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Abstract. This paper introduces a new probabilistic public key algorithm based
on elliptic curves and show that it is secure. The security of the scheme is solely
based on the difficulty of the elliptic curve discrete logarithm problem while at
the same time it has a constant message expansion for one encryption of a plain-
text of any practical size. In the alternative algorithms, like Cramer-Shoup and
PSEC, for a large plaintext, either the message expansion is proportional to its
size or an additional security assumption is needed. Although some restrictions
are posed on the public part of the key, we show how to easily find the needed
parameters, and also suggest ways to make the public key as small as possible.

1. Introduction

The concept of probabilistic encryption was first introduced in 1984 by Goldwasser and
Micali [5]. The main idea behind probabilistic encryption is to obtain semantic security.
In essence, for a semantically secure encryption, no polynomially bounded adversary can
obtain any partial information about the plaintext from the ciphertext.

The fundamental property of a probabilistic algorithm is that, for any given plain-
text, there is a huge number of possible ciphertexts. For example, suppose someone wants
to send one bit using a deterministic public key algorithm. The problem is that the mes-
sage space is small enough so that an attacker can encrypt all the possibilities, in this case
the bits 1 and 0, and just compare the ciphertext that was sent. Under probabilistic encryp-
tion, there are enough different ciphertexts for both 1 an 0, and that makes it unfeasible
for an attacker to use that strategy. And even though the algorithm has this property, all
ciphertexts are uniquely decipherable. Between probabilistic encryption and determin-
istic encryption, given the same security and efficiency requisites, the former would be
preferable.

It is widely known that one major topic of research on the field of cryptography
today is the use of elliptic curves for public key cryptography. The points of a carefully
chosen elliptic curve over a finite field provide a group structure where the discrete log-
arithm over it has no known sub-exponential algorithm. That fact allows much smaller
fields and keys than other approaches, such as those based on the difficulty of the discrete
logarithm over the multiplicative group of a finite field or those based on the difficulty
of factoring, both which have sub-exponential algorithms. The problem of calculating
logarithms over elliptic curves is often called Elliptic Curve Discrete Logarithm Problem,
ECDLP for short. More information about the basics of elliptic curve applications in
cryptography can be found in [1].



Our objective is to propose a new efficient probabilistic public key encryption
algorithm over the smaller fields allowed by elliptic logarithms. There exists at least
two other probabilistic schemes based on elliptic curves. The first one is named PSEC
(Provably Secure Elliptic Curve Encryption Scheme), which was a submission to the
standard IEEE P1363 [8], and the second one is the Cramer-Shoup public key scheme [4],
which was designed for arbitrary groups and therefore can be used with elliptic curves.
Both schemes, however, suffer from a fundamental disadvantage when used over a large
plaintext: either the user encodes several small parts of it as points of an elliptic curve and
encrypt them separately or he encrypts everything at once using a random secret key and
a block cipher and use the scheme to encrypt only the key. The problem is that the first
choice incurs in a huge message expansion (and requires a proportional number of truly
random bits) and the second one adds another security assumption to the scheme: now
both the elliptic curve problem and the block cipher must be unconditionally secure.

The scheme proposed in this paper offers a third choice of encryption which de-
mands only one security assumption and has a constant message expansion for any plain-
text. The assumption is that the Elliptic Curve Diffie-Hellman Problem (ECDHP) over
group of points of a carefully chosen elliptic curve is hard on average against all polyno-
mially bounded adversaries. The ECDHP is conjectured to be equivalent to the ECDLP,
and will be explained in section 7. In the next section we’ll introduce briefly the algorithm
proposed and explain how the paper is structured.

2. Overview of the algorithm

Much like the Blum-Goldwasser probabilistic scheme [2], which relies on the pseudo-
random bit generator Blum-Blum-Schub, our scheme relies on the elliptic curve based
pseudorandom bit generator by Burton Kaliski [6], which will be explained in detail later
in section 5. Here’s a summary of the full algorithm (logarithms are always taken base 2):

1. Public parameters. Find a pair of elliptic curves, E and its twist £, over
a finite field IF,, (with characteristic greater than 3) where the number of points of
both curves is prime. In section 3 we show how to quickly find such pair, using
the theory of Complex Multiplication. Our method has the useful advantage that
a single integer with about kﬂ% bits is enough to uniquely identify the prime field,
the coefficients of both curves (up to IF,-isomorphism), both orders and to easily
find base points which are generators of both curves.

2. Key pair. Consider ng and G the order and generator of the first curve and
ngt and Gy the order and generator of the twist. Choose uniformly secret keys
0 < sg < ngand 0 < sgt < ng: and calculate the public key using scalar
multiplication over the curves, that is the points P = sgGg and Pgt = sp:Gge.

3. Encryption. Select uniformly a secret, discardable seed a € [0,2p + 1].
As a preliminary step, using the curves, generators, orders and public keys, the
algorithm computes 3 points, namely M, Tr and Tg: and also a scalar value
r € [0,2p + 1]. Using r as a seed, and the points Tg and Tg: as generators
of the curves E and E', run the Kaliski pseudorandom bit generator, creating
a keystream of the size of the plaintext. The ciphertext is created XOR’ing the
keystream and the plaintext. Send the ciphertext along with the point M. Using
point compression on M, the size of the complete ciphertext is the size of the
plaintext plus [log p] + 1 bits.



4. Decryption. Having M, the secret keys sp and sp¢ and the ciphertext, the
objective is to reconstruct the keystream and recover the plaintext by XOR ring the
ciphertext with it. The algorithm, therefore, using the point M and the secret keys
recalculates the points T, T and the value r, allowing the inverse procedure of
the encryption.

The fact that the ciphertext depends both on the plaintext and also on the initial
seed provided for encryption implies that, for the same plaintext, an exponential number
of ciphertexts are possible. That’s the property that makes this a probabilistic public key
encryption algorithm, instead of a deterministic one.

One interesting advantage comes from the restriction that both curves must have
prime orders. As we’ll show later, that implies that any point has order of same magnitude
as the order of the finite field itself. In the end it means that when you select the bit length
of the characteristic of the finite field, you are automatically determining the security level
of the elliptic logarithms.

It is important to notice that the necessity of a prime order twisted pair as a public
key is a strong restriction. Although it’s not that hard to find one curve with a prime
number of points, it’s not obvious how to efficiently find a prime order elliptic curve such
that its twist also has prime order. For the algorithm to be usable, it is important to show
that it is easy to find such pairs and that there are enough of them. Our method also allows
a considerable compression of the public parameters, which uncompressed are clearly a
lot of information. Section 3 explains how to find such pairs and section 4 explains the
compression techniques.

The algorithm itself is pretty straightforward. Given a public key and a seed, a
point is generated such that, along with the private key, parameters for the Kaliski pseu-
dorandom bit generator are calculated and a keystream is created. Kaliski showed that
this pseudorandom bit generator is cryptographically secure under the assumption that
the ECDLP is hard. That means that its period is at least superexponential in p (p being
the characteristic of the finite field where the curves are defined) and it’s forward and
backward unpredictable against all polynomially bounded adversaries. The encryption
with this keystream is, therefore, equivalent to a One-Time-Pad against all polynomial
attacks, if the seed is never disclosed or repeated. Section 5 presents a comprehensive ex-
planation of the Kaliski generator, which will be necessary for understanding the details
of the full algorithm described in section 6.

3. Generating prime order twisted pairs

An elliptic curve over a finite field IF, with characteristic greater than 3 can be defined by
an equation with variables x and y, that has the form
y* = 2° + ax + b, (1)

with a, b € F, and having 4a® + 276> £ 0 mod p.

Given any elliptic curve, we call a quadratic twist (hereafter only called twist) of
this curve another curve with coefficients related in the following way. Take any quadratic



non-residue 5 modulo p. The twist of the curve with coefficients a and b is the curve with
coefficients a’ = a3? and b* = b3>. In other words, if equation 2 is an elliptic curve, then,

v = 2% + af’z + 5, (2)

is its twist, for any quadratic non-residue (3. Although they have different structure over
IF,, an elliptic curve and its twist are isomorphic over the extension field IF ..

By a famous theorem due to Helmut Hasse, it is known that the number of points
# I of any elliptic curve over a finite field [F,, satisfies the following equation

#E=p+1-t, 3)

where [t| < 2,/p. The value ¢ is known as the trace of Frobenius at p of the curve. An
interesting and useful fact is that if the number of points of a curve is #F = p + 1 — ¢,
then the number of points of its twist is exactly #E* = p + 1 + t. That means that the
calculation of the number of points of any curve automatically gives the number of points
of the twist.

In order to find the prime order twisted pair, we need to find an elliptic curve over
some prime field I¥,, with trace of Frobenius ¢ such that p + 1 + ¢ and p + 1 — ¢ are both
prime. The problem is that the determination of the trace of an arbitrary curve is a really
hard problem. By inspection of equation 3, it becomes clear that the determination of ¢
and the order of the curve are actually the same problem, as they are related by a linear
equation. There is a polynomial time algorithm for counting the number of points of a
curve, known as Schoof-Elkies-Atkin algorithm. A naive approach would be to randomly
choose a prime p and the coefficients a and b, count the number of points of the curve,
and, if it’s prime, check if #E£' = 2p + 2 — #F is also prime. Although that method
works, it is in fact too slow for use in practice.

To solve the problem efficiently, we must turn it upside down, using the theory of
Complex Multiplication of elliptic curves. Even though the determination of the trace of
Frobenius of a given curve is a hard problem, the creation of a curve with a specific trace
is a lot easier.

The theory of Complex Multiplication is deep, so we’ll only provide the absolute
necessary to understand the ideas being presented. We urge the reader to turn to [3] for
a comprehensive explanation of the theory. Take —D) as a negative integer congruent to
0 or 1 modulo 4 and squarefree, that is, it’s not divisible by any squares. Then —D is a
fundamental discriminant of an imaginary quadratic field Q(v/—D).

We need to solve the following equation:

t* =4p — Dy’ “4)

The value p will be the characteristic of a finite field, so it must be prime. Given
p, t will be the trace of Frobenius of a curve defined over IF,. The variable y can be any
integer. We’ll explain how to calculate the curve coefficients later.

Consider D as a constant for the moment. Our approach to solve this equation is
to use the idea of families of curves. That means, rearrange the equation so that the right



part of it depends only on one variable, and that for any given integer it generates possible
primes and traces with our necessary needs. It essentially becomes a polynomial in one
variable. The equation won’t produce all possible curves, but will produce a family of
related curves.

We choose to fix y = 1. That automatically gives one less variable to work with.
Second, we need odd traces. By inspection of equation 3 we can see that even traces
won’t ever produce prime number of points. So replace ¢ by

t(r) = 220° — 22 + 1, (5)

which is odd for any x. After rearranging the terms and making the substitutions, the
equation now becomes

2r% — 2 )2+ D
o(r) = (2x r+1)"+ ©)

4
1+D
= x4—2x3+2x2—x++T

(7

Notice that, after the rearrangements, [ becomes positive. For the independent
term, we need % integer. That will happen for all |[D| = 3 mod 4. But one more
constraint is needed. We want p to be prime, and that will never happen if the constant
term of the equation is even. That is solved by having |D| =3 mod 8.

To actually find the curves, we run a sequential search replacing = by integers,
positive or negative, and checking if p(x) is prime using some probabilistic primality
algorithm like a Miller-Rabin test. When a p prime is found, we set t = 2% — 2z + 1 and
check the orders of the curves. Notice that if you want primes with about log p bits, we
must use integers with about k’% bits.

On a 1.3GHz Athlon, using —D = —163 and looking for primes with 160 bits,
this search produces a prime order twisted pair in about fifteen seconds. And more im-
provements can be made. For example, take —D € {—11,—19, —43, —67, —163} and for
each integer calculate a base value p(z) = x* — 223 + 222 — . Now, for each base value,
we can add five different constants generating five different prime candidates, which will
be faster than moving to the next value of z.

Notice that, by equation 3, the order of both curves are of the same magnitude as
the finite field, give or take a factor of 2, /p. The fact that both groups have prime orders
implies they are cyclic, and all points are generators (a famous group theory theorem by
Joseph Lagrange). That means that the security level of the discrete logarithm in that
group, measured as bit length, is the same as the order of the finite field. Therefore,
choosing the bit length of p is the same as choosing the security level of the system.

3.1. Calculating the curve parameters

At this point we can assume to have a prime p, and a trace ¢ which defines a prime order
twisted pair. With these numbers, and using the value of D that allowed to find them,



-11 x + 32768

-19 x + 884736
-43 x + 884736000
-67 x + 147197952000

-163 x4 262537412640768000

Table 1. Hilbert polynomials for some discriminants —D.

we can construct the curves. To do that, we should get back to the theory of complex
multiplication.

Jumping ahead on the theory, D is a number that defines uniquely what is called
a Hilbert polynomial Hp(x). The degree of this polynomial is the class number of the
imaginary quadratic order with discriminant — D). For some values of — D this polynomial
has degree one, but for higher values it quickly escalates, not only in degree, but also in
the size of its coefficients. For example, the discriminants -11, -19, -43, -67, -163 all have
class number one and are more or less simple. On the other hand, -4195587 has class
number 328, and the coefficients of H_4195587(), in ASCII representation, sum up to 130
kilobytes.

The calculation in real time of Hp(xz) for a given D is not easy, and probably
should be avoided. Therefore we suggest to define in advance the values of D you want
to use and precompute these polynomials. In table 1 we present Hp(z) for five values of
D having class number one, all with |[D| =3 mod 8, which makes them suitable for our
techniques.

Another concept that must be introduced is that of the j-invariant of an elliptic
curve. The j-invariant of a curve is a number that is equal to all curves that are isomorphic
over the algebraic closure E. So, as twisted pairs are isomorphic over [ 2, they have the
same j-invariant. It turns out that the j-invariant of the curve and its twist, with trace of
Frobenius respectively ¢ and —t, is the root, modulo p, of the Hilbert polynomial Hp(x)
of the value of D that gave the respective traces on equation 4. Given a j-invariant j and
a quadratic non-residue /3, the curves coefficients are computed in two steps.

J

= < d 8

© T g Meer ®
E:y* = 2°+3cxr+2c modp )
E': y? = 2°4 3cB* 4+ 2¢4® mod p (10)

Finding roots of polynomials can be costly, but for polynomials with degree one
it’s just one subtraction.

3.2. Full example of the algorithm

For simplicity take —D = —43 and we’ll restrict our prime search to primes p = 3
mod 4, which gives us some nice properties, for instance, p — 1 is a quadratic non-residue
modulo p, (p —1)> =1 mod pand (p — 1) = p — 1 mod p. Also, for any a € F,,



a(p — 1) = p — a mod p. Half the primes are on that form, so that won’t be a real
problem.

The trace is always ¢(z) = 222 — 2z + 1. For |D| = 43 the equation 7 becomes

p(r) = ' =223 22 —x + 11 (11)

A quick search find z = 332 with p = 12076361567 prime. The trace is t =
219785, which makes p + 1 + ¢ = 12076581353 and p + 1 — ¢t = 12076141783 both
prime. We found our curves. Using the Hilbert polynomial for —D = —43 we have
J =p—_884736000 mod 12076361567, and so j = 11191625567 is the j-invariant. The
constant ¢ of equation 8 is

11191625567
¢ = Trs 1101625567 Mod 12076361567 (12)
¢ — 6691706436 13

And here is the prime order twisted pair:

E:y* = 2347998757741z + 1307051305 (14)
E':y? = 2+ 7998757741z + 10769310262 (15)

On this example, p has 34 bits, which is considered weak. But in the very same
way, ¢ = 1099511695761 and —D = —43 give a prime order twisted pair with p having
about 160 bits which is considered secure.

3.3. Brief analysis of the generation process

One could ask about the security implication of three fundamental choices made on the
algorithm proposed in the last section. We now consider and discuss each one.

The first thing that could be questioned is about the D value used. We are in fact
suggesting the use of D values with class number one, even though nothing rules out
using higher class numbers. The fact is that, although there is no proof of that, many
researchers think that someday it will be possible to mount attacks over curves defined
using D with a low class number.

The real question is, what a D with a high class number is protecting exactly?
Clearly, the polynomial Hp(z) is a lot more complex, but it’s still easily constructible
from any practical value of D, otherwise we couldn’t find the curve parameters. Other fact
is that this polynomial has a lot of other roots, but these other roots just define isomorphic
curves over the field, which are easier to find using other techniques. Another possibility
is that it would probably be harder to find the specific D of a given curve, which would
allow to find all values of equation 4, so it could be used somehow. But the algorithm uses
D as a public parameter anyway (they are pre-computed), so that is given. And probably



no implementation of curve construction using CM today is worried about hiding the D
value used. All these arguments carry out to the conclusion that we shouldn’t avoid the
benefits of using a low class number just because of that general feeling. Any attack that
distinguishes CM curves over random curves would probably be polynomially extendable
to all class numbers at the limit of the method anyway. In that case, the CM method itself
would have to be avoided, not just some curves.

The second aspect one could wonder about the generation process is about fixing
the value y = 1 in equation 4. By similar arguments to the ones just used, that would be a
fundamental security disadvantage if and only if the CM method itself was at risk. What
could be argued is that if you use more than one value for y you would get more candidate
primes. The problem is that varying y would nullify the property that |[D| = 3 mod 8
always gives odd values in equation 7, so that isn’t an obvious conclusion. Anyway, it
would be interesting to investigate different values for y. What should hold is that y is
fixed.

The last point that could be discussed is the choice for the polynomial equation
of the trace, as in equation 5. The only real restriction it must obey is to generate odd
numbers and have 1 as the independent term. Clearly one could have chose a cubic
equation, like 22 — 222 — 22 + 1 or a linear one like 22 + 1. In practice, the choice of this
polynomial is a compromise between compression (explained in the following section)
and the number of curves you skip when increasing the = value of the trial to find the
curves. Using the cubic, the parameters can represented by a value with 10% bits, but,
in return, it would be slower to find a twisted pair (you’ll skip more curves). On the
other hand, with the linear equation you would need 10% bits to represent that value, with
the benefit of finding the curves a little faster. As both properties are useful in different
stages of the algorithm, we conclude that a compromise of both options would be better,
choosing a quadratic polynomial.

4. Public parameters compression

If the process of finding the curves was understood, it’s easy to see that the value = used
to calculate the prime field in equation 7, along with D, deterministically define a lot of
information. Assuming thatp = 3 mod 4 (and p—1 as quadratic non-residue where nec-
essary), these values uniquely define p, the orders and the coefficients of both curves. One
information that they don’t define directly is which curve has positive trace and which has
negative trace, so to associate each order to the right curve. Fortunately, this determina-
tion is easy since all points of each curve are generators and the scalar multiplication of
any generator with the order of the curve gives the point at infinity.

What is left to determine are the base point generators. One of them can be found
very quickly using a property of twisted pairs. For all 7 € I, either there is a point with
coordinate = = 7 in one curve, or a point with z = i3 on the twist, 3 being the quadratic
non-residue used to calculate the twist. This property implies that the independent term b
of one of the curves is a quadratic residue modulo p, and the points (0, ++/) are on that
curve. Testing quadratic residuosity and extracting roots modulo a prime are relatively
simple algorithms. For more details, refer to [7]. We define the base point generator of
this curve by using the positive root of b (the one which is less than ’%1) as y coordinate.

The generator of the other curve is a little trickier, and there’s is no known polynomial-



time deterministic algorithm to find a point on that curve. We must define a generic algo-
rithm that, for a given curve, will always find the same point. For x starting from 1 (zero,
for sure, is not on that curve) and increasing by 1 each time, calculate the expression of
right side of the equation (take as reference the equation 2) and, for the first value that the
expression generates a quadratic residue, take that as x coordinate, calculate the square
root of the result and take the positive root as y coordinate. That’s the base generator of
the second curve.

Notice that both procedures combined will always produce the same points, so it is
safe to define the public keys based on those points, and omit them whenever it is easier.
For the second point, by the distribution of quadratic residues, the expected number of
trials you’ll have to make is two, so it is fast enough to use in practice.

Summarizing the ideas, let’s consider that the public parameters consist of the
explicitation of the twisted pair, the orders, the prime number p, the generators and the
public points. Using point compression, for a security factor £ = log p these all sums up
to 11k + 4 bits of information. Using the techniques just presented, it gets down to about
2.25k + 2 bits, with a minimal overhead.

One last remark about the value of D used. In the previous examples we assumed
that D has class number one, and that makes the Hilbert polynomial have only one root.
If a D with class number two or higher is used, then the polynomials can have more than
one root, and the exact same root must be selected every time we reconstruct the curve
parameters. There are two ways to solve that: 1) define a rule of what root is used (for
example always the one with lower absolute value) or 2) send the root used along in the
public key, which will add £ bits to it, but it’s still a lot less than expliciting all parameters.

5. The Kaliski pseudorandom bit generator

The Kaliski pseudorandom bit generator is based on the very same property we used to
find generators of the curves. That is, for all integers ¢ € I, if ¢ is not on the first
curve, then i3 is on the twist, [ being the quadratic non-residue used to define the twist.
Also, for each ¢ value, there are two points over that curve, with positive and negative y
value. That allows one to construct a mapping between the points on both curves and the
integer values in the set [0,2p + 1]. The function x : E U E* — [0,2p + 1] is defined
as the following. A superscripted ! indicates that the point is from the twist, and the

sign(y) : F, — {0, 1} function returns 0 if the y is less then or equal 7%1 and 1 otherwise.

¢

21 + sign(y) it P=(v,9),y#0;
2(5 mod p> + sign(y) if P = (z,y)',y#0;
% it P=(z,0);
X[E, B')(P) = . oo (16)
2<g modp>+1 if P =(z,0);
% if P=oc;
2p+1 if P=oo.

\

This function is also used in the main algorithm. Although the x function is really
simple, there is one possible improvement. Notice that the multiplicative inverse of (p —
1) is always itself. In case p = 3 mod 4, the division on the x function turns into a
subtraction. For example, % mod p=p—x.



Given a twisted pair, its orders and generators (namely E, E*, ng, ngt, and Gg, G
as seen in the overview), the generator works iteratively. For a given seed ¢ € [0, 2p + 1]
it checks if 7 is less than the order of E, and in that case it calculates the point :G i using
scalar multiplication. In case it is greater or equal, then it calculates (i — ng)G gt. Notice
that if ¢ > ng then, 1 — ng < ng:. Using the result point on the function y just defined, it
generates another number in the same interval and iterates.

At each iteration, the algorithm provides the log log p higher bits of the logarithm
of the point calculated. These higher bits are defined based on halving intervals as follows.
The most significant bit of ¢ with respect to the interval n is 7(c, n) defined as

n(e,n) = { 0, if¢c modn < a7

1, if¢ modn >

OIS

In other words, the most significant bit 7(c,n) is 1 if the value is higher than half the
interval in which it lies, otherwise it is 0. The bth most significant bit is defined recursively
as the following

m(c,n) = my_1(2¢,n) = (2" e, n).
Therefore, the algorithm return, at each iteration, the bits of n,(i,ng) if i < ng and
(i — ng, ngt) otherwise, for all 0 < b < log log p.

6. The main algorithm
By now, it should be clear how to find the public key, the ninetuple

t
<p,E,E ,nE,nEz,GE,GEz,PE,PEt >

that are respectively the prime field, the twisted pair, its orders, base generators and the
public points, which are the scalar multiplication of the secret keys sz, sgt with the base
point of each curve. Also, it should be clear how the Kaliski generator works. What is
left to explain in more detail is the full process of encryption and decryption.

6.1. Encryption

As seen in the overview, given a secret discardable seed a € [0,2p + 1] the algorithm
generates three points, M, T and T and another scalar value r € [0,2p + 1]. Tgis a
point and generator of £ and T is a point and generator of E*. Using these points as base
generators of the curves, along with the seed r, the Kaliski pseudorandom bit generator is
executed and a keystream with the size of the plaintext is generated. The actual encryption
occurs by calculating the exclusive-or of this keystream with the plaintext.

The x function is once more used extensively, exactly as defined on equation 16.
Remember it takes a point on either curve and return a number in the set [0, 2p + 1]. The
three points and the r value are calculated using the following algorithm:

If (a<ng)
M = CLGE
TE: CLPE

o ()

r= x(Tgt)



else

= (CL - TLE)GEt
TEt = (CL — TLE)PEz

e ()
r= x(Ie

End if.

The expression used to calculate the point Tx: in the if branch generates uni-
formly all values in the interval [0, ng — 1] with high probability, as we’ll show later. The
same follows for the e1se branch.

6.2. Decryption

The decryption process is quite trivial, once one notices that
Tp = aPp = spaGp = spM
if M is on I and
Tpt = (a — ng)Ppt = spt(a —np)Gpt = speM

if M is on E'. Having T or Tg:, the decryption is straightforward.

To check whether M lies on E or E', it suffices to evaluate the right side of
the curve equations for the x value of M. Due to the properties of twisted pairs, either
23 4 ax + b or 2° + 3%z + b32, but not both, will be a quadratic residue modulo p. That
tells if M is on F or E*. The idea translates to the following algorithm (QR stands for
Quadratic Residue):

Make z equal the z coordinate of M

If (z2>4+az+b is a QR. mod p)

TE: SEM
T ¢
T — QMDPE
2p+1
T = X(TEt)
else
TEt = SEtM
X(TEi)*nE
Ty = -~ P
s = ([T e
r = X(Tkg)
End if.

After that, the algorithm proceeds exactly like the encryption. Using the calculated
points and the value r, the exact same keystream can be generated. By the properties of the
exclusive-or operator, operating the keystream with the ciphertext results in the plaintext.



7. Security analysis

In this section, we’ll analyze the encryption process and show that it is secure. In order
to make the analysis, we initially give a mathematical definition of the ECDLP in our
context. Then we define the Elliptic Curve Diffie Hellman Problem.

Definition 1 Ler P and () # oo be two points of the elliptic curve E with prime order ng.
The ECDLP is to find the unique scalar value r < ng such that, by scalar multiplication,
the equation P = r() is true.

Definition 2 Let P, aP and bP points of the elliptic curve E with prime order ng such
that the values a and b are not known. The ECDHP is to calculate the point abP.

Obviously, given an algorithm for the ECDLP it’s easy to solve the ECDHP. Al-
though the inverse has not yet been proved, the following conjecture is widely accepted,
and assumed in this paper:

Conjecture 1 The ECDHP is equivalent to the ECDLP.

Now we proceed to the analysis. First, we consider that the pseudorandom bit
generator is secure with the assumption that the ECDLP is hard as proved by Kaliski in
[6]. Therefore, for a polynomially bounded adversary, deriving patterns in the ciphertext
is equivalent to a One-Time-Pad against an unbounded adversary. The only advantage one
can get is by distinguishing the parameters used to generate the pseudorandom bit stream
from a random distribution. We’ll see that any advantage over that, with high probability,
is equivalent to solve the ECDLP.

By inspecting the decryption process, it becomes clear that, for any encryption,
the attacker breaks the system if he obtains the point 7% if @ < ng and the point 7Tx:
otherwise. Let’s first understand what happens if a < ng (the first branch), as clearly the
else part is very similar. This first comparison ensures that a is within the order of the
curve . We claim and prove the following lemmas:

Lemma 1 Let a € [0,2p + 1] be the encryption seed and si € [0, ng — 1] be the private
key over E. If a and sg are selected uniformly within its intervals, and a < ng, then the
probability that M = T'g is negligible.

Proof By the algorithm, all points are generators and ng is the order of any point. M =
aGgand Ty = aPg = asgGg. So M = Tg if and only if a = sgpa mod ng. As both
a and sg are less then n g, this congruence is true only when sg is the unit or a = 0. So,
the probability of this congruence to hold is at most

2 2

i — Yo%t
e N A

Lemma 2 7% is any point of the curve E with the same probability for each point.

Proof If a and sp are uniformly selected and less then ng, then the congruence spa
mod ng has the exact same probability of being any value of the interval [0,ng — 1]. As
that is the exact value of the index of T at base G, then its index has the probability of
é of being any value. Relatively to a given generator, each index defines uniquely one
point. So T’z is any point of the curve with same probability. ([



Lemma 3 Let A = {x(P)|VP € E} be set of values generated by the x function over
all the points of the curve E. Then, the distribution of the values in the set A over the
interval [0, 2p + 1] is uniform with high probability.

Proof The worst case occurs with the curve having positive trace. This curve has at least
p+1—2,/p points. The first thing to notice is that

p+1—2\/ﬁgl
2p+2 2

which gives one point (consequently one value) for each two values of the set. In [9],
Peralta shows that half the elements of a finite field are quadratic residues, and they are all
uniformly distributed over all the values of the field, with high probability. That implies
the values of = which evaluates the expression x® + ax +b mod p to a quadratic residue
are also uniform over [0,p — 1]. The x function is, on average, two times the x value
of the points of the curves. If these values = are uniform over [0, p — 1] then, the values
2z, plus the points at infinity defined as the upper limit of the interval, are uniform over
[0,2p + 1]. O

Lemma 4 If the secret key 0 < sgt < ng: is uniformly selected, then, the point T is
uniformly any point of the curve E* with almost uniform probability.

Proof By lemma 2, T is any point. So the possible values for x(7) is any such that the
points of £ can generate. By lemma 3, this set of values is uniform over [0,2p+1]. That

means that the expression
X(Tg) * ng:
2p+1

is a uniform reduction from the set of values in the interval [0,2p+1] (the y function over
E) to the set of values [0,ng — 1] which is almost the same as [0,p — 1]. Therefore,
the expression is diving by two the values over [0,2p+1] and, consequently, generating
uniformly all values in the interval [0, ng: — 1] with high probability. If that’s true and if
sge is uniformly selected, then, by an argument similar to lemma 1 over E*, Tg: is any
point of £ with almost uniform probability. O

Theorem 1 Ifa € [0,2p+ 1], 0 < sg < ngpand 0 < sgt < ng: are uniformly selected,
then, if a < ng, the scheme is as secure as the ECDLP.

Proof Clearly, M and Py are uniformly any points of £. As the index of T is the
product of their indexes, then finding 7T is the ECDHP, which is as hard as the ECDLP
by conjecture 1. Also, by lemmas 3 and 4 the distribution probability of r = x(Tg:) is
uniform over [0, 2p + 1] and any advantage of finding r implies the same advantage of
finding 7's:, as the x function is easily invertible. The point Tz is uniformly any point of
E' and its index is the product of the secret key sz« and the value of the y function over
the point 7, uniformly reduced to the interval [0, ng: — 1]. As T is uniformly any point
of I/ and sp: 1s uniformly selected, then calculating 7z: is as difficult as calculating 7,
which was already established to be as hard as the ECDLP. ([l

All the proofs carry out in the exactly the same way for the case when a > ng. In
that case, a — ng is a uniform value in the interval [0, ng: — 1]. That implies that M and



Ty are uniformly any points of £ and so on. Finally, as both branches of the encryption
algorithm can be proved to be secure, then, all the algorithm is secure.

We also claim that the scheme is semantically secure, hence, probabilistic. Seman-
tic security is achievable by proving that no polynomially bounded adversary can obtain
any advantage of distinguishing from a random ensemble the set of possible ciphertexts
of any given plaintext.

Theorem 2 The scheme is semantically secure.

Proof The sequences generated by any two distinct group generators, by operating them
with itself until the result is oo, are different. So, each triple (Tg, Tgt,r) defined by
each value a generate a different pseudorandom bit stream on the Kaliski generator. This
triple can be reduced to the tuple (T's, Tgt) because r = x(Tx) or r = x(Tg:). For
each possible value of a, at least one of the points of the tuple will be different. If a
is uniformly selected and the Kaliski generator is cryptographically secure, then, any
advantage of distinguishing the ciphertext from a random stream is, at most,

1 -
p+1-2p
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