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Abstract. Data hiding is a technique used to embed a sequence of bits in a host 

image with small visual deterioration and the means to extract it afterwards. 

Reversible data hiding allows, in addition, recovering the original cover-

image exactly. Several reversible data hiding techniques have been developed 

but none of them seems to be appropriate for binary images. This paper 

proposes a reversible data hiding for binary images. The proposed technique 

selects a set of low-visibility pixels and uses the Golomb code to compress the 

predictions of these pixels. This compressed data and the net payload data are 

embedded into the image. Images watermarked by the proposed technique 

have excellent visual quality, because only low-visibility pixels are flipped. 

Then, we use the proposed data hiding to reversibly authenticate binary 

images and documents. This technique has many potential practical uses, 

including lossless authenticated FAX transmission and reversible content 

protection of binary document databases. 

1. Introduction 

Data-hiding is a technique used to embed a sequence of bits in a host image with small 

visual deterioration and the means to extract it afterwards. Most data-hiding techniques 

modify and consequently distort the host signal in order to insert the additional 

information. This distortion is usually small but irreversible. Reversible data-hidings 

insert information bits by modifying the host signal, but enable the exact (lossless) 

restoration of the original host signal after extracting the embedded information. 

Sometimes, expressions like distortion-free, invertible, lossless or erasable 

watermarking are used as synonyms for reversible watermarking. 

 In most applications, the small distortion due to the data embedding is usually 

tolerable. However, the possibility of recovering the exact original image is a desirable 

property in many fields, like legal, medical and military imaging. Let us consider that 

sensitive documents (like bank checks) are scanned, protected with an authentication 

scheme based on a reversible data hiding, and sent through the Internet. In most cases, 

the watermarked documents will be sufficient to distinguish unambiguously the contents 

of the documents. However, if any uncertainty arises, the possibility of recovering the 

original unmarked document is very interesting. 

 To the best of our knowledge, none of the available reversible data hidings is 

adequate for watermarking binary images. We propose in this paper a reversible data 



 

 

 

hiding for binary images called RDTC (Reversible Data hiding by Template ranking 

with symmetrical Central pixels). Images watermarked by the proposed technique have 

excellent visual quality, because only low-visibility pixels are flipped. RDTC is 

adequate for watermarking most types of binary images, like scanned or computer-

generated texts, charts and graphics; cartoon-like images; and clustered-dot halftones. 

RDTC can even be used to watermark dispersed-dot halftones (like images generated by 

error diffusion), however the resulting watermarked image may not present high visual 

quality, because the concept “low-visibility pixel” does not apply to this kind of image. 

 Then, we use RDTC to create a reversible public-key authentication 

watermarking for binary images named RATC (Reversible Authentication 

Watermarking by Template ranking with symmetrical Central pixels). Any reversible 

data hiding technique can be easily converted into a reversible authentication 

watermarking, provided that an enough number of bits can be embedded into the host 

image. To do it, the digital signature (DS) of the original image is computed using the 

private key. Then, the DS is embedded into the image, along with the information to 

allow recovering the original image. The verification algorithm extracts the DS, restores 

the original cover-image and verifies whether the DS matches the recovered image.  

 The advantages of reversibly embedding the DS over appending it are obvious. 

First, there is no extra information (besides the image itself) to be stored or transmitted. 

Second, any lossless format conversion, such as changing the format from TGA to 

BMP, does not erase the embedded information. Third, the presence of a reversible 

authentication is less noticeable than the ostensibly appended DS. 

 RATC has many potential practical uses, because most of scanned documents 

are binary, and they must be digitally signed to assure their authenticity and integrity. 

Using RATC, the receiver of an Internet FAX document can be sure of the identity of 

the sender of the document and that the document was not tampered with. It is also 

possible to publish a database of binary documents in the Internet (for example, patent 

documents) and the reader can be sure that the documents are authentic and that they 

were not maliciously modified. 

2. Reversible watermarking 

Some authors [Awrangjeb and Kankanhalli 2004, Celik et al. 2002, Shi 2004] classify 

reversible data hiding techniques in two types: (1) those based on additive spread 

spectrum and (2) those based on image feature compression (high-capacity reversible 

watermarking).  

 (1) The first type [Fridrich et al. 2001, Honsinger et al. 2001] makes use of 

additive spread spectrum techniques. In these techniques, a spread spectrum signal 

corresponding to the data to be embedded is superimposed (added) on the host signal. In 

the decoding, the hidden data is detected and the added signal is removed (subtracted) to 

restore the original host signal. In this type, the payload extraction is robust, in the sense 

that the payload can be extracted even if the watermarked image is slightly modified. 

However, in this case, the original image cannot be recovered. These techniques use 

modulus arithmetic to avoid overflow/underflow errors, which may cause salt-and-

pepper artifacts. Moreover, they usually offer very limited information hiding capacity.  



 

 

 

 (2) The second type [Awrangjeb and Kankanhalli 2004, Celik et al. 2002, Celik 

et al. 2005, Fridrich et al. 2002, Ni et al. 2004, Tian 2002, Tian 2003] overwrites some 

portions of the host signal with the embedded data. Two kinds of information must be 

embedded: the compressed data of the portion to be overwritten (to allow recovering the 

original signal) and the net payload data. During the decoding, the hidden information is 

extracted, the payload data is recovered, and the compressed data is used to restore the 

original signal. These techniques do not cause salt-and-pepper artifacts, because the 

modified portions are usually the least significant bits or the high frequency wavelet 

coefficients that do not cause perceptible distortion. These techniques usually offer more 

data hiding capacity than the first type. 

 The proposed technique RDTC is of the second type. There are two main 

challenges for designing a reversible data hiding of the second type for binary images: 

 (1) The first is to find a suitable non-reversible data hiding technique to be 

converted into a reversible version. In order to recover the original image, this technique 

must be able to localize precisely the flippable pixels in both insertion and extraction. 

Many techniques do not have this property. Consider, for example, the data hiding 

where the cover image is subdivided into blocks, and one bit is inserted in each block by 

flipping (if necessary) the pixel with the lowest visibility. The blocks with even (odd) 

number of black pixels has bit zero (one) embedded. In this technique, the original 

image cannot be recovered even if the original parities of black pixels are known, 

because the precise flipped pixel inside each block cannot be localized. 

 (2) The second is an efficient compression of the portion to be overwritten by the 

hidden data. This portion is typically small, has no structure and its samples are virtually 

uniformly distributed and uncorrelated from sample to sample. Direct compression of 

the data therefore results in rather small lossless embedding capacity. However, if the 

remainder of the image is used as the side-information, significant compression gains 

can be achieved [Celik et al. 2002]. In continuous-tone reversible data hiding, the choice 

of the compression algorithm seems not to be critical, because there is enough space to 

store the information (least significant bits, for instance). [Awrangjeb and Kankanhalli 

2004] use Arithmetic Coding, LZW and JBIG for lossless compression. [Celik et al. 

2002] use an adapted version of CALIC [Wu 1997]. In the reversible data hiding for 

binary images, in contrast, most compression algorithms based on redundancy or 

dictionaries are not effective. RDTC uses the Golomb code to compress predictions of 

low-visibility pixels to obtain the space to store the hidden data. 

3. PWLC data hiding technique 

To the best of our knowledge, the only proposed reversible data hiding technique for 

binary images is PWLC (Pair-Wise Logical Computation) [Tsai et al. 2004a, Tsai et al. 

2004b]. However, it seems that sometimes PWLC does not correctly extract the hidden 

data, and fails to recover perfectly the original cover image.  

 PWLC uses neither the spread spectrum nor any compression technique. It uses 

XOR binary operations to store the payload in the host image. It scans the host image in 

some order (for example, in raster scanning order). Only sequences “000000” or 

“111111” that are located near to the image boundaries are chosen to hide data. The 

sequence “000000” becomes “001000” if bit 0 is inserted, and becomes “001100” if bit 



 

 

 

1 is inserted. Similarly, the sequence “111111” becomes “110111” if bit 0 is inserted, 

and becomes “110011” if bit 1 is inserted. 

 However, the papers [Tsai et al. 2004a, Tsai et al. 2004b] do not describe clearly 

how to identify the modified pixels in the extraction process. The image boundaries may 

change with the watermark insertion. Moreover, let us suppose that a sequence 

“001000” (located near to an image boundary) was found in the stego image. The papers 

do not describe how to discriminate between an unmarked “001000” sequence and an 

originally “000000” sequence that became “001000” with the insertion of the hidden bit 

0. 

4. DHTC data hiding technique 

The technique proposed in this paper (RDTC) is based on the non-reversible data hiding 

named DHTC (Data Hiding by Template ranking with symmetrical Central pixels) [Kim 

2005]. DHTC flips only low-visibility pixels to insert the hidden data and consequently 

images marked by DHTC have excellent visual quality and do not present salt-and-

pepper noise. DHTC insertion algorithm is: 

 1. Divide the binary cover image Z in a sequence v of non-overlapping “image 

pieces” (e.g., 3×3). Only the central pixels of the pieces of v can have their colors 

changed by the watermark insertion. 

 2. Sort the sequence v in increasing order using the visual impact score as the 

primary-key and non-repeating pseudo-random numbers as the secondary-key. The 

primary key classifies the flippable central pixels according to their “visibility.” Figure 1 

enumerates all possible 3×3 templates, listed in increasing visibility of their central 

pixels. To assure the feasibility of reconstruction of v in the data extraction stage, two 

templates that differ only by the colors of their central pixels must have the same 

visibility score. This visibility ranking can be modified or larger templates may be used 

in order to minimize some specific perceptual distortion measure. The secondary-key 

prevents from embedding the data only in the upper part of the image. 

 3. The n first central pixels of the sorted v are the data bearing pixels (DBPs). 

Embed n bits of the data by flipping (if necessary) the DBPs. 

 To extract the hidden data, exactly the same sequence v must be reconstructed 

and sorted. Then, the n first central pixels are DBPs and their values are the hidden data.  

 In DHTC, the exact positions of n DBPs are known in both the data insertion 

and extraction. This property makes it possible to transform DHTC into a reversible data 

hiding. To do it, the original values of DBPs may be compressed, appended with the bits 

to be hidden (the net payload), and stored in the DBPs. 

 

Figure 1. A 3××××3 template ranking with symmetrical central pixels in increasing 
visual impact order. Hatched pixels match either black or white pixels (note 
that all central pixels are hatched). The score of a given pattern is that of the 
matching template with the lowest impact. Mirrors, rotations and reverses of 
each pattern have the same score. 



 

 

 

5. The proposed reversible data hiding 

This paper proposes a reversible data hiding technique for binary images called RDTC 

(Reversible Data hiding by Template ranking with symmetrical Central pixels), based on 

DHTC previously described. In RDTC, two kinds of information must be embedded in 

the host image: the compressed data to allow recovering the original image and the net 

payload data to be hidden. That is, the n DBPs’ original values are compressed in order 

to create space to store the net payload data. 

 There are some difficulties to compress the DBPs’ original values. Most 

compression algorithms based on redundancy and dictionaries do not work, because 

usually the amount of bits to be compressed is very small. Moreover, there is no way to 

predict the next bit based on the previous, because these bits correspond to the pixels 

dispersed throughout the whole image.  

 The solution we found is to compress the predictions of DBPs’ values (using its 

neighborhood as the side-information) instead of their values directly. A pixel can be 

either of the same color or of the different color than the majority of its spatial 

neighboring pixels. Let us assume that the first hypothesis (a pixel is of the same color 

than the majority of its neighbors) is more probable than the second one. Let b be the 

number of black neighbor pixels of a DBP (using 3×3 templates, a DBP has 8 neighbor 

pixels). The prediction is correct (represented by 0) if the original DBP is black and b>4, 

or if it is white and b≤4. Otherwise, the prediction is wrong (represented by 1).  

 If the prediction is good, the predicted value and the true value should be the 

same with probability higher than 50%. As we store zero when the prediction is correct 

and one when it is wrong, subsequences of zeros will be longer (in most cases) than 

subsequences of ones, what makes the compression possible. The Golomb code (to be 

explained in the next section) is a good compression algorithm for this kind of sequence. 

As the DBPs’ neighborhoods are not modified during the insertion, the predictions can 

be reconstructed in the extraction. The vector of predictions (0s and 1s), together with 

the neighborhoods of DBPs, allows recovering the original DBPs’ values. 

 RDTC insertion algorithm is: 

 1. Divide the cover image Z in a sequence v of non-overlapping pieces. 

 2. Sort the sequence v in increasing order using the visual scores as the primary-

key, the number of black pixels around the central pixels as the secondary-key and non-

repeating pseudo-random numbers as the tertiary-key. 

 3. Estimate the smallest length n of DBPs capable of storing the header (size h), 

the compressed prediction vector (size w) and the given net payload data (size p), i.e., 

that satisfies n ≥ h+w+p. Try iteratively different values of n, until obtaining the smallest 

n that satisfies the inequality above.  

 4. Insert the header (the values of n, w, p and the Golomb code parameter m), the 

compressed prediction vector and the payload by flipping the central pixels of the first n 

pieces of the sorted v. 

 To extract the payload and recover the original image, the sequence v of 3×3 

image pieces is reconstructed and sorted. Then, the data is extracted from the n first 



 

 

 

central pixels of v. The compressed prediction vector is uncompressed and used to 

restore the original image. 

 We have embedded the data at the beginning of v, because this part has the least 

visible pixels. However, in order to obtain a higher embedding capacity, we can scan the 

vector v searching for a segment that allows a better compression. The pixels at the 

beginning of v are the least visible ones but they cannot be predicted accurately, because 

usually they have similar number of black and white pixels in their neighborhoods 

(since they are boundary pixels). As we move forward in the vector, we find pixels that 

can be predicted more accurately, but with more visibility. In this case, the initial index 

of the embedded data in v must also be stored in the header. Here, there is a trade-off 

between the visual quality of the stego image and the embedding capacity. 

6. The Golomb Code 

As we said in the last section, the sequence of predictions consists of (usually long) 

segments of zeros separated by (usually short) segments of ones. An efficient method to 

compress this type of information is the Golomb code [Gallager and Voorhis 1975, 

Golomb 1966, Salomon 2004]. Some other methods based on the Golomb code (as 

LOCO-I [Weinberger et al. 1996], FELICS [Howard and Vitter 1993] and JPEG-LS 

[ISO/IEC 1999]) also seem to be efficient, however we did not test them.  

 The Golomb code is used to encode sequences of zeros and ones, where a zero 

occurs with (high) probability p and a one occurs with (low) probability 1-p. The 

Golomb code depends on the choice of an integer parameter m≥2 and it becomes the 

best prefix code when 
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 For small values of m, the Golomb codes start short and increase quickly in 

length. For large values of m, the Golomb codes start long, but their lengths increase 

slowly.  

 To compute the code of a nonnegative integer n, three quantities q, r and c are 

computed: 
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 Then, the code is constructed in two parts: the first is the value of q, coded in 

unary, and the second is the binary value of r coded in a special way. If r<2
c
-m, r is 

coded as unsigned integers in c-1 bits. If r≥2
c
-m, r is represented as the unsigned integer 

r+2
c
-m in c bits. The case where m is a power of 2 is special because it requires no (c-1)-

bit codes (called Rice codes). To decode a Golomb code, the values of q and r are used 

to reconstruct n (n=r+qm).  

 Example 1: Let us encode n=17 using m=14: 
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 1. Encoding q=1 in unary yields 10. 

 2. As r ≥ 2
c
–m, the remainder r=3 is coded as unsigned number r+2

c
-m=5 using 

c=4 bits, that is, (0101)2. 

 3. Therefore, n=17 is encoded as 100101, the result of the concatenation of 10 

and 0101.  

 Example 2: Let us encode the following sequence with 59 bits. 

00000100110001010000001110100010000010001001000110100001001 

 This sequence has 19 runs of zeros:  

5, 2, 0, 3, 1, 6, 0, 0, 1, 3, 5, 3, 2, 3, 0, 1, 4, 2 and 0. 

The last zero indicates that the sequence terminates with a 1. As this sequence has 41 

zeros and 18 ones, the probability of a zero is 41/(41+18) ≅ 0.7, yielding m =  –log 1.7 / 

log 0.7  =  1.487  = 2. 

 Thus, encoding the sequence with m=2, we obtain a sequence of 19 codes: 

1101|100|00|101|01|11100|00|00|01|101|1101|101|100|101|00|01|1100|100|00 

 The result is a 52-bit sequence that represents the original 59 bits. There is 

almost no compression because p is not large enough.     

 Very small values of p, such as 0.1, result in a sequence with more ones than 

zeros. In such case, the Golomb code should compress runs of ones. For values of p 

around 0.5, the Golomb code is not a good choice and other methods should be 

considered. 

7. Reversible authentication watermarking 

A reversible fragile authentication watermarking can be easily created using RDTC. Let 

us call it RATC (Reversible Authentication watermarking by Template ranking with 

symmetrical Central pixels). RATC can detect any image alteration. It can work with 

secret-key or public/private-key ciphers. 

 The public/private-key version of RATC insertion algorithm is: 

 1. Given a binary image Z to be authenticated, compute the integrity index of Z 

using a one-way hashing function H = H(Z). Encrypt the integrity index H using the 

private-key, obtaining the digital signature S. 

 2. Insert S into Z using RDTC, obtaining the watermarked stego image Z’. 

 RATC verification algorithm is: 

 1. Given a stego image Z’, extract the authentication signature S and decrypted it 

using the public-key, obtaining the extracted integrity index E.  

 2. Extract the prediction vector, uncompress it and restore the original cover 

image Z. Recalculate the hashing function, obtaining the check integrity index C = H(Z). 

 3. If the extracted integrity index E and the check integrity-index C are the same, 

the image is authentic. Otherwise, the image was modified. 



 

 

 

8. Experimental results 

We have tested RDTC to reversibly embed 128 bits in binary images of different kinds 

and sizes (scanned texts, computer-generated texts, cartoon-like images, halftones, 

random noises, etc). 128 bits are enough to store a message authentication code, used in 

secret-key image authentication. It was necessary to compress in average (excluding 

random noise images) only 453 low-visibility pixels to get space enough to store 128 

bits of payload data and 37 bits of header (table 1). The marked stego-images have 

excellent visual quality (figures 2 and 3), because only low-visibility pixels are 

modified. The recovered images are identical to the originals.  

 Only two kinds of images could not be marked: (1) very small images, because 

there is not enough space to store the payload and the compressed information and (2) 

random noise images with similar amounts of black and white pixels, because the 

prediction is very difficult. On the other hand, theses kinds of image are very unusual 

and the proposed technique can be used for practically all images. 

9. Conclusions 

We have presented a reversible data hiding for binary images and used it to reversibly 

authenticate binary images. In this technique, predictions of low-visibility pixels are 

compressed using the Golomb code to create space to store the hidden data. The 

proposed technique was applied to several kinds of binary images and, in average, only 

453 pixels were compressed to get space to store 128 bits of net payload data. Resulting 

watermarked images have pleasant visual aspect. 

Table 1: Insertion of 128 bits of payload and 37 bits of header in different 
images, where n is the number of DBPs and w is the size of the compressed 

DBPs. “Not” means that the insertion was not possible. 

Image Description Size n w n-w 

lena0 Error diffusion 512×512 432 264 168 

lena2 Ordered dithering 512×512 272 98 174 

fides Computer-generated text 1275×1650 432 259 173 

persuas 150 dpi scanned text 1275×1650 560 395 165 

toip300 300 dpi scanned text 2384×3194 496 325 171 

toip300b Sub-image of toip300 1094×414 464 288 176 

toip300c Sub-image of toip300 1092×1664 560 385 175 

toip400 400 dpi scanned text 3179×4259 464 293 171 

abc Computer-generated text 91×58 400 219 181 

pag1 Tiny computer-generated text 64×56 Not Not Not 

noise10 10% random black pixels 300×300 400 227 173 

noise20 20% random black pixels 300×300 880 711 169 

noise30 30% random black pixels 300×300 3824 3654 170 

noise35 35% random black pixels 300×300 Not Not Not 

noise65 65% random black pixels 300×300 Not Not Not 

noise70 70% random black pixels 300×300 1424 1256 168 

noise80 80% random black pixels 300×300 592 423 169 

noise90 90% random black pixels 300×300 368 194 174 



 

 

 

 
(a) Original cover image. 

 

 
(b) Watermarked image. 

 

 
(c) Modified pixels. 

 
(d) Modified pixels in red. 

Figure 2. Part of a magazine page scanned at 400 dpi, with 3179××××4259 pixels 
and reversibly watermarked with 1280-bits MAC (ten times the usually MAC 
size) using 3440 pixels to store the payload. 

 

 

 

 



 

 

 

 
(a) Original cover image. 

 

 
(b) Watermarked image. 

 

 
(c) Modified pixels. 

 
(d) Modified pixels in red. 

Figure 3. A 295××××331 image reversibly watermarked with 128-bits MAC, using 496 
pixels to store the payload. 
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