

Reversible Data Hiding and Reversible Authentication

Watermarking for Binary Images

Sergio Vicente D. Pamboukian
1
, Hae Yong Kim

2

1
 Universidade Presbiteriana Mackenzie, Brazil.

2
 Universidade de São Paulo, Escola Politécnica, Brazil.

sergiop@mackenzie.com.br, hae@lps.usp.br

Abstract. Data hiding is a technique used to embed a sequence of bits in a host

image with small visual deterioration and the means to extract it afterwards.

Reversible data hiding allows, in addition, recovering the original cover-

image exactly. Several reversible data hiding techniques have been developed

but none of them seems to be appropriate for binary images. This paper

proposes a reversible data hiding for binary images. The proposed technique

selects a set of low-visibility pixels and uses the Golomb code to compress the

predictions of these pixels. This compressed data and the net payload data are

embedded into the image. Images watermarked by the proposed technique

have excellent visual quality, because only low-visibility pixels are flipped.

Then, we use the proposed data hiding to reversibly authenticate binary

images and documents. This technique has many potential practical uses,

including lossless authenticated FAX transmission and reversible content

protection of binary document databases.

1. Introduction

Data-hiding is a technique used to embed a sequence of bits in a host image with small

visual deterioration and the means to extract it afterwards. Most data-hiding techniques

modify and consequently distort the host signal in order to insert the additional

information. This distortion is usually small but irreversible. Reversible data-hidings

insert information bits by modifying the host signal, but enable the exact (lossless)

restoration of the original host signal after extracting the embedded information.

Sometimes, expressions like distortion-free, invertible, lossless or erasable

watermarking are used as synonyms for reversible watermarking.

 In most applications, the small distortion due to the data embedding is usually

tolerable. However, the possibility of recovering the exact original image is a desirable

property in many fields, like legal, medical and military imaging. Let us consider that

sensitive documents (like bank checks) are scanned, protected with an authentication

scheme based on a reversible data hiding, and sent through the Internet. In most cases,

the watermarked documents will be sufficient to distinguish unambiguously the contents

of the documents. However, if any uncertainty arises, the possibility of recovering the

original unmarked document is very interesting.

 To the best of our knowledge, none of the available reversible data hidings is

adequate for watermarking binary images. We propose in this paper a reversible data

hiding for binary images called RDTC (Reversible Data hiding by Template ranking

with symmetrical Central pixels). Images watermarked by the proposed technique have

excellent visual quality, because only low-visibility pixels are flipped. RDTC is

adequate for watermarking most types of binary images, like scanned or computer-

generated texts, charts and graphics; cartoon-like images; and clustered-dot halftones.

RDTC can even be used to watermark dispersed-dot halftones (like images generated by

error diffusion), however the resulting watermarked image may not present high visual

quality, because the concept “low-visibility pixel” does not apply to this kind of image.

 Then, we use RDTC to create a reversible public-key authentication

watermarking for binary images named RATC (Reversible Authentication

Watermarking by Template ranking with symmetrical Central pixels). Any reversible

data hiding technique can be easily converted into a reversible authentication

watermarking, provided that an enough number of bits can be embedded into the host

image. To do it, the digital signature (DS) of the original image is computed using the

private key. Then, the DS is embedded into the image, along with the information to

allow recovering the original image. The verification algorithm extracts the DS, restores

the original cover-image and verifies whether the DS matches the recovered image.

 The advantages of reversibly embedding the DS over appending it are obvious.

First, there is no extra information (besides the image itself) to be stored or transmitted.

Second, any lossless format conversion, such as changing the format from TGA to

BMP, does not erase the embedded information. Third, the presence of a reversible

authentication is less noticeable than the ostensibly appended DS.

 RATC has many potential practical uses, because most of scanned documents

are binary, and they must be digitally signed to assure their authenticity and integrity.

Using RATC, the receiver of an Internet FAX document can be sure of the identity of

the sender of the document and that the document was not tampered with. It is also

possible to publish a database of binary documents in the Internet (for example, patent

documents) and the reader can be sure that the documents are authentic and that they

were not maliciously modified.

2. Reversible watermarking

Some authors [Awrangjeb and Kankanhalli 2004, Celik et al. 2002, Shi 2004] classify

reversible data hiding techniques in two types: (1) those based on additive spread

spectrum and (2) those based on image feature compression (high-capacity reversible

watermarking).

 (1) The first type [Fridrich et al. 2001, Honsinger et al. 2001] makes use of

additive spread spectrum techniques. In these techniques, a spread spectrum signal

corresponding to the data to be embedded is superimposed (added) on the host signal. In

the decoding, the hidden data is detected and the added signal is removed (subtracted) to

restore the original host signal. In this type, the payload extraction is robust, in the sense

that the payload can be extracted even if the watermarked image is slightly modified.

However, in this case, the original image cannot be recovered. These techniques use

modulus arithmetic to avoid overflow/underflow errors, which may cause salt-and-

pepper artifacts. Moreover, they usually offer very limited information hiding capacity.

 (2) The second type [Awrangjeb and Kankanhalli 2004, Celik et al. 2002, Celik

et al. 2005, Fridrich et al. 2002, Ni et al. 2004, Tian 2002, Tian 2003] overwrites some

portions of the host signal with the embedded data. Two kinds of information must be

embedded: the compressed data of the portion to be overwritten (to allow recovering the

original signal) and the net payload data. During the decoding, the hidden information is

extracted, the payload data is recovered, and the compressed data is used to restore the

original signal. These techniques do not cause salt-and-pepper artifacts, because the

modified portions are usually the least significant bits or the high frequency wavelet

coefficients that do not cause perceptible distortion. These techniques usually offer more

data hiding capacity than the first type.

 The proposed technique RDTC is of the second type. There are two main

challenges for designing a reversible data hiding of the second type for binary images:

 (1) The first is to find a suitable non-reversible data hiding technique to be

converted into a reversible version. In order to recover the original image, this technique

must be able to localize precisely the flippable pixels in both insertion and extraction.

Many techniques do not have this property. Consider, for example, the data hiding

where the cover image is subdivided into blocks, and one bit is inserted in each block by

flipping (if necessary) the pixel with the lowest visibility. The blocks with even (odd)

number of black pixels has bit zero (one) embedded. In this technique, the original

image cannot be recovered even if the original parities of black pixels are known,

because the precise flipped pixel inside each block cannot be localized.

 (2) The second is an efficient compression of the portion to be overwritten by the

hidden data. This portion is typically small, has no structure and its samples are virtually

uniformly distributed and uncorrelated from sample to sample. Direct compression of

the data therefore results in rather small lossless embedding capacity. However, if the

remainder of the image is used as the side-information, significant compression gains

can be achieved [Celik et al. 2002]. In continuous-tone reversible data hiding, the choice

of the compression algorithm seems not to be critical, because there is enough space to

store the information (least significant bits, for instance). [Awrangjeb and Kankanhalli

2004] use Arithmetic Coding, LZW and JBIG for lossless compression. [Celik et al.

2002] use an adapted version of CALIC [Wu 1997]. In the reversible data hiding for

binary images, in contrast, most compression algorithms based on redundancy or

dictionaries are not effective. RDTC uses the Golomb code to compress predictions of

low-visibility pixels to obtain the space to store the hidden data.

3. PWLC data hiding technique

To the best of our knowledge, the only proposed reversible data hiding technique for

binary images is PWLC (Pair-Wise Logical Computation) [Tsai et al. 2004a, Tsai et al.

2004b]. However, it seems that sometimes PWLC does not correctly extract the hidden

data, and fails to recover perfectly the original cover image.

 PWLC uses neither the spread spectrum nor any compression technique. It uses

XOR binary operations to store the payload in the host image. It scans the host image in

some order (for example, in raster scanning order). Only sequences “000000” or

“111111” that are located near to the image boundaries are chosen to hide data. The

sequence “000000” becomes “001000” if bit 0 is inserted, and becomes “001100” if bit

1 is inserted. Similarly, the sequence “111111” becomes “110111” if bit 0 is inserted,

and becomes “110011” if bit 1 is inserted.

 However, the papers [Tsai et al. 2004a, Tsai et al. 2004b] do not describe clearly

how to identify the modified pixels in the extraction process. The image boundaries may

change with the watermark insertion. Moreover, let us suppose that a sequence

“001000” (located near to an image boundary) was found in the stego image. The papers

do not describe how to discriminate between an unmarked “001000” sequence and an

originally “000000” sequence that became “001000” with the insertion of the hidden bit

0.

4. DHTC data hiding technique

The technique proposed in this paper (RDTC) is based on the non-reversible data hiding

named DHTC (Data Hiding by Template ranking with symmetrical Central pixels) [Kim

2005]. DHTC flips only low-visibility pixels to insert the hidden data and consequently

images marked by DHTC have excellent visual quality and do not present salt-and-

pepper noise. DHTC insertion algorithm is:

 1. Divide the binary cover image Z in a sequence v of non-overlapping “image

pieces” (e.g., 3×3). Only the central pixels of the pieces of v can have their colors

changed by the watermark insertion.

 2. Sort the sequence v in increasing order using the visual impact score as the

primary-key and non-repeating pseudo-random numbers as the secondary-key. The

primary key classifies the flippable central pixels according to their “visibility.” Figure 1

enumerates all possible 3×3 templates, listed in increasing visibility of their central

pixels. To assure the feasibility of reconstruction of v in the data extraction stage, two

templates that differ only by the colors of their central pixels must have the same

visibility score. This visibility ranking can be modified or larger templates may be used

in order to minimize some specific perceptual distortion measure. The secondary-key

prevents from embedding the data only in the upper part of the image.

 3. The n first central pixels of the sorted v are the data bearing pixels (DBPs).

Embed n bits of the data by flipping (if necessary) the DBPs.

 To extract the hidden data, exactly the same sequence v must be reconstructed

and sorted. Then, the n first central pixels are DBPs and their values are the hidden data.

 In DHTC, the exact positions of n DBPs are known in both the data insertion

and extraction. This property makes it possible to transform DHTC into a reversible data

hiding. To do it, the original values of DBPs may be compressed, appended with the bits

to be hidden (the net payload), and stored in the DBPs.

Figure 1. A 3××××3 template ranking with symmetrical central pixels in increasing
visual impact order. Hatched pixels match either black or white pixels (note
that all central pixels are hatched). The score of a given pattern is that of the
matching template with the lowest impact. Mirrors, rotations and reverses of
each pattern have the same score.

5. The proposed reversible data hiding

This paper proposes a reversible data hiding technique for binary images called RDTC

(Reversible Data hiding by Template ranking with symmetrical Central pixels), based on

DHTC previously described. In RDTC, two kinds of information must be embedded in

the host image: the compressed data to allow recovering the original image and the net

payload data to be hidden. That is, the n DBPs’ original values are compressed in order

to create space to store the net payload data.

 There are some difficulties to compress the DBPs’ original values. Most

compression algorithms based on redundancy and dictionaries do not work, because

usually the amount of bits to be compressed is very small. Moreover, there is no way to

predict the next bit based on the previous, because these bits correspond to the pixels

dispersed throughout the whole image.

 The solution we found is to compress the predictions of DBPs’ values (using its

neighborhood as the side-information) instead of their values directly. A pixel can be

either of the same color or of the different color than the majority of its spatial

neighboring pixels. Let us assume that the first hypothesis (a pixel is of the same color

than the majority of its neighbors) is more probable than the second one. Let b be the

number of black neighbor pixels of a DBP (using 3×3 templates, a DBP has 8 neighbor

pixels). The prediction is correct (represented by 0) if the original DBP is black and b>4,

or if it is white and b≤4. Otherwise, the prediction is wrong (represented by 1).

 If the prediction is good, the predicted value and the true value should be the

same with probability higher than 50%. As we store zero when the prediction is correct

and one when it is wrong, subsequences of zeros will be longer (in most cases) than

subsequences of ones, what makes the compression possible. The Golomb code (to be

explained in the next section) is a good compression algorithm for this kind of sequence.

As the DBPs’ neighborhoods are not modified during the insertion, the predictions can

be reconstructed in the extraction. The vector of predictions (0s and 1s), together with

the neighborhoods of DBPs, allows recovering the original DBPs’ values.

 RDTC insertion algorithm is:

 1. Divide the cover image Z in a sequence v of non-overlapping pieces.

 2. Sort the sequence v in increasing order using the visual scores as the primary-

key, the number of black pixels around the central pixels as the secondary-key and non-

repeating pseudo-random numbers as the tertiary-key.

 3. Estimate the smallest length n of DBPs capable of storing the header (size h),

the compressed prediction vector (size w) and the given net payload data (size p), i.e.,

that satisfies n ≥ h+w+p. Try iteratively different values of n, until obtaining the smallest

n that satisfies the inequality above.

 4. Insert the header (the values of n, w, p and the Golomb code parameter m), the

compressed prediction vector and the payload by flipping the central pixels of the first n

pieces of the sorted v.

 To extract the payload and recover the original image, the sequence v of 3×3

image pieces is reconstructed and sorted. Then, the data is extracted from the n first

central pixels of v. The compressed prediction vector is uncompressed and used to

restore the original image.

 We have embedded the data at the beginning of v, because this part has the least

visible pixels. However, in order to obtain a higher embedding capacity, we can scan the

vector v searching for a segment that allows a better compression. The pixels at the

beginning of v are the least visible ones but they cannot be predicted accurately, because

usually they have similar number of black and white pixels in their neighborhoods

(since they are boundary pixels). As we move forward in the vector, we find pixels that

can be predicted more accurately, but with more visibility. In this case, the initial index

of the embedded data in v must also be stored in the header. Here, there is a trade-off

between the visual quality of the stego image and the embedding capacity.

6. The Golomb Code

As we said in the last section, the sequence of predictions consists of (usually long)

segments of zeros separated by (usually short) segments of ones. An efficient method to

compress this type of information is the Golomb code [Gallager and Voorhis 1975,

Golomb 1966, Salomon 2004]. Some other methods based on the Golomb code (as

LOCO-I [Weinberger et al. 1996], FELICS [Howard and Vitter 1993] and JPEG-LS

[ISO/IEC 1999]) also seem to be efficient, however we did not test them.

 The Golomb code is used to encode sequences of zeros and ones, where a zero

occurs with (high) probability p and a one occurs with (low) probability 1-p. The

Golomb code depends on the choice of an integer parameter m≥2 and it becomes the

best prefix code when








 +
−=

p

p
m

2

2

log

)1(log
.

 For small values of m, the Golomb codes start short and increase quickly in

length. For large values of m, the Golomb codes start long, but their lengths increase

slowly.

 To compute the code of a nonnegative integer n, three quantities q, r and c are

computed:

 mcqmnr
m

n
q 2logand,, =−=








= .

 Then, the code is constructed in two parts: the first is the value of q, coded in

unary, and the second is the binary value of r coded in a special way. If r<2
c
-m, r is

coded as unsigned integers in c-1 bits. If r≥2
c
-m, r is represented as the unsigned integer

r+2
c
-m in c bits. The case where m is a power of 2 is special because it requires no (c-1)-

bit codes (called Rice codes). To decode a Golomb code, the values of q and r are used

to reconstruct n (n=r+qm).

 Example 1: Let us encode n=17 using m=14:

  414logand,314117,1
14

17
2 ===×−==








= crq .

 1. Encoding q=1 in unary yields 10.

 2. As r ≥ 2
c
–m, the remainder r=3 is coded as unsigned number r+2

c
-m=5 using

c=4 bits, that is, (0101)2.

 3. Therefore, n=17 is encoded as 100101, the result of the concatenation of 10

and 0101. 

 Example 2: Let us encode the following sequence with 59 bits.

00000100110001010000001110100010000010001001000110100001001

 This sequence has 19 runs of zeros:

5, 2, 0, 3, 1, 6, 0, 0, 1, 3, 5, 3, 2, 3, 0, 1, 4, 2 and 0.

The last zero indicates that the sequence terminates with a 1. As this sequence has 41

zeros and 18 ones, the probability of a zero is 41/(41+18) ≅ 0.7, yielding m =  –log 1.7 /

log 0.7  =  1.487  = 2.

 Thus, encoding the sequence with m=2, we obtain a sequence of 19 codes:

1101|100|00|101|01|11100|00|00|01|101|1101|101|100|101|00|01|1100|100|00

 The result is a 52-bit sequence that represents the original 59 bits. There is

almost no compression because p is not large enough. 

 Very small values of p, such as 0.1, result in a sequence with more ones than

zeros. In such case, the Golomb code should compress runs of ones. For values of p

around 0.5, the Golomb code is not a good choice and other methods should be

considered.

7. Reversible authentication watermarking

A reversible fragile authentication watermarking can be easily created using RDTC. Let

us call it RATC (Reversible Authentication watermarking by Template ranking with

symmetrical Central pixels). RATC can detect any image alteration. It can work with

secret-key or public/private-key ciphers.

 The public/private-key version of RATC insertion algorithm is:

 1. Given a binary image Z to be authenticated, compute the integrity index of Z

using a one-way hashing function H = H(Z). Encrypt the integrity index H using the

private-key, obtaining the digital signature S.

 2. Insert S into Z using RDTC, obtaining the watermarked stego image Z’.

 RATC verification algorithm is:

 1. Given a stego image Z’, extract the authentication signature S and decrypted it

using the public-key, obtaining the extracted integrity index E.

 2. Extract the prediction vector, uncompress it and restore the original cover

image Z. Recalculate the hashing function, obtaining the check integrity index C = H(Z).

 3. If the extracted integrity index E and the check integrity-index C are the same,

the image is authentic. Otherwise, the image was modified.

8. Experimental results

We have tested RDTC to reversibly embed 128 bits in binary images of different kinds

and sizes (scanned texts, computer-generated texts, cartoon-like images, halftones,

random noises, etc). 128 bits are enough to store a message authentication code, used in

secret-key image authentication. It was necessary to compress in average (excluding

random noise images) only 453 low-visibility pixels to get space enough to store 128

bits of payload data and 37 bits of header (table 1). The marked stego-images have

excellent visual quality (figures 2 and 3), because only low-visibility pixels are

modified. The recovered images are identical to the originals.

 Only two kinds of images could not be marked: (1) very small images, because

there is not enough space to store the payload and the compressed information and (2)

random noise images with similar amounts of black and white pixels, because the

prediction is very difficult. On the other hand, theses kinds of image are very unusual

and the proposed technique can be used for practically all images.

9. Conclusions

We have presented a reversible data hiding for binary images and used it to reversibly

authenticate binary images. In this technique, predictions of low-visibility pixels are

compressed using the Golomb code to create space to store the hidden data. The

proposed technique was applied to several kinds of binary images and, in average, only

453 pixels were compressed to get space to store 128 bits of net payload data. Resulting

watermarked images have pleasant visual aspect.

Table 1: Insertion of 128 bits of payload and 37 bits of header in different
images, where n is the number of DBPs and w is the size of the compressed

DBPs. “Not” means that the insertion was not possible.

Image Description Size n w n-w

lena0 Error diffusion 512×512 432 264 168

lena2 Ordered dithering 512×512 272 98 174

fides Computer-generated text 1275×1650 432 259 173

persuas 150 dpi scanned text 1275×1650 560 395 165

toip300 300 dpi scanned text 2384×3194 496 325 171

toip300b Sub-image of toip300 1094×414 464 288 176

toip300c Sub-image of toip300 1092×1664 560 385 175

toip400 400 dpi scanned text 3179×4259 464 293 171

abc Computer-generated text 91×58 400 219 181

pag1 Tiny computer-generated text 64×56 Not Not Not

noise10 10% random black pixels 300×300 400 227 173

noise20 20% random black pixels 300×300 880 711 169

noise30 30% random black pixels 300×300 3824 3654 170

noise35 35% random black pixels 300×300 Not Not Not

noise65 65% random black pixels 300×300 Not Not Not

noise70 70% random black pixels 300×300 1424 1256 168

noise80 80% random black pixels 300×300 592 423 169

noise90 90% random black pixels 300×300 368 194 174

(a) Original cover image.

(b) Watermarked image.

(c) Modified pixels.

(d) Modified pixels in red.

Figure 2. Part of a magazine page scanned at 400 dpi, with 3179××××4259 pixels
and reversibly watermarked with 1280-bits MAC (ten times the usually MAC
size) using 3440 pixels to store the payload.

(a) Original cover image.

(b) Watermarked image.

(c) Modified pixels.

(d) Modified pixels in red.

Figure 3. A 295××××331 image reversibly watermarked with 128-bits MAC, using 496
pixels to store the payload.

10. References

Awrangjeb, M. and Kankanhalli, M. S. (2004) “Lossless Watermarking Considering the

Human Visual System,” Int. Workshop on Digital Watermarking 2003, Lecture

Notes in Computer Science 2939, pp. 581-592.

Celik, M. U., Sharma, G., Tekalp, A. M. and Saber E. (2002), “Reversible Data

Hiding,” in Proc. IEEE Int. Conf. on Image Processing, vol. 2, pp. 157-160.

Celik, M. U., Sharma, G., Tekalp, A. M. and Saber, E. (2005), “Lossless generalized-

LSB data embedding,” IEEE Transactions on Image Processing, vol. 14, no. 2, pp.

253-266.

Fridrich, J., Goljan, M. and Du, R. (2001), “Invertible Authentication,” in Proc. SPIE

Security and Watermarking of Multimedia Contents III, (San Jose, California, USA),

vol. 3971, pp. 197-208.

Fridrich, J., Goljan, M. and Du R. (2002), “Lossless data embedding – new paradigm in

digital watermarking,” in EURASIP Journ. Appl. Sig. Proc., vol. 2002, no. 2, pp.

185-196.

Gallager, R. and Voorhis, D. V. (1975), “Optimal source codes for geometrically

distributed integer alphabets,” IEEE Trans. Inform. Theory, vol. IT-21, pp. 228-230.

Golomb, S. W. (1966), “Run-Length Encodings,” IEEE Trans. Inform. Theory, vol. IT-

12, pp. 399-401.

Honsinger, C. W., Jones, P. W., Rabbani, M. and Stoffel, J. C. (2001), “Lossless

Recovery of an Original Image Containing Embedded Data,” US Patent #6,278,791,

August.

Howard, P. G. and Vitter, J. S. (1993), “Fast and efficient lossless image compression,”

IEEE Data Compression Conference, pp. 351-360.

ISO/IEC (1999) 14495-1, ITU Recommendation T.87, “Information Technology –

Lossless and near-lossless compression of continuous-tones still images”.

Kim, H. Y. (2005), “A New Public-Key Authentication Watermarking for Binary

Document Images Resistant to Parity Attacks,” in Proc. IEEE Int. Conf. on Image

Processing, (Italy), vol. 2, pp. 1074-1077.

Ni, Z. C., Shi, Y. Q., Ansari, N., Su, W., Sun, Q. B. and Lin X. (2004), “Robust

Lossless Image Data Hiding,” IEEE Int. Conf. Multimedia and Expo 2004, pp. 2199-

2202.

Salomon, D. (2004), Data Compression: The Complete Reference, 3rd Edition,

Springer-Verlag, New York, pp. 57-64.

Shi, Y. Q. (2004), “Reversible Data Hiding,” Int. Workshop on Digital Watermarking

2004, (Seoul), Lecture Notes in Computer Science 3304, pp. 1-13.

Tian, J. (2002), “Wavelet-based reversible watermarking for authentication,” in Proc.

SPIE Security and Watermarking of Multimedia Contents IV, vol. 4675, pp. 679-

690.

Tian, J. (2003), “Reversible data embedding using difference expansion,” IEEE

Transactions on Circuits Systems and Video Technology, vol. 13, no. 8, pp. 890-896.

Tsai, C. L., Fan, K. C., Chung, C. D. and Chuang, T. C. (2004a), “Data Hiding of Binary

Images Using Pair-wise Logical Computation Mechanism,” in Proc. IEEE

International Conference on Multimedia and Expo, ICME 2004, (Taipei, Taiwan),

vol. 2, pp. 951-954.

Tsai, C. L., Fan, K. C., Chung, C. D. and Chuang, T. C. (2004b), “Reversible and

Lossless Data Hiding with Application in Digital Library,” International Carnahan

Conference on Security Technology, pp. 226-232.

Weinberger, M. J., Seroussi, G. and Sapiro, G. (1996), “LOCO-I: A low complexity,

context based, lossless image compression algorithm,” in Proc. 1996 Data

Compression conference, (Snowbird, Utah, USA), pp. 140-149.

Wu, X. (1997), “Lossless compression of continuous-tone images via context selection,

quantization, and modeling,” in IEEE Transactions on Image Processing, vol. 6, no.

5, pp. 656-664.

