva, monteiro, augusto, rdahab}@ic.unicamp.br

Abstract. Although fair exchange protocols are being widely implemented,
there are few formal methods able to verify them. This work introduces the
strand spaces method for verifying certified mail delivery protocols, a subclass
of fair exchange protocols. Three fair exchange properties are verified: effec-
tiveness, verifiability of TTP and timeliness. For effectiveness and verifiability
we used the FPH protocol [Ferrer-Gomila et al. 2000]; for timeliness we use
the ZDB protocol [Zhou et al. 1999]. We show that strand spaces can be ap-
plied to fair exchange protocols, and present an additional attack to the FPH
protocol which was not previously reported.

1. Introduction
Digital signatures can be used to provide non-repudiation in a variety of well

known cryptographic protocols. However, since fairness is more difficult to achieve, it
must be provided by fair exchange protocols. These protocols provide communicating
parties with assurance regarding the outcome of the exchange: each party receives the
item it expects if and only if the other party also gets his or hers. Exchanges are typical of
distributed system environments, where negotiations are carried over insecure channels,
between mutually trusting parties (except, perhaps, for byzantine-like agreements). So-
lutions comprise protocols based on a trusted third party (TTP) with varying degrees of
involvement. The role of a TTP in an optimistic protocol is restricted to resolving conflicts
between the parties, as opposed to being involved in every communication between them,
thus reducing the occurrence of bottlenecks involving the TTP, resulting in much greater
efficiency. Although Asokan [Asokan 1998] has shown protocols for exchange of generic
items, there are fair exchange protocols for certified mail delivery, contract signing and
electronic payments. In this work we focus on certified mail delivery.

According to Asokan [Asokan 1998] and Garay et al. [Garay et al. 1999], fair
exchange protocols have the following properties: (i) effectiveness: the protocol actually
exchanges a message for a receipt; (ii) fairness: as defined above; (iii) timeliness: the
parties are guaranteed to complete their exchange in a finite amount of time, even in
the presence of exceptions; (iv) non-repudiation of the actions of each party (the sender
and the recipient); (v) verifiability of the TTP: the actions of a TTP may be checked
and audited by independent sources; and (vi) abuse freeness: if the protocol is executed
unsuccessfully, none of the two parties can show the validity of intermediate results to
others.

In early protocols, messages were forwarded by the TTP. In 1997, Zhou and Goll-
mann [Zhou and Gollmann 1997] proposed a solution where the TTP acts as a lightweight

notary. The encrypted message goes directly to the receiver, while the TTP passes only
a short-term key when the sender fails to do so. This protocol evolved to an optimistic
version [Zhou et al. 1999]. In 2000, Ferrer-Gomila, Payeras-Capellà and Huguet i Rot-
ger [Ferrer-Gomila et al. 2000] presented a new version of Asokan’s protocol, which uses
the same strategy as Zhou and Gollmann, i.e., which replaces the expected item with
another, previously agreed, item: the decrypting key for the message.

Although there has been some recent work on formal verification meth-
ods for fair exchange protocols, like [Chadha et al. 2001, Chadha et al. 2004,
Mukhamedov et al. 2005], protocol designers usually employ informal techniques to ver-
ify fair exchange properties. However, informal techniques may lead to incomplete or
flawed verifications, as this paper shows. The verification of fair exchange properties
can be made less error prone if formal methods are used. The strand spaces method
[Thayer et al. 1999b] allows one to represent cryptographic protocols and prove security
properties. By the association of strands to protocol entities and analysing behavioural
traces expected for those entities, properties can be proved, such as ambiguities in gener-
ation of these traces. Initially, the strand spaces method was designed for a single authen-
tication protocol execution. Later, an adaptation was proposed in [Thayer et al. 1999a]),
which accounts parallel executions of the protocol but forbids a term generated in a par-
allel execution to be used in the main protocol run (which is exactly what occurs in fair
exchange protocols). In [Guttman and Thayer 2002], authentication tests are introduced.
By the use of test components, it is possible to determine ambiguities in the origin of
terms in entity traces.

In [Mukhamedov et al. 2005] the authors use the strand spaces method to pro-
vide a formal proof for their corrected version of a flawed multi-party fair exchange
protocol, although not considering the multi-protocol nature of fair exchange protocols.
Our work applies the notions of authentication tests to prove properties in complete
fair exchange protocols – considering not only the main exchange protocol, but also
its components finish and cancel protocols. We use the strand spaces method to anal-
yse the effectiveness and non-verifiability of the TTP for the Ferrer-Gomila (FPH) pro-
tocol and non-timeliness for the Zhou et al. (ZDB) protocol. We refer the reader to
[Thayer et al. 1999b, Thayer et al. 1999a, Guttman and Thayer 2002] for background on
the strand spaces method and [Asokan 1998] on fair exchange protocols.

This paper is organised as follows: in Section 2, we describe the common notation
used in the remaining sections; in Section 3, we show how strand spaces are adapted to
the verification of fair exchange protocols; in Section 4 we present the FPH protocol,
notations and analysis; in Section 5 we do the same for the ZDB protocol; and the last
section contains results and conclusions of this work.

2. Common notation
In this section we describe the common notation used throughout the text.

i. A and B are the parties in the exchange and T or TTP is the trusted third party
(TTP);

ii. M : message from A to be certifiably delivered to B;
iii. K: symmetric key generated by A;
iv. M, N or M N : concatenation of two messages, M and N ;
v. PRX(G)/PUX(G): encryption of term G with principal X’s private/public key;

vi. A → B : G: principal A sends a message contaning term G to principal B;

vii. A → B :
G (if C1)

G′ (if C2) var := V ALUE
: principal A sends to principal B a

message containing term G if condition C1 holds. If condition C2 holds instead,
A sends G′ to B and attributes V ALUE to variable var;

viii. |G|X : term G signed by a principal X . This can be achieved with assymetric
cryptography (in this case, |G|X = PRX(G)).

3. Fair exchange protocols in the strand spaces method
This section describes how the strand spaces method can be adapted to allow ver-

ification of fair exchange protocols. We also describe how fair exchange properties pre-
sented in [Asokan 1998] may be described as strand spaces theorems.

3.1. Fair exchange roles with general parameters
Fair exchange properties [Asokan 1998] can be mapped to the strand spaces

method in the same way that authentication properties do. In strand spaces, demonstra-
tions are based in theorem proving through derivation of trace parameters. Fair exchange
properties can also be verified in this manner.

Two-party fair exchange protocols usually involve three roles: an initiator, the
principal who starts the protocol; a responder, the principal who is initially contacted by
the initiator; and a trusted third party (TTP), which is only invoked if the initiator or the
responder decides to abandon the exchange before the end of the main protocol.

Although the parameters that compose a regular strand definition may vary from
one protocol to another, there are some parameters common to fair exchange protocols.
Most regular trace definitions will have the following parameters:

[X, Y, T, o, o′, d, d′, C, F],

where X , Y and T are the initiator, the responder and the TTP’s identities respec-
tively; o is the initiator’s object, which shall be given to the responder; o′ the responder’s
object, which shall be given to the initiator; d is the description of o, the same as desc(o).
It is an information that the responder will use as a guarantee that o is what he expects it
to be; d′ is the description of o′, the same as desc(o′). It is an information that the initiator
will use as guarantee that o′ is what he expects it to be; C is the cancellation token, issued
by the TTP to the caller of the cancel protocol; and F is the finishing token, issued by the
TTP to the caller of the finish protocol.

These parameters are generally necessary during fair exchange protocol verifica-
tion. Note that some of them may not matter in some moments (C and F are ignored
during effectiveness analysis), but it is common practice to represent them as *’s rather
than simply ignoring them.

3.2. Fair exchange properties in the strand spaces method
In this section we present each fair exchange property as described in

[Asokan 1998] along with its representation as a general strand spaces theorem. No-
tice that for a protocol to achieve any of these properties it is necessary that it achieves
that property for each principal interested in the exchange. Here we present each theo-
rem on behalf of the initiator. During the complete verification of the property, analogous
theorems must be devised for the responder as well.

3.2.1. Effectiveness

Suppose a player A behaves correctly. If player B also behaves correctly, and
both A and B do not want to abandon the exchange, then when the protocol is completed,
A has o′ such that desc(o′) = d′.

Theorem 3.1. Let A be a principal associated with a strand sA ∈
Init[A, ∗, T, o, ∗, d, d′, ∗, ∗] and B be a principal associated with a strand sB ∈
Resp[∗, B, T, ∗, o′, d, d′, ∗, ∗]. If both A and B do not want to abandon the exchange,
then sA ∈ Init[A, ∗, T, o, o′, d, d′, ∗, ∗] and sB ∈ Resp[∗, B, T, o, o′, d, d′, ∗, ∗], where
d = desc(o) and d′ = desc(o′), d and d′ are the respective descriptions of A’s starting
object and B’s starting object.

3.2.2. Strong fairness

Supose a player A behaves correctly. Then when the protocol is completed,
either A has o′ such that desc(o′) = d′, or B has gained no additonal information about o.

Theorem 3.2. Let A be a principal associated with a strand sA ∈
Init[A, B, T, o, ∗, d, d′, ∗, ∗]. Then either sA ∈ Init[A, B, T, o, o′, d, d′, ∗, ∗] with
d′ = desc(o′) or sB /∈ (Resp[∗, B, ∗, o, o′, d, d′, ∗, ∗] ∪ Init[B, ∗, ∗, ∗, o, ∗, d, ∗, ∗]),
where d = desc(o).

3.2.3. Weak fairness

Suppose a player A behaves correctly. Then when the protocol is completed,
either A has o′ such that desc(o′) = d′, or B has gained no additonal information about
o, or A can prove to an arbiter that B has received (or can still receive) o such that
d = desc(o), without any further intervention from A.

Theorem 3.3. Let A be a principal associated with a strand sA ∈
Init[A, B, T, o, ∗, d, d′, ∗, ∗]. Then either theorem 3.2 holds or ∃ sB ∈
(Resp[∗, B, ∗, o, o′, d, d′, ∗, ∗] ∪ Init[B, ∗, ∗, ∗, o, ∗, d, ∗, ∗]), where d = desc(o).

3.2.4. Non-repudiability

Suppose a player A behaves correctly. Then after a effective exchange (i.e., A has
received o′ at the end of the exchange), A will be able to prove

• Non-repudiability of origin: that o′ originated from B, and
• Non-repudiability of receipt: that B received o.

Theorem 3.4. Let A be a principal associated with a strand sA ∈
Init[A, B, T, o, o′, d, d′, ∗, ∗] with d′ = desc(o′) and d = desc(o). Then:

• of origin: ∃ sB such as sB ∈ (Resp[∗, B, ∗, ∗, o′, ∗, d′, ∗, ∗] ∪
Init[B, ∗, ∗, o′, ∗, ∗, d, ∗, ∗]), with d′ = desc(o′).

• of receipt: ∃sB such as sB ∈ Resp[∗, B, ∗, o, ∗, d, ∗, ∗, ∗] ∪
Init[B, ∗, ∗, ∗, o, ∗, d, ∗, ∗]), with d = desc(o).

3.2.5. Verifiability of TTP

Assuming that the third party T can be forced to eventually send a valid reply1 to
every request, this property requires that if T misbehaves, resulting in the loss of fairness
for A, then A can prove the misbehaviour of T to an arbiter (or verifier) in an external
dispute. In other words, each of the other players has a weak fairness guarantee even in
the case of a misbehaving TTP.

3.2.6. Timeliness

Suppose a player A behaves correctly. Then A can be sure that the protocol will
be completed at a certain point in time. At completion, the state of the exchange as of
that point is either final or any change to the state will not degrade the level of fairness
achieved by A so far.

Definition An item i is testable by a principal X if and only if X can check i’s validity
by doing some computation (by reconstructing i from other testable items, by decrypting
i with a known key, etc). If an item is not testable by X , we say it is untestable by X .

Theorem 3.5. A protocol achieves timeliness for principal A if and only if every item A
needs to provide to the TTP in a subprotocol call is testable by A.

4. The FPH protocol
The FPH protocol, firstly introduced in [Ferrer-Gomila et al. 2000], is a two-party

optimistic protocol for certified mail delivery. The items to be exchanged are a message
M (originated by the initiator) and its receipt |h|B (by the responder). Both tokens F
and C issued by the TTP are morphologically identical to each other, which results in the
attacks described in Section 4.3.2. In this Section we use the following notation:

i. H(M) - the result of applying a collision-free hash function H to message M ;
ii. {M}K - encryption of M using a symmetric algorithm with secret key K produc-

ing ciphertext {M}K ; decryption of {M}K is performed with {{M}K}K ;
iii. PUT (K) - key K encrypted with the TTP’s public-key PUT ;
iv. |h|A = |H(H({M}K), PUT (K))|A - part of the evidence of non-repudiation of

origin of message M for B;
v. |h|B = |H(H({M}K), PUT (K))|B - part of the evidence of non-repudiation of

reception of message M for A;
vi. |key = K|A - second part of the evidence of non-repudiation of origin for B;

vii. |key = K|T - an alternative second part of the evidence of non-repudiation of
origin for B;

viii. |H(H({M}K), PUT (K), |h|A)|A - an evidence that A has requested the TTP’s
intervention;

ix. |H(H({M}K), PUT (K), |h|A, |h|B)|B - an evidence that B has requested the
TTP’s intervention;

x. |H(|h|B)|T - the TTP’s signature on |h|B which proves its intervention.

1Because of the concept of what a valid reply is varies from protocol to protocol, there can not be a
general theorem representing this property. See section 4 for an example.

4.1. Protocol description

In this section we describe the three components of the FPH protocol.

1. A → B : {M}K , PUT (K), |h|A (if exception, B stops)
2. B → A : |h|B (if exception, A runs the cancel protocol)
3. A → B : |key = K|A (if exception, B runs the finish protocol)

Figure 1. Main protocol

1. B → T : H({M}K), PUT (K), |h|A, |h|B, |H(H({M}K), PUT (K), |h|A, |h|B)|B
2. T → B :

|H(cancelled, |h|B)|T (if cancelled = TRUE)

|key = K|T (if cancelled = FALSE) finished := TRUE

Figure 2. Finish protocol

1. A → T : H({M}K), PUT (K), |h|A, |H(H({M}K), PUT (K), |h|A)|A
2. T → A :

|h|B , |H(|h|B)|T (if finished = TRUE)

|H(cancelled, |h|A)|T (if finished = FALSE) cancelled := TRUE

Figure 3. Cancel protocol

4.2. Strand spaces representation and regular strands trace definition

In this section we define the traces of regular strands for the main protocol and
its two subprotocols (finish and cancel). The strand space Σ may be formed by many
possible combinations of those strands.

4.2.1. Main protocol

Figure 4 illustrates the FPH main protocol.

X Y

◦ {M}K PUT (K) |h|X //

��
◦
��

◦
��

◦|h|Yoo

��
◦ |key = K|X // ◦

Figure 4. Main protocol

1. A strand s ∈ Init[X, Y, ∗, M, |h|Y , {M}K , h, ∗, ∗, K] iff s has trace of the form

〈+{M}K PUT (K) |h|X , −|h|Y , +|key = K|X 〉

where X, Y ∈ Tname with X 6= Y , T ∈ Tttp with Tname and Tttp disjoint, h =
H({M}K , PUT (K)) and H() is a one-way, collision-free hash function, M is
X’s initial object with description {M}K , |h|Y is Y ’s object with description h
and K ∈ K. The principal associated with a strand s ∈ Init is A.

2. A strand s ∈ Resp[X, Y, ∗, M, |h|Y , G, h, ∗, ∗, G′, K] iff s has trace of the form

〈−G G′ |h|X , +|h|Y , −|key = K|X 〉

The principal associated with a strand s ∈ Resp is B.

4.2.2. Finish protocol

Figure 5 illustrates the FPH finish protocol.

Y T

◦ H({M}K) PUT (K) |h|X |h|Y |H(H({M}K) PUT (K) |h|X |h|Y)|Y //

��
◦
��

◦ ◦
f2

oo

Figure 5. Finish protocol

1. A strand s ∈ Resp[X, Y, T, M, |h|Y , G, h, CR, FR, G′, K] iff s has trace of the
form

〈+H(G) G′ |h|X |h|Y |H(H({M}K) PUT (K) |h|X |h|Y)|Y , −f2〉
where f2 = CR = |(H(cancelled, |h|Y))|T is a cancel token issued by the
TTP to the responder if the protocol has been cancelled and f2 = |key = K|T
is issued otherwise. The principal associated with a strand s ∈ Resp is B.

2. A strand s ∈ Serv[X, Y, T, M, |h|Y , {M}K , h, CR, FR, K] iff s has trace of the
form
〈−H({M}K) PUT (K) |h|X |h|Y |H(H({M}K) PUT (K) |h|X |h|Y)|Y , +f2〉

The principal associated with a strand s ∈ Serv is T .

4.2.3. Cancel protocol

Figure 6 illustrates the FPH cancel protocol.

X T

◦ H({M}K) PUT (K) |H(H({M}K) PUT (K) |h|X)|X //

��
◦
��

◦ ◦c2
oo

Figure 6. Cancel protocol

1. A strand s ∈ Init[X, Y, T, M, G′′, {M}K , h, CI , FI , K] iff s has trace of the form
〈+H({M}K) PUT (K) |H(H({M}K) PUT (K) |h|X)|X , −c2〉

where c2 = CI = |(H(cancelled, |h|X))|T is a cancel token issued by the
TTP to the initiator if the protocol has not been resolved yet (by execution of the
finish protocol) and c2 = |h|Y |H(|h|Y)|T otherwise. The principal associated
with a strand s ∈ Init is A.

2. A strand s ∈ Serv[X, Y, T, M, G′′, {M}K , h, CI , FI , K] iff s has trace of the form
〈−H({M}K) PUT (K) |H(H({M}K) PUT (K) |h|X)|X , +c2〉

The principal associated with a strand s ∈ Serv is T .

The sets Serv, Resp and Init are pairwise disjoint.

4.3. Verification of the FPH protocol
In this Section we prove that the FPH protocol fails to provide verifiability of the

TTP and still achieves effectiveness.

4.3.1. Effectiveness

To prove effectiveness, we demonstrate that if both A and B com-
plete the exchange without trying to abandon the protocol, then it is pos-
sible to achieve sA ∈ Init[A, ∗, T, M, |h|B, {M}K , h, ∗, ∗, K] and sB ∈
Resp[∗, B, T, M, |h|B, G, h, ∗, ∗, G′, K], with G = {M}K and G′ = PUT (K).

Theorem 4.1. Let A be a principal associated with a strand sA ∈
Init[A, ∗, T, M, ∗, {M}K , h, ∗, ∗, K], M, K are uniquely originating in Σ and K
is good. Suppose sA has C−height≥ 2 and B’s public key is safe2. Then sA ∈
Init[A, ∗, T, M, |h|B, {M}K , h, ∗, ∗, K].

Proof. The first message received by A (node 〈sA, 2〉) contains term |h|B, which
can be interpreted as an unsolicited authentication test [Guttman and Thayer 2002] (h is
recently generated by A from the uniquely originated values {M}K and PUT (K)). That
means that there is a regular participant B (with B 6= A) represented by a strand sB ∈ Σ
in which |h|B is originated. We must consider two cases for sB (we will not consider the
case in which B can be the TTP, as we consider sets Tname and Tttp to be disjoint):

1. sB ∈ Init[B, ∗, T, M, ∗, {M}K , h, ∗, ∗, K] and |h|B ∈ term(〈sB, 1〉). From the
unique origination of M, K we conclude that A = B, which is a contradiction.

2. sB ∈ Resp[∗, B, T, ∗, |h|B, G, h, ∗, ∗, G′, ∗] and |h|B = term(〈sB, 2〉). Note
that G and G′ are untestable by B, which means that he can only retrieve
M and check if G = {M}K if he receives a correct K, and he can never
check if G′ = PUT (K). But he can check that h = H(G, G′). So, un-
der A’s point of view, the reception of |h|B means that B has checked h =
H(G, G′). But A knows the values of G and G′, and can conclude that sB ∈
Resp[∗, B, T, ∗, |h|B, {M}K , h, ∗, ∗, PUT (K), ∗]. By the unique origination of
M and the goodness of K, A knows from {M}K that B is running the same
exchange as he is, and so sA ∈ Init[A, B, T, M, |h|B, {M}K , h, ∗, ∗, K].

Theorem 4.2. Let B be a principal associated with a strand sB ∈
Resp[∗, B, T, X, |h|B, G, h, ∗, ∗, G′, ∗]. Suppose sB has C−height= 3 and A’s
public key is safe. Then sB ∈ Resp[∗, B, T, M, |h|B, G, h, ∗, ∗, G′, K], with G = {M}K .

Proof. The last message received by B (node 〈sB, 3〉) can be interpreted as
an unsolicited authentication test [Guttman and Thayer 2002]. That means that there
is a regular participant A (with B 6= A) represented by a strand sA ∈ Σ in which
|key = K|A is originated. Only initiator strands have a term with that form, so
sA ∈ Init[A, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, K] (note that B must trust A in the generation of a good
key K). Now B can check if the other values are correct. It checks that G = {M}K

by decrypting G with K. From the goodness of K, B concludes that G = {M}K

was originated by A, and so was h. So sA ∈ Init[A, ∗, T, M, ∗, {M}K , h, ∗, ∗, K], and
sB ∈ Resp[A, B, T, M, |h|B, G, h, ∗, ∗, G′, K], with G = {M}K . �

4.3.2. Verifiability of TTP

We show that the FPH protocol does not provide verifiability of TTP.

2By safe we mean only known to B.

Theorem 4.3. The FPH protocol provides verifiability of TTP in the following circum-
stances:

• as for non-repudiability of origin: ∃sB such that sB ∈
Resp[A, B, T, M, ∗, G, h, ∗, ∗, G′, K], with G = {M}K , G′ = PUT (K) and K
good, then @ sA ∈ Init[A, ∗, T, M, ∗, {M}K , h, C, ∗, K] with a valid cancellation
token C (a cancellation token C is valid if C = |(H(cancelled, |h|A))|T).

• as for non-repudiability of receipt: ∃sA such that sA ∈
Init[A, B, T, M, |h|B, {M}K , h, ∗, ∗, K], with PRB() safe, then @sB ∈
Resp[∗, B, T, M, ∗, G, h, C, ∗, G′, K] with G = {M}K , G′ = PUT (K)
and a valid cancellation token C (a cancellation token C is valid if
C = |(H(cancelled, |h|B))|T).

Proof. Suppose that the protocol achieves verifiability of TTP as for non-
repudiability of receipt. Then ∃sA ∈ Init[A, B, T, M, |h|B, {M}K , h, ∗, ∗, K], and as
PRB() is safe, |h|B must have been originated in the second node of a responder strand,
from a main protocol run, or in the first node in a responder strand, from a finish protocol
run (in that case A would be participating as the TTP, which is not possible due to Tname

and Tttp being disjoint). So we conclude that sA has C−height≥ 2 in a main protocol run.
As we supposed that the protocol achieves verifiability of TTP, there can be no

principal B who knows a valid C for the protocol run in which A is involved (that means
C = |(H(cancelled, |h′|B))|T ′ with T ′ = T , h′ = h = H({M}K , PUT (K))). If
there is a principal B who knows a valid token C, then C would have been originated in
one of the following cases:

1. finish protocol run: C was produced by T on an instance of finish proto-
col, but an instance of the cancel protocol must have been called before by
some principal Z. So sB ∈ Resp[∗, B, T, ∗, |h|B, G, h, C, ∗, G′, ∗] and ∃sZ ∈
Init[Z, ∗, T, ∗, ∗, {M}K , h, C ′, ∗, K], where C ′ = |(H(cancelled, |h|Z))|T .
Note that parameters {M}K and K come from the agreement of B and princi-
pal Z associated to sZ over the values H({M}K) and PUT (K), sent on the first
message on the cancel protocol run. In that case, by the unique origination of M ,
either Z = A or Z = B.

2. cancel protocol run: C was produced by T on an instance of the cancel protocol,
but no instance of the finish protocol can have been called before for the values of
T and h. So sB ∈ Init[B, ∗, T, ∗, ∗, {M}K , h, C, ∗, K]. �

The protocol allows both scenarios, which represents failure in achieving veri-
fiability of TTP. In the first case, let Z = B. Principal A initiates an exchange with
principal B, who fakes an exchange initiated by himself and calls the TTP for cancella-
tion any time after receiving the first message from A. The TTP issues the cancellation
token C ′ = |(H(cancelled, |h|B))|T = C to B and marks the fake exchange as
finished. Now B calls the TTP for finishing the non-fake run. The TTP identifies A as
the initiator and checks that this run has not been cancelled, issues the key K to B, and
marks the non-fake run as finished. Now B can go through the rest of the main protocol
run by sending |h|B to A, or he can simply not send anything to A, which will cause A
to call the TTP for cancellation. As the run has been finished by B, A gets |h|B from
the TTP. At the end of the exchange, sA ∈ Init[A, B, T, M, |h|B, {M}K , h, ∗, ∗, K] and
sB ∈ Resp[∗, B, T, M, |h|B, G, h, C, ∗, G′, K] with G = {M}K , G′ = PUT (K) and a

valid cancellation token C = |(H(cancelled, |h|B))|T . This violates theorem 4.3
and is exactly the attack described in [Monteiro and Dahab 2002].

If we consider the last scenario, a similar attack would be possible. If B had
continued the main protocol run right after the reception of the cancellation token C from
the TTP, instead of having called the finish protocol, principal A would also get hB and
B would also have C. To the best of our knowledge, this attack has not yet been reported.

Both attacks are possible because the cancellation tokens issued by the TTP in
both subprotocols are very similar. If the identity of the initiator had been inserted in
the tokens, none of the described attacks would have been possible (C ′ and C would be
different).

5. The ZDB protocol
The ZDB protocol is a two-party non-repudiation protocol proposed by

[Zhou et al. 1999] and already analysed and improved in [Boyd and Kearney 2000,
Gürgens et al. 2005]. The exchange happens in two steps: First the initiator exchanges
a term C (which is a message M encrypted with a key K initially unknown to the re-
sponder) for a receipt EORC . Then the initiator exchanges the key K for another receipt
EORK . These two receipts form the responder’s object o′. We use the following notation

i. H(M, K): a one-way hash function applied to message M and key K;
ii. eK(M) and dK(M): encryption and decryption of message M with key K;

iii. C = eK(M): committed ciphertext for message M ;
iv. L = H(M, K): label to link C and K;
v. f1, f2, . . . , f8: message tags to indicate the purpose of the respective message;

vi. PUT (K) encryption of key K with TTP’s public key;
vii. sigA(W): principal A’s digital signature on message W with A’s private signature

key. Note that the plaintext is not recoverable from the signature;
viii. EOOC = sigA(f1, B, L, C): evidence of origin of C;

ix. EORC = sigB(f2, A, L,EOOC): evidence of receipt of C;
x. EOOK = sigA(f3, B, L, K): evidence of origin of K;

xi. EORK = sigB(f4, A, L,EOOK): evidence of receipt of K;
xii. subK = sigA(f5, B, L, K, TTP,EOOC): evidence of submission of K to TTP ;

xiii. conK = sigTTP (f6, A,B, L,K): evidence of confirmation of K by the TTP;
xiv. abort = sigTTP (f8, A,B, L): evidence of abortion;

5.1. Protocol description
In this section we describe the three components of the ZDB protocol.

1. A → B : f1, f5, B, L, C, T, PUT (K), EOOC , subK (if exception, B stops)
2. B → A : f2, A, L,EORC (if exception, A runs the cancel protocol)
3. A → B : f3, B, L,K, EOOK (if exception, B runs the finish protocol)
4. B → A : f4, A, L,EORK (if exception, A runs the finish protocol)

Figure 7. Main protocol

1. U → T : f1, f2, f5, A,B, L, T, PUT (K), subK , EOOC , EORC

2. T → U :
f8, A, B, L, abort (if aborted = TRUE)

f2, f6, A, B,L, K, conK , EORC (if aborted = FALSE) finished := TRUE

Figure 8. Finish protocol

1. A → T : f7, B, L, sigA(f7, B, L)

2. T → A :
f2, f6, A,B, L,K, conK , EORC (if finished = TRUE)

f8, A,B, L, abort (if finished = FALSE) aborted := TRUE
Figure 9. Cancel protocol

5.2. Strand spaces representation and regular strands trace definition
In this section we define the regular strands traces for the three ZDB components.

5.2.1. Main protocol

Figure 10 illustrates the ZDB main protocol.

X Y

◦ f1,f5,Y,L,C,T,PUT (K),EOOC ,subK //

��
◦
��

◦
��

◦f2,X,L,EORCoo

��
◦ f3,Y,L,K,EOOK //

��
◦
��

◦ ◦f4,X,L,EORKoo

Figure 10. Main protocol

1. A strand s ∈ Init[X, Y, T,M,K,EORC , EORK , C, PUT (K), EOOC , EOOK , ∗, ∗, L] iff s
has trace of the form

〈+{f1 f5 Y L C T PUT (K) EOOC subK , −f2 X L EORC , +f3 Y L K EOOK , −f4 X L EORC〉
where X, Y ∈ Tname with X 6= Y , T ∈ Tttp with Tname and
Tttp disjoint, K ∈ K. The principal associated with a strand s ∈
Init[X, Y, T, M, K, EORC , EORK , C, PUT (K), EOOC , EOOK , ∗, ∗, L] is A.

2. A strand s ∈ Resp[X, Y, T,M,K,EORC , EORK , G2, G3, EOOC , EOOK , ∗, ∗, G1, G4] iff
s has trace of the form
〈−{f1 f5 Y G1 G2 T G3 EOOC G4, +f2 X G1 EORC , −f3 Y G1 K G5, +f4 X G1 EORC〉
where G1, G2, G3, G4, G5 ∈ A (which is the set of all possible terms in Σ, as in-
troduced in [Thayer et al. 1999b]) are not testable by Y . Although some of these
terms may become testable by B at some point (like G5 = EOOK , which be-
comes testable as soon as B gets K), they are not testable at the time B receives
them, and so we represent them differently. The principal associated with a strand
s ∈ Resp[X, Y, T, M, K, EORC , EORK , G2, G3, EOOC , EOOK , ∗, ∗, G1, G4]
is B.

5.2.2. Finish protocol

Figure 11 illustrates the ZDB finish protocol.

U T

◦ f1,f2,f5,X,Y,{L or G1},T,{PUT (K) or G3},{subK or G4},EOOC ,EORC //

��
◦
��

◦ ◦m2

oo

Figure 11. Finish protocol

1. A strand
s ∈ Init[X, Y, T,M,K,EORC , EORK , C, PUT (K), EOOC , EOOK , abort, conK , L] iff s
has trace of the form

〈+f1 f2 f5 X Y L T PUT (K) subK EOOC EORC , −f2〉
where m2=f8, X, Y, L, abort if the protocol has been aborted
and m2 = f2, f6, X, Y, L,K, conK , EORC if the protocol has
not been aborted. The principal associated with a strand s ∈
Init[X, Y, T, M, K, EORC , EORK , C, PUT (K), EOOC , EOOK , abort, conK , L]
is A.

2. A strand s ∈ Resp[X, Y, T,M,K,EORC , EORK , G2, G3, EOOC , EOOK , abort, conK , G1, G4]
iff s has trace of the form

〈+f1 f2 f5 X Y G1 T G3 G4 EOOC EORC , −m2〉
The principal associated with a strand s ∈
Resp[X, Y, T, M, K, EORC , EORK , G2, G3, EOOC , EOOK , abort, conK , G1, G4]
is B.

3. A strand s ∈ Serv[X, Y, T,M,K,EORC , C, PUT (K), EOOC , abort, conK , L, subK] iff s
has trace of the form

〈−f1 f2 f5 X Y L T PUT (K) subK EOOC EORC , +m2〉
The principal associated with a strand s ∈
Serv[X,Y, T, M, K, EORC , C, PUT (K), EOOC , abort, conK , L, subK] is
T .

5.2.3. Cancel protocol

Figure 12 illustrates the ZDB cancel protocol.

X T

◦ f7,Y,L,sigA(f7,Y,L) //

��
◦
��

◦ ◦c2
oo

Figure 12. Cancel protocol

1. A strand s ∈ Init[X, Y, T,M,K,EORC , EORK , C, PUT (K), EOOC , EOOK , abort, conK , L]
iff s has trace of the form

〈+f7 Y L sigA(f7 Y L), −c2〉
where c2 = f2, f6, A,B, L,K, conK , EORC if the protocol has already been
resolved and c2 = f8, A,B, L, abort if the protocol has not been resolved yet
(by execution of the finish protocol). The principal associated with a strand s ∈
Init[X, Y, T, M, K, EORC , EORK , C, PUT (K), EOOC , EOOK , abort, conK , L]
is A.

2. A strand s ∈ Serv[X, Y, T,M,K,EORC , C, PUT (K), EOOC , abort, conK , G1, subK] iff s
has trace of the form

〈−f7 Y G1 sigA(f7 Y G1), +c2〉
The principal associated with a strand
s ∈ Serv[X, Y, T, M, K,EORC , C, PUT (K), EOOC , abort, conK , G1, subK] is T .

The sets Serv, Resp and Init are pairwise disjoint.

5.3. Verification of the ZBD protocol
In this section we prove that the ZBD protocol fails to provide timeliness.

5.3.1. Timeliness

Let A be a initiator associated with a strand sA ∈ Init. Notice that all of the
parameters used to define the initiator’s trace are testable by A. Because of this we can
assure that every time A needs to invoke subprotocol cancel or finish, she has all the
necessary terms and they are all valid. Therefore the protocol achieves timeliness for A.

Let B be a responder associated with a strand sB ∈ Resp. Some of the parameters
used to define the responder’s trace can not be tested by B, and so we must proceed with
the verification. As B is a responder, he can only invoke the finish subprotocol. So,
applying theorem 3.5, the ZDB protocol provides timeliness for B iff all terms needed to
invoke the finish protocol are testable by B.

Proof. As we can see by simple inspection, the first message of the finish
protocol, when invoked by a responder, contains G1, G3 and G4, which are untestable by
B. When T receives these terms from B, she will test them and check if they correspond
to L = H(M, K), PUT (K) and subK = sigA(f5, B, L, K, T, EOOC), respectively. If
any of these tests are not correct, T will judge that B has acted maliciously and will stop
the finish protocol run, leaving B without any options for ending the exchange properly.
We then conclude that the protocol fails to provide timeliness for B. �

This failure makes the following attack possible: Suppose that a malicious entity
A initiates an exchange with an honest principal B. She sends in the first message a bogus
subK or a bogus PUT (K). If every other term is valid, then B will proceed and send the
second message to A. Now A has everything she needs to call the cancel protocol and get
the cancellation token abort. This constitutes a valid contract for A to end with. B, on
the other hand, will invoke the finish protocol when A stops responding. He will provide
every term necessary to T , but the subK or PUT (K) (or even both) will not be valid. Then
T will quit the finish protocol, and B will remain without a valid contract. Later, in an
external dispute, A is able to claim that B cheated during the exchange, as she can provide
a valid contract which proves that she behaved well, while B cannot provide anything at
all.

Although this attack does not result in loss of fairness for B, it leaves room for
malicious behaviour that culminates on an honest principal being judged incorrectly. This
attack was firstly introduced in [Gürgens et al. 2005].

6. Results and conclusions
The application of the strand spaces method to fair exchange protocols is a promis-

ing and feasible way to derive formal proofs of properties. The results confirmed the at-
tacks discovered for the FPH protocol in [Monteiro and Dahab 2002] and for the ZDB in
[Gürgens et al. 2005]. In the case of FPH, an additional attack was found, which was not
previously reported. Although the proposition of solutions for the attacks is out of the
scope of this work, it can be seen that this method highlights the points of failure with
regard to fair exchange properties, allowing protocol analysts to devise solutions to fix
them.

References
Asokan, N. (1998). Fairness in Electronic Commerce. PhD thesis, University of Waterloo.

Boyd, C. and Kearney, P. (2000). Exploring fair exchange protocols using specification
animation. In ISW ’00: Proceedings of the Third International Workshop on Informa-
tion Security, pages 209–223, London, UK. Springer-Verlag.

Chadha, R., Kanovich, M. I., and Scedrov, A. (2001). Inductive methods and contract-
signing protocols. In ACM Conference on Computer and Communications Security,
pages 176–185.

Chadha, R., Kremer, S., and Scedrov, A. (2004). Formal analysis of multi-party contract
signing.

Ferrer-Gomila, J. L., Payeras-Capellà, M., and Rotger, L. (2000). An efficient protocol for
certified electronic mail. In Third International Workshop - ISW 2000, volume 1975 of
Lecture Notes in Computer Science, pages 237–248, Berlin. Springer-Verlag.

Garay, J. A., Jakobsson, M., and MacKenzie, P. (1999). Abuse-free optimistic contract
signing. Lecture Notes in Computer Science, 1666:449–466.

Gürgens, S., Rudolph, C., and Vogt, H. (2005). On the security of fair non-repudiation
protocols. Int. J. Inf. Secur., 4(4):253–262.

Guttman, J. D. and Thayer, F. J. (2002). Authentication tests and the structure of bundles.
Theor. Comput. Sci., 283(2):333–380.

Monteiro, J. R. and Dahab, R. (2002). An attack on a protocol for certified delivery.
Information Security - 5th International Conference, ISC 2002, Proceedings, LNCS
2433.

Mukhamedov, A., Kremer, S., and Ritter, E. (2005). Analysis of a multi-party fair ex-
change protocol and formal proof of correctness in the strand space model. In Patrick,
A. S. and Yung, M., editors, Revised Papers from the 9th International Conference on
Financial Cryptography and Data Security (FC’05), volume 3570 of Lecture Notes
in Computer Science, pages 255–269, Roseau, The Commonwealth Of Dominica.
Springer.

Thayer, F. J., Herzog, J. C., and Guttman, J. D. (1999a). Mixed strand spaces. In
CSFW ’99: Proceedings of the 1999 IEEE Computer Security Foundations Workshop,
page 72, Washington, DC, USA. IEEE Computer Society.

Thayer, F. J., Herzog, J. C., and Guttman, J. D. (1999b). Strand spaces: Proving security
protocols correct. Journal of Computer Security, 7(2–3):191–230.

Zhou, J., Deng, R. H., and Bao, F. (1999). Evolution of fair non-repudiation with ttp. In
ACISP ’99: Proceedings of the 4th Australasian Conference on Information Security
and Privacy, pages 258–269, London, UK. Springer-Verlag.

Zhou, J. and Gollmann, D. (1997). Evidence and non-repudiation. Journal of Network
and Computer Applications, 20(3):267–281.

